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EXAMPLES OF ABELIAN SURFACES WITH NON-SQUARE

TATE-SHAFAREVICH GROUP

STEFAN KEIL

Abstract. In this article we show the existence of abelian surfaces B/Q with

Tate-Šafarevič groups having orders five times a square and seven times a
square. To obtain this result, we explore the invariance under isogenies of the
Birch and Swinnerton-Dyer conjecture.
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1. Introduction

Let A/K be an abelian variety over a number fieldK. Consider its Tate-Šafarevič
group X(A/K). If A is an elliptic curve E, then the order of X(E/K) is a perfect
square, if it is finite. But in higher dimensions, even for principally polarized abelian
varieties, this is no longer true in general. Denote by A∨ the dual abelian variety.
The Cassels-Tate pairing [Cas62], [Tat63]

〈·, ·〉 : X(A/K)×X(A∨/K) → Q/Z,

which is non-degenerate in case X(A/K) is finite, combined with a result of Flach
[Fla90] gives a strong restriction on the non-square part of the order of the Tate-
Šafarevič group [Ste04, Theorem 1.2].

Theorem 1.1. Assume X(A/K) is finite. If an odd prime p divides the non-
square part of #X(A/K), then p divides the degree of all polarizations of A/K.
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2 STEFAN KEIL

Corollary 1.2. If A/K is a principally polarized abelian variety, then

#X(A/K) = � or 2�.

More precisely, assuming the finiteness of X(A/K), Poonen and Stoll [PS99] as-
sociated to each principal polarization λ of A/K a unique element c ∈ X(A/K)[2],
and showed that the order of X(A/K) is a square if and only if 〈c, λ(c)〉 = 0. In
this case, the induced pairing on X(A/K) is alternating, but otherwise the Cassels-
Tate pairing is only antisymmetric. They also showed that c = 0 if and only if λ
arises from a K-rational divisor. It was already known by Tate [Tat63] that the
order of finite X is a square, if such a K-rational divisor exists.

In end of 1996, Stoll constructed the first example of an abelian variety having
#X = 2�, see [Ste03] for some historical remarks. His example was the Jacobian of
a genus 2 curve over Q. Then, for every prime p < 25000, Stein [Ste04] constructed
an abelian variety Ap/Q of dimension p− 1, such that #X(Ap/Q) = p�. Hence,
Stein came up with the following

Conjecture 1.3. As one ranges over all abelian varieties A/Q, then every square-
free natural number can appear as the non-square part of the order of X(A/Q).

So one might naturally ask the following

Question 1.4. What are the possible non-square parts of the order of finite Tate-
Šafarevič groups for abelian varieties of fixed dimension over a fixed number field?
(Or over number fields of bounded degree.) Is this a finite list?

So far, in case of abelian surfaces B/Q, the only known primes which possibly
divide the non-square parts of some #X(B/Q) are 2 and 3. The purpose of this
paper is to extend this list by 5 and 7. We will explore an equation of Cassels and
Tate, which is a consequence of the invariance under isogenies of the Birch and
Swinnerton-Dyer conjecture. The left hand side of this equation is the order of the
Tate-Šafarevič group in question up to squares. We will explain how to calculate
the right hand side and then give explicit examples to prove the following

Theorem 1.5. There exist abelian surfaces B1/Q and B2/Q, such that
#X(B1/Q) = 5� and #X(B1/Q) = 7�.

The outline of this paper is the following. In Chapter 2 we present the utilized
equation of Cassels and Tate. This equation will break into two parts - a local
and a global one. The remaining part of Chapter 2 is devoted to explain the local
quotient. In Chapter 3 we present the familiy of abelian surfaces we consider and
prove how to calculte the local and the global part of the Cassels-Tate equation.
Finally, in Chapter 4 we will do explicit calculations for the primes 5 and 7 and
give examples.

2. Preliminaries

Throughout let A/K be an abelian variety A over a number fieldK, i.e., a proper
group scheme which is geometrically integral and of finite type over Spec K, where
K/Q is a finite field extension. For any K-scheme T , the group of T -rational points
is denoted by A(T ), where if T = Spec L, for L a field, we write A(L). The dual
abelian variety of A/K is denoted by A∨ := Pic0A/K and a polarization of A/K is

a symmetric isogeny λ : A→ A∨, such that over K we have λ = λL, for an ample
line bundle L on A/K.
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With v we denote a place of K, i.e., an equivalence class of valuations of K, and
with MK the set of all places of K. We have the subset M0

K of all finite places (or
primes) of K and the subset M∞

K of all infinite places of K. With Kv we denote
the completion of K at v, and with kv its residue field, i.e., the quotient of the
valuation ring Ov of Kv by its maximal ideal mv = πvOv, for a uniformizer πv. We
normalize the absolute value | · |v on Kv, such that |πv|v = (#kv)

−1. If v ∈ M0
K

is a prime lying over p ∈ M0
Q, we denote this with v|p and call Kv a p-adic field.

Denote by Knr
v the maximal unramified extension of Kv, thus K

nr
v is obtained by

adjoining to Kv all n-th roots of unity, for n coprime to the characteristic p of kv.
Since all fields considered will be perfect we do not pay attention to seperability

and with K we denote a once and for all fixed algebraic closure of K. The absolute
Galois group of a field K will be denoted by GK . For Galois cohomology we use
the usual abbreviation Hi(K,M) := Hi(GK ,M), for a Galois module M . The
Tate-Šafarevič group of A/K is defined as

X(A/K) := ker

(

H1(K,A(K)) →
∏

v∈MK

H1(Kv, A(K̄v))

)

.

With ℓ we denote a prime and by Z/ℓZ we either mean a cyclic group of order ℓ
or a Galois module of order ℓ with trivial Galois action. By µℓ we denote the ℓ-th
roots of unity as a Galois module of order ℓ, and we write ξ = ξℓ for a primitive
ℓ-th root of unity. The trivial group is denoted by 0. By � ∈ {1, 4, 9, 16, . . .}, we
denote a square natural number.

2.1. An equation of Cassels and Tate. Cassels [Cas65] (the elliptic curve case)
and Tate [Tat95] (the general case) proved the following theorem to show the invari-
ance of the Birch and Swinerton-Dyer conjecture under isogenies, see also [Mil06,
Theorem I.7.3]. Denote by RA the regulator and by PA the period of A. By cA,v
we denote the local Tamagawa number of A at a finite place v.

Theorem 2.1. Let ϕ : A → B be an isogeny between two abelian varieties A and
B over a number field K. Assume that either X(A/K) or X(B/K) is finite, then
X(A/K) and X(B/K) are both finite and

#X(A/K)

#X(B/K)
=
RB
RA

· #A(K) tors #A
∨(K) tors

#B(K) tors #B∨(K) tors
· PB
PA

·
∏

v∈M0

K

cB,v
cA,v

.

The product over the Tamagawa numbers is actually finite, since cA,v = 1, in
case v is a place of good reduction of A. We define A(K) free as the quotient group
A(K)/A(K) tors. Consider the following induced group homomorphisms.

ϕK : A(K) → B(K), ϕ∨

K : B∨(K) → A∨(K), ϕv : A(Kv) → B(Kv),

ϕK,tors : A(K) tors → B(K) tors, ϕ∨

K,tors : B
∨(K) tors → A∨(K) tors,

ϕK,free : A(K) free → B(K) free, ϕ∨

K,free : B
∨(K) free → A∨(K) free .

Now we can reformulate the above quotients in terms of the isogeny ϕ, which is
part of the proof of the above theorem. This reformulation turns out to be easier
to handle for computational purposes and we are going to use the Cassels-Tate
equation only in this description. There are two trivial equalities

#A(K) tors
#B(K) tors

=
#kerϕK

#coker ϕK,tors
,

#A∨(K) tors
#B∨(K) tors

=
#coker ϕ∨

K,tors

#kerϕ∨

K

,
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and two more interesting ones

RB
RA

=
#coker ϕ∨

K,free

#coker ϕK,free
,
PB
PA

·
∏

v∈M0

K

cB,v
cA,v

=
∏

v∈MK

#coker ϕv
#kerϕv

.

Hence we have

RB
RA

· #A(K) tors #A
∨(K) tors

#B(K) tors #B∨(K) tors
=

#kerϕK
#coker ϕK

#coker ϕ∨

K

#kerϕ∨

K

,

and we call the right-hand side of this equation the global quotient. The global
quotient obviously breaks into the regulator quotient and the torsion quotient. The
product

∏

v
#coker ϕv

#kerϕv
runs over all places v of K and is called the local quotient.

It is in fact a finite product, since #coker ϕv = #kerϕv, for all but finitely many
places v, see Corollary 2.8. The rest of section 2 will only concern the local quotient.

2.2. Isogenies on Kv-rational points. We will use the following notation. Let
ϕ : A→ B be an isogeny of prime degree ℓ between two abelian varieties A and B
over a number field K and let v ∈M0

K be a finite place of K lying over a prime p.
Consider the induced group homomorphism on Kv-rational points

ϕv : A(Kv) → B(Kv).

Our aim is to compute the quotient #coker ϕv

#kerϕv
, which mainly consists in determining

the cardinality of coker ϕv. The cokernel of ϕv can naturally be identified with a
subgroup of H1(Kv, A(Kv)[ϕ]), since the short exact sequence of Galois modules

0 // A(Kv)[ϕ] // A(Kv)
ϕ // B(Kv) // 0 ,

gives the long exact Galois cohomology sequence

0 // coker ϕv
δv // H1(Kv, A(Kv)[ϕ]) // · · ·

Lemma 2.2. Set n := [Kv : Qp]. With notation as above, if ϕ or ϕ∨ is obtained
by dividing out a Kv-rational point, then

H1(Kv, A(Kv)[ϕ]) ∼=



















Z/ℓZ, v ∤ ℓ,µℓ * Kv,

(Z/ℓZ)2, v ∤ ℓ,µℓ ⊆ Kv,

(Z/ℓZ)n+1, v|ℓ,µℓ * Kv,

(Z/ℓZ)n+2, v|ℓ,µℓ ⊆ Kv,

and if both ϕ and ϕ∨ are not obtained by dividing out a Kv-rational point, then

H1(Kv, A(Kv)[ϕ]) ∼=
{

0, v ∤ ℓ,

(Z/ℓZ)n, v|ℓ.

Proof. It is clear that H1(Kv, A(Kv)[ϕ]) is abelian and has exponent ℓ. Let M
be a finite Kv-Galois module and denote by M∨ := Hom(M,µℓ) the dual of M .
By [Ser02, II.5 Theorem 2, Proposition 17 and Theorem 5], we have

#H1(Kv,M) =

{

#H0(Kv,M) ·#H0(Kv,M
∨), v ∤ ℓ,

#H0(Kv,M) ·#H0(Kv,M
∨) · ℓn, v | ℓ.
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If ϕ (resp. ϕ∨) is obtained by dividing out a Kv-rational point, then A(Kv)[ϕ] ∼=
Z/lZ (resp. µℓ) as Galois modules. Since

H0(Kv,Z/ℓZ) ∼= Z/ℓZ, and H0(Kv,µℓ)
∼=
{

0, µℓ * Kv,

Z/ℓZ, µℓ ⊆ Kv,

and Z/ℓZ and µℓ are dual to each other, we get the first statement.
If both ϕ and ϕ∨ are not obtained by dividing out a Kv-rational point, then

A(Kv)[ϕ]) and its dual are both 6∼= Z/ℓZ. Therefore

H0(Kv, A(Kv)[ϕ]) = H0(Kv, A(Kv)[ϕ]
∨) = 0,

which completes the proof. �

Corollary 2.3.

H1(Qp,Z/ℓZ) ∼= H1(Qp,µℓ) ∼=











Z/ℓZ, p 6= ℓ, p 6≡ 1 mod ℓ, ℓ 6= 2,

(Z/ℓZ)2, (p = ℓ or p ≡ 1 mod ℓ), ℓ 6= 2,

(Z/ℓZ)3, p = ℓ = 2,

Proof. This follows immediately from the facts, that µ2 ⊆ Qp, for all p, and
µℓ * Qp if and only if p 6≡ 1 mod ℓ and ℓ 6= 2. �

Now we introduce unramified Galois cohomology, which is an important sub-
group. Let M be a GKv

-module and Knr
v be the maximal unramified extension of

Kv. We have that GKnr
v

is a (normal) subgroup of GKv
, thus the usual restriction

homomorphism

Resnr : H
1(Kv,M) → H1(Knr

v ,M)

is definied and we denote its kernel by H1
nr(Kv,M).

Lemma 2.4. If ϕ is obtained by dividing out a Kv-rational point, then

H1
nr(Kv, A(Kv)[ϕ]) ∼= Z/ℓZ.

If ϕ is not obtained by dividing out a Kv-rational point, then

H1
nr(Kv, A(Kv)[ϕ]) = 0.

Proof. The order of H1
nr(Kv, A(Kv)[ϕ]) equals the order of H0(Kv, A(Kv)[ϕ]),

see [SS01, Lemma 4.2]. See also [Ser02, II Proposition 18(b)]. �

By Ã we denote the reduction of A modulo v, i.e., the special fiber at v of the
Néron model A/OK of A, and by Ã0(kv) we denote the smooth part of the kv-
rational points of the reduction at v, i.e., the kv-rational points of the connected
component of Ã intersecting the zero-section. Denote by A0(Kv) the preimage of

Ã0(kv) under the reduction-mod-v map, and by A1(Kv) the kernel of A0(Kv) →
Ã0(kv). We have the following two commutative diagrams with exact rows and
induced group homomorphisms as vertical arrows.

0 // A1(Kv) //

ϕ1

v

��

A0(Kv) //

ϕ0

v

��

Ã0(kv) //

ϕ̃0

v

��

0

0 // B1(Kv) // B0(Kv) // B̃0(kv) // 0

(1)
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0 // A0(Kv) //

ϕ0

v

��

A(Kv) //

ϕv

��

A(Kv)/A0(Kv) //

ϕ̄v

��

0

0 // B0(Kv) // B(Kv) // B(Kv)/B0(Kv) // 0

(2)

Note that all kernels and cokernels of the vertical maps in the above two com-
mutative diagrams are finite groups and their cardinalities are powers of ℓ. The
quantity cA,v := A(Kv)/A0(Kv) is the local Tamagawa number of A at v and the
quotient cB,v/cA,v is also a power of ℓ.

In the unramified case we get the following commutative diagram with exact
rows.

0 // A1(K
nr
v ) //

ϕ1

v,nr

��

A0(K
nr
v ) //

ϕ0

v,nr

��

Ã0(kv) //

ϕ̃0

kv

��

0

0 // B1(K
nr
v ) // B0(K

nr
v ) // B̃0(kv) // 0

(3)

Now we apply the snake lemma on diagrams 1 and 2 to get a basic lemma, which
we will use often.

Lemma 2.5. With notation as above,

#coker ϕv
#kerϕv

=
#coker ϕ1

v

#kerϕ1
v

· cB,v
cA,v

.

Proof. Applying the snake lemma on the kernels and cokernels in the first diagram
we get

#kerϕ1
v

#coker ϕ1
v

· #ker ϕ̃0
v

#coker ϕ̃0
v

=
#kerϕ0

v

#coker ϕ0
v

.

Since Ã0(kv) and B̃0(kv) are finite groups with same cardinality, we get #ker ϕ̃0
v =

#coker ϕ̃0
v, therefore

#kerϕ1
v

#coker ϕ1
v

=
#kerϕ0

v

#coker ϕ0
v

.

Applying the snake lemma on the second diagram gives

#coker ϕv
#kerϕv

=
#coker ϕ0

v

#kerϕ0
v

· #coker ϕ̄v
#ker ϕ̄v

.

By definition we have
#coker ϕ̄v
#ker ϕ̄v

=
cB,v
cA,v

,

which completes the proof. �

We continue with examining the quotient #coker ϕ1
v/#kerϕ1

v. As we will see,
this is mostly 1, since ϕ1

v will be an isomorphism for all but finitely many places v.
We start by recalling two basic lemmas.

Lemma 2.6. The kernel of reduction A1(Kv) is a pro-p group.

Proof. We have that A1(Kv) is isomorphic to the group Â(mv) associated to the

formal group Â ofA defined over the valuation ring Ov ofKv with maximal idealmv.
If m is coprime to the characteristic p of the residue field, then the multiplication-

by-m-endomorphism on Â(mv) is an isomorphism. It is an easy excercise to check
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that any profinite group, such that for all primes ℓ 6= p the multiplication-by-ℓ-map
is an isomorphism, is a pro-p group. Hence A1(Kv) is, and we are done. �

Lemma 2.7. With notation as above, if v ∤ ℓ, then ϕ1
v and ϕ1

v,nr are isomorphisms.

Proof. There are isogenies α : B → A and β : A → B, such that α ◦ ϕ : A → A
and β ◦ α : B → B are the multiplication-by-ℓ-maps. Hence we get the following
induced group homomorphisms on the level of kernels of reduction.

A1(Kv)
ϕ1

v //

[ℓ]1v

''
B1(Kv)

α1

v //

[ℓ]1v

77
A1(Kv)

β1

v // B1(Kv)

As v ∤ ℓ, by the previous lemma, we have that both maps [ℓ]1v are isomorphisms.
Hence it follows that all three homomorphisms α1

v, β
1
v and ϕ1

v are isomorphisms.
Now for any finite (unramified) extension Lw/Kv, by the same argument, we get
ϕ1
w is an isomorphism, thus ϕ1

v,nr also is. �

We conclude that the local quotient actually is a finite product. Let S be a
finite set of places of K containing the infinite primes, the bad primes of A and the
primes dividing the degree of the isogeny ϕ.

Corollary 2.8. With notation as above, if v ∤ ℓ and v is a place of good reduction,
then

#coker ϕv
#kerϕv

= 1,

thus
∏

v∈MK

#coker ϕv
#kerϕv

=
∏

v∈S

#coker ϕv
#kerϕv

.

Proof. Combine Lemmas 2.5 and 2.7 with the fact, that the Tamagawa quotient
equals 1 in case of good reduction. �

Now we present a slightly stronger generalization of [SS01, Lemmas 4.3 and 4.5].
Proposition 2.10 will be an important ingredient to calculate the local quotient (see
Theorem 3.6).

Lemma 2.9. With notation as above, if ϕ1
v,nr is surjective, then coker ϕ0

v can be

naturally maped onto a subgroup of H1
nr(Kv, A(Kv)[ϕ]).

Proof. In the above diagram 3, the first vertical map ϕ1
v,nr is surjective by assump-

tion. The third vertical map ϕ̃0
kv

is surjective, since kv is algebraically closed, there-

fore the middle vertical map ϕ0
v,nr is also surjective, i.e., B0(K

nr
v )/ϕ0

v,nr(A0(K
nr
v ))

is trivial. The following diagram commutes.

B0(Kv)/ϕ
0
v(A0(Kv))

δv

//

��

H1(Kv, A(Kv)[ϕ])

Resnr

��

B0(K
nr
v )/ϕ0

v,nr(A0(K
nr
v ))

δv,nr

// H1(Knr
v , A(Kv)[ϕ])

Since the lower left group is trivial, the image of the upper left group in the lower
right group must be trivial, i.e., the image of δv lies in H1

nr(Kv, A(Kv)[ϕ]). �
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Note, that since the natural map coker ϕ0
v → coker ϕv need not to be injective,

also the natural map coker ϕ0
v → H1

nr(Kv, A(Kv)[ϕ]) may not be injective.

Proposition 2.10. With notation as above, consider the following long exact se-
quence obtained by Galois cohomology

0 // coker ϕv
δv // H1(Kv, A(Kv)[ϕ]) // · · ·

If ϕ1
v,nr is surjective and ϕ1

v and ϕ̄v are isomorphisms, then δv indentifies coker ϕv
with H1

nr(Kv, A(Kv)[ϕ]).

Proof. If ϕ̄v is an isomorphism, then the natural map coker ϕ0
v → coker ϕv is

also an isomorphism, thus by the previous lemma we have that coker ϕv maps
injectively onto a subgroup of H1

nr(Kv, A(Kv)[ϕ]). But these two groups have same
cardinality, since #H1

nr(Kv, A(Kv)[ϕ]) = #kerϕv = #coker ϕv, by Lemmas 2.4
and 2.5. �

In [SS01, Lemmas 4.3 and 4.5] our assumptions on ϕ1
v and ϕ1

v,nr were replaced
by v ∤ ℓ. We have seen in Lemma 2.7 that v ∤ ℓ is a stronger assumption. The
tricky part in the calculation of the local quotient will be to decide whether we
can apply Proposition 2.10 even in the case v | ℓ. For this purpose, we end this
section with a reinterpretation of the quotient #coker ϕ1

v/#kerϕ1
v, which is taken

from [Sch96]. In case K = Q, this will give a criterion to decide whether ϕ1
v and

ϕ1
v,nr are isomorphism.
First we need some notation. Assume that the abelian varieties A and B are of

dimension d and let v ∈M0
K be a finite place. We can write the isogeny ϕ : A→ B

as a d-tuple of power series in d-variables in a neighbourhood of the point O. Let
|ϕ′(0)|v be the normalized v-adic absolute value of the determinant of the Jacobian
matrix of partials of such a power series representation of ϕ evaluated at 0. Note
that |ϕ′(0)|v is well definied.

Proposition 2.11. With notation as above,

|ϕ′(0)|−1
v =

#coker ϕ1
v

#kerϕ1
v

,

hence
|ϕ′(0)|v = 1, if v ∤ ℓ.

Proof. Combine [Sch96, Lem. 3.8] with Lemmas 2.5 and 2.7. �

As a corollary we get a nice condition whether ϕ1
v and ϕ1

v,nr are isomorphisms,
even in case v | ℓ.
Corollary 2.12. With notation as above, the following holds.

(i) If |ϕ′(0)|v = 1 and ϕ1
v,nr is injective, then ϕ1

v and ϕ1
v,nr are isomorphisms.

(ii) If K = Q and ℓ 6= 2, then ϕ1
v and ϕ1

v,nr are injective, and we have that ϕ1
v

and ϕ1
v,nr are isomorphisms if and only if |ϕ′(0)|v = 1 holds.

Proof. Assume |ϕ′(0)|v = 1, then we also have that |ϕ′(0)|w = 1, for all unramified
finite field extensions Lw/Kv. Since all maps ϕ1

w,nr are injective as ϕ1
v,nr is, they

are therefore isomorphisms. Hence ϕ1
v,nr also is, which proves (i).

For (ii), use the isomorphism A1(Kv) ∼= Â(mv). Then use [Sil86, IV. Example
6.1.1] to conclude that ϕ1

w is injective for any finite unramified field extension
Lw/Kv. Hence ϕ

1
v,nr also is. Now apply (i). �
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Remark 2.13. In case of elliptic curves, ϕ′(0) is just the leading coefficent of the
power series representation of ϕ. We can easily compute this value: Use Vélu’s
algorithm [Vél71] to discribe ϕ as coordinate functions ϕ(x, y) = (x̃(x, y), ỹ(x, y))
and then write −x̃/ỹ as a power series in z := −x/y, see [Sil86, IV]. We will do
this explicitly in Propositions 4.2 and 4.10.

In the next section we will calculate the quotient #coker ϕv/#kerϕv for the
special case of A being an elliptic curve E. We will do this by exploring how the
reduction type of E at v determines the Tamagawa quotient and the value |ϕ′(0)|v.
2.3. Bad reduction of elliptic curves. In this section let E be an elliptic curve
over a p-adic field Kv and let η : E → E′ be an isogeny of prime degree ℓ. Consider
the following two commutative diagram with exact rows.

0 // E1(Kv) //

η1v

��

E0(Kv) //

η0v

��

Ẽ0(kv) //

η̃0v
��

0

0 // E′

1(Kv) // E′

0(Kv) // Ẽ′

0(kv)
// 0

(4)

0 // E0(Kv) //

η0v
��

E(Kv) //

ηv

��

E(Kv)/E0(Kv) //

η̄v

��

0

0 // E′

0(Kv) // E′(Kv) // E′(Kv)/E
′

0(Kv) // 0

(5)

To determine #coker ηv
#ker ηv

, by Lemma 2.5, we have to calculate
#coker η1v
#kerη1v

· cE′,v

cE,v
.

We will descibe this value depending on the reduction type of E. In case of split
multiplicative reduction we also have to consider whether ker ηv ⊆ E0(Kv). We
start with calculating the quotient of the Tamagawa numbers, which is easy if we
restrict to ℓ ≥ 5.

Lemma 2.14. Suppose that E has

(1) good reduction, or
(2) non-split multiplicative reduction and ℓ 6= 2, or
(3) additive reduction and ℓ ≥ 5,

then the group homomorphism η̄v is an isomorphism, hence cE′,v/cE,v = 1.

Proof. In case of good reduction this is clear, since cE,v = cE′,v = 1. From Tate’s
algorithm [Tat75] it follows that in the remaining cases cE,v and cE′,v are at most
4 in the additive case, and at most 2 in the non-split case. Since the cardinalities of
the kernel and cokernel of η̄v are powers of ℓ, it follows that η̄v is an isomorphism
and hence cE′,v/cE,v = 1. �

To calculate the Tamagawa quotient in the split multiplicative reduction case we
use the theory of Tate curves.

Theorem 2.15. (Tate) Assume that E/Kv has split multiplicative reduction. Then
there is a unique α ∈ K∗

v , s.t. v(α) > 0, and we have the following Galois-
equivariant p-adic analytic isomorphism

E(L) ∼= L∗/αZ,

for all algebraic field extension L/Kv. Moreover, cE,v = v(α).
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Proof. See [Sil94, V Thm. 5.3]. The last statement follows from the proof of the
surjectivity of the Tate map [Sil94, V.4]. �

If E/Kv is an elliptic curve having split multiplicative reduction we have

E(Kv) ∼= K
∗

v/α
Z, for α ∈ K∗

v and v(α) > 0. We want to classify which Ga-
lois invariant subgroups of prime order ℓ exist and whether they are contained in
the connected component of the identity E0(Kv). Since they are all subgroups of
E(Kv)[ℓ] ∼= Z/ℓZ × Z/ℓZ, there are at most ℓ + 1 of such groups. The ℓ-th roots

of unity ξiℓ in K
∗

v always generate a Galois invariant subgroup of K
∗

v/α
Z, which is

contained in the connected component of the identity, and a generator is definied
over Kv if and only if µℓ ⊆ Kv. The remaining ℓ subgroups are definied over
Kv( ℓ

√
α,µℓ). None of these ℓ groups are contained in the connected component of

the identity. They are generated by ξiℓ
ℓ
√
α, for i = 0, . . . , ℓ − 1, hence all of these

groups are galois invariant if and only if ℓ
√
α ⊆ Kv, i.e. ℓ | v(α). In this case, the

generator of at least one of these groups is definied over Kv. The generators for
the other ℓ− 1 groups are definied over Kv if and only if ℓ | v(α) and µℓ ⊆ Kv.

Proposition 2.16. With notation as above, if E/Kv has split multiplicative re-
duction, then

cE′

cE
=

{

1/ℓ, ker ηv * E0(Kv),

ℓ, ker ηv ⊆ E0(Kv).

Further, in case that η is obtained by dividing out a Kv-rational point and ker ηv *
E0(Kv), we also have that η1v is an isomorphism and that η1v,nr is surjective.

Proof. By theorem 2.15 we have E(Kv) ∼= K
∗

v/α
Z
1 and E′(Kv) ∼= K

∗

v/α
Z
2 . If

ker ηv * E0(Kv) then ker ηv = 〈[ξiℓ ℓ
√
α1]〉, for an i ∈ {0, . . . , ℓ − 1}, and ηv :

K
∗

v/α
Z
1 → K

∗

v/α
Z
2 is given by [x] 7→ [x] and α2 = ξiℓ

ℓ
√
α1. Therefore

cE′

cE
=
v(α2)

v(α1)
=
v(ξiℓ

ℓ
√
α1)

v(α1)
= 1/ℓ.

If ker ηv ⊆ E0(Kv) then ker ηv = 〈[ξℓ]〉 and ηv : K
∗

v/α
Z
1 → K

∗

v/α
Z
2 is given by

[x] 7→ [xℓ] and α2 = αℓ1. Therefore

cE′

cE
=
v(α2)

v(α1)
=
v(αℓ1)

v(α1)
= ℓ.

For the last statement note, that ηv is surjective, since the map on representatives is
given by the identity. The maps η0v and η1v are injective, because ker ηv * E0(Kv).
Applying the snake lemma on Diagram 5 gives the surjectivity of η0v and then
by Diagram 4 and the snake lemma we get the surjectivity of η1v , thus η

1
v is an

isomorphism. We can use the same strategy to show that η1w is surjective, for every
finite (unramified) field extension Lw/Kv, hence η

1
v,nr is surjective. �

In case that η is obtained by dividing out a Kv-rational point, we only have
to distinguish between ker ηv * E0(Kv) and ker ηv ⊆ E0(Kv). If we additionally
assume that η1v is injective, then we get a strong connection between the reduction
type and the arithmetic of Kv.

Proposition 2.17. With notation as above, if η is obtained by dividing out a Kv-
rational point, we have:

(i) If ker ηv * E0(Kv), then exactely one of the following three cases holds
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(1) E has split multiplicative reduction,
(2) E has non-split multiplicative reduction and l = 2,
(3) E has additive reduction and l = 2 or 3.

(ii) If ker ηv ⊆ E0(Kv), assume additionally that η1v is injective. If E/Kv has
bad reduction and ℓ 6= 2, then

(1) E has split multiplicative reduction ⇔ µℓ ⊆ Kv, v ∤ ℓ,
(2) E has non-split multiplicative reduction ⇔ µℓ * Kv, v ∤ ℓ,
(3) E has additive reduction ⇔ v|ℓ.

(iii) If η1v is injective and the reduction type of E/Kv is multiplicative, then η1v
is an isomorphism and η1v,nr is surjective.

Proof. Let P be a generator of ker ηv. If ker ηv * E0(Kv) then P̄ is a singular point,
the reduction type is bad and ker ηv injects into ker η̄v. This gives ℓ|cE . Since cE
is ≤ 2 in the non-split multiplicative case and ≤ 4 in the additive case, we get (i).

If ker ηv ⊆ E0(Kv) then P generates ker η0v. Since we assumed η1v to be injective,

the order of P̄ is ℓ. Set |kv| =: pf . The order of P̄ divides the cardinality of Ẽ0(kv),
which is either pf − 1, pf + 1 or pf , depending on whether the reduction type is
split multiplicative, non-split multiplicative or additive, respectively [Tat75, §7].
Therefore we get the following implications.

(1) split ⇒ pf ≡ 1(ℓ) ⇒ p 6= ℓ, ⇒ v ∤ ℓ,
(2) non-split ⇒ pf ≡ −1(ℓ) ⇒ p 6= ℓ, ⇒ v ∤ ℓ,
(3) additive ⇒ pf ≡ 0(l) ⇒ p = ℓ, ⇒ v | ℓ.

Hence, if ker ηv ⊆ E0(Kv), we have v ∤ ℓ in the multiplicative case. Thus we can
use Lemma 2.7 and Proposition 2.16 to get (iii). If ℓ 6= 2 and we omit the case of
good reduction, the above implications yield

(1) split ⇔ pf ≡ 1(ℓ) ⇔ µℓ ⊆ kv, p 6= ℓ⇔ µℓ ⊆ Kv, v ∤ ℓ,
(2) non-split ⇔ pf 6≡ 0, 1(ℓ) ⇔ µℓ * kv, p 6= ℓ⇔ µℓ * Kv, v ∤ ℓ,
(3) additive ⇔ pf ≡ 0(ℓ) ⇔ p = ℓ⇔ v|ℓ,

which proves (ii). �

In the special case Kv = Qp and ℓ ≥ 5 we summarize and get two corollaries.

Corollary 2.18. Let E be an elliptic curve over Qp and let η : E → E′ be an
isogeny of prime degree ℓ ≥ 5 and assume that η is obtained by dividing out a
Qp-rational point. Then











E has split reduction and ker ηp ⊆ E0(Qp) ⇒ p 6= ℓ,µℓ ⊆ Qp,

E has non-split reduction ⇒ p 6= ℓ,µℓ * Qp,

E has additive reduction ⇒ p = ℓ.

Therefore, with respect to the reduction type of E/Qp, we get

#coker ηp
#ker ηp

=







































1/ℓ, split multiplicative reduction, ker ηp * E0(Qp),

ℓ, split multiplicative reduction, ker ηp ⊆ E0(Qp),

1, non-split multiplicative reduction,

1, good reduction, p 6= ℓ,

|η′(0)|−1
p , good reduction, p = ℓ,

|η′(0)|−1
p , additive reduction.
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Proof. By Corollary 2.12 we have that η1p is injective, hence the first implica-
tions follow with Proposition 2.17. For the second part use Lemma 2.5, i.e.,
#coker ηp
#kerηp

=
#coker η1p
#ker η1p

· cE′,p

cE,p
. The Tamagawa quotient is calculated in Lemma 2.14

and Proposition 2.16. By Proposition 2.11 we have #coker η1p/#ker η1p = |η′(0)|−1
p .

If p 6= ℓ or in the multiplicative case, we know |η′(0)|−1
p = 1 by Propositions 2.11

and 2.17, which completes the proof. �

Corollary 2.19. Let E be an elliptic curve over Qp and let η : E → E′ be an
isogeny of prime degree ℓ ≥ 5 and assume that η is obtained by dividing out a Qp-
rational point. Consider the following long exact sequence of Galois cohomology.

0 // coker ηp
δp // H1(Qp, E(Q̄p)[η])

ι1p(E)
// H1(Qp, E(Q̄p)) // · · ·

Then, with respect to the reduction type of E/Qp, we have

ι1p(E) is



































































injective, split multiplicative and ker ηp * E0,

≡ 0, split multiplicative and ker ηp ⊆ E0,

≡ 0, non-split multiplicative,

not injective and 6≡ 0, good, p 6= ℓ,µℓ ⊆ Qp,

≡ 0, good, p 6= ℓ,µℓ * Qp,

not injective and 6≡ 0, good, p = ℓ, |η′(0)|p = 1,

≡ 0, good, p = ℓ, |η′(0)|p 6= 1,

not injective and 6≡ 0, additive, |η′(0)|p = 1,

≡ 0, additive, |η′(0)|p 6= 1.

Proof. Combine Lemma 2.2 with Corollary 2.18. �

3. Controlling #X(B/Q) modulo squares

We want to find examples of abelian surfaces B, such that the order of their
Tate-Šafarevič groups is not a square. We start with a principally polarized abelian
surface A = E1×E2, which is the product of two elliptic curves Ei/Q. The order of
X(A/Q) is a square, provided it is finite, since X(A/Q) ∼= X(E1/Q)×X(E2/Q).
Then we construct an isogeny ϕ : A→ B of prime degree ℓ in such a way, that the
resulting abelian surface B fulfills the conditions in Theorem 1.1, i.e., the degree of
every polarization of B is divisible by ℓ. This gives us the possibility that ℓ might
divide the non-square part of the order ofX(B/Q). Then one uses the Cassels-Tate
equation

#X(A/Q)

#X(B/Q)
=

#kerϕQ

#coker ϕQ

#coker ϕ∨

Q

#kerϕ∨

Q

∏

p∈MQ

#coker ϕp
#kerϕp

and determines the global and local quotient on the right hand side, which gives the
order of X(B/Q) up to squares. This is done in the rest of this section. We begin
with the construction of an abelian surface having the property that the degree of
every polarization it possesses is divisible by a given prime ℓ. For the proof we
follow a sketch of Brian Conrad.

Proposition 3.1. Let K be a any field and let E1 and E2 be two non-isogenous
elliptic curves over K. Let G be a finite group scheme of prime order ℓ over K
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and assume G occurs inside both E1 and E2. Fix embeddings G →֒ E1, E2. These
embeddings induce a natural embedding of G into the product A := E1 ×K E2.
Denote its image by G̃. Then any polarization of the quotient B := A/G̃ has degree
divisible by ℓ.

Proof. Let λ : B → B∨ be any polarization and consider the quotient map ϕ : A→
B = A/G̃ and its dual ϕ∨ : B∨ → A∨ = A. The composition

Ψ : A
ϕ→ B

λ→ B∨ ϕ∨

→ A∨ = A

is a polarization of A. Since E1 and E2 are not isogenous, Ψ breaks into

Ψ = Ψ1 ×Ψ2 : E1 ×K E2 → E1 ×K E2,

where Ψi is a polarization of Ei. If we denote by ιi : Ei →֒ A
ϕ→ B the natural

embedding of Ei as a closed subvariety of B, then it is clear that

Ψi : Ei
ιi→ B

λ→ B∨
ι∨i→ E∨

i = Ei.

By construction G̃ lies in the kernel of Ψ and we have that G has to be in either
both kernels of the Ψi or in none, because G̃ lies diagonally in G×G.

Now assume to the contrary that ℓ ∤ deg λ. As degϕ = degϕ∨ = ℓ we have
degΨ1 ·degΨ2 = degΨ = degϕ ·deg λ ·degϕ∨ = ℓ2 ·�, with ℓ ∤ �. Hence it follows
that one of the degrees of the Ψi is divisible by ℓ and the other is not, because the
degree of a polarization is always a square. As the degree of (let’s say) Ψ2 is not
divisible by ℓ, its kernel is a finite group of order not divisible by ℓ, hence it cannot
contain G. Now recall that every elliptic curve has a unique polarization of each
square degree ℓ2 whose kernel is the full ℓ-torsion. Since the degree of Ψ1 is divisible
by ℓ and hence by ℓ2, we have that (kerΨ1)[ℓ] = E[ℓ]. Therefore G ⊆ kerΨ1, which
gives a contradiction. �

From now on we will always assume the following

Setting 3.2. Let ℓ ≥ 5 be a prime number and let E1 and E2 be two elliptic
curves over Q having a rational point Ti of exact order ℓ. Set G := 〈Ti〉 to be
the subgroup generated by this point and denote by E′

i := Ei/G the quotient and
by ηi : Ei → E′

i the corresponding quotient isogeny. Set A := E1 × E2 to be the

product and embed G diagonally into A, denoted by G̃. Hence G̃ ∼= 〈(T1, nT2)〉,
for some n ∈ {1, 2, . . . , ℓ − 1}. Define B := A/G̃ to be the quotient and denote
the corresponding isogeny by ϕ : A → B. Now set A′ := E′

1 × E′

2 and denote by
ρ := η1 × η2 : A→ A′ the isogeny having as kernel G×G. We call ψ : B → A′ the
isogeny, such that ρ = ψ ◦ϕ. Note, that as elliptic curves are principally polarized,
we have A ∼= A∨ and A′ ∼= A′∨. To summarize, we have a commutative diagram:

B
ψ

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

A = E1 × E2

ϕ

88rrrrrrrrrrr
ρ=η1×η2

,,
A′ = E′

1 × E′

2

ψ∨

xxrrr
rr
rr
rr
rr

ρ∨=η∨
1
×η∨

2

kk

B∨

ϕ∨

ff▲▲▲▲▲▲▲▲▲▲▲
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By construction ker η1 ∼= ker η2 ∼= kerϕ ∼= Z/ℓZ, therefore kerρ ∼= Z/ℓZ× Z/ℓZ
and kerψ ∼= Z/ℓZ. Since the kernels of the dual isogenies are the Cartier duals, we
have ker η∨1

∼= ker η∨2
∼= kerϕ∨ ∼= kerψ∨ ∼= µℓ and ker ρ∨ ∼= µℓ × µℓ.

Remark 3.3. The constructed surface B depends on the choice of the diagonal
embedding of G in A, i.e., on the choice of n, but it turns out that the order of the
Tate-Šafarevič group of B is independent of that choice.

3.1. The local quotient. We start by using the results of the previous section to
compute the quotients #coker ϕp/#kerϕp, for p ∈ MQ. The infinite case is very
easy, as we see now.

Lemma 3.4. Assume setting 3.2, then

#coker ϕ∞

#kerϕ∞

=
1

ℓ
.

Proof. The kernel has ℓ elements by construction, and ϕ∞ : A(R) → B(R) is
surjective, since degϕ = ℓ is not divisible by 2. �

Suppose p is a finite place. Consider the long exact sequences of Galois coho-
mology for A and for the two elliptic curves Ei.

0 // coker ϕp // H1(Qp, A(Q̄p)[ϕ])
ι1p(A)

// H1(Qp, A(Q̄p)) // · · ·

0 // coker ηi,p // H1(Qp, Ei(Q̄p)[ηi])
ι1p(Ei)

// H1(Qp, Ei(Q̄p)) // · · ·

Since we knowH1(Qp, A(Q̄p)[ϕ]), it suffices to calculate ι1p(A) in order to determine

coker ϕp. Thus the aim will be to describe ι1p(A) in terms of the elliptic curves Ei.

Proposition 3.5. Assume setting 3.2 and let p ∈ M0
Q be a finite place. Then we

have the following properties for ι1p(A) given properties of both ι1p(Ei).

ι1p(Ei) ι1p(A)

at least one injective injective
both ≡ 0 ≡ 0

one ≡ 0, one not injective and 6≡ 0 not injective and 6≡ 0
both not injective and 6≡ 0 not injective and 6≡ 0

Proof. There are natural isomorphisms between A[ϕ] and Ei[ηi], given by
(T1, nT2) 7→ T1 and (T1, nT2) 7→ nT2. Using these isomorphisms we can iden-
tify the map ιp(A) : A[ϕ] → E1 × E2 with ιp(E1) ⊕ ιp(E2). The functoriality of
Galois cohomology gives

ι1p(A) = ι1p(E1)⊕ ι1p(E2).

Now the first three lines of the table are immediate. The last line needs explana-
tion for the non-injectivity. Combine Corollaries 2.12 and 2.19 to conclude that if
ι1p(Ei) is not injective and 6≡ 0, then the reduction type of Ei at p is either additive

or good, |η′i(0)|p = 1 and η1i,p and η1i,p,nr are isomorphisms. By Lemma 2.14 we
have that η̄i,p is an isomorphism. Now apply Proposition 2.10 to see that coker ηi,p
maps bijectively onto H1

nr(Qp, Ei(Q̄p)[ηi,p]). Hence the kernels of ι
1
p(E1) and ι

1
p(E2)

both equal H1
nr(Qp, A(Q̄p)[ϕ]), which is non-trivial. Thus ι1p(A) is not injective. �
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Now we can express
#coker ϕp

#kerϕp
in terms of the type of reduction of both Ei’s at p.

In case of split multiplicative reduction we additionally have to consider whether
ker ηi,p ⊆ (Ei)0(Qp). In case of p = ℓ and the reduction is additive or good, the
local quotient also depends on the values of |η′i(0)|p.
Theorem 3.6. Assume setting 3.2 and let p ∈M0

Q be a finite place. Then

#coker ϕp
#kerϕp

=











ℓ, split-split with both kernels ⊆ E0,

1/ℓ, at least one Ei has split with kernel * E0,

1, all other cases with p 6= ℓ.

The remaining cases are additive-additive, additive-good or good-good with p = ℓ.

#coker ϕp
#kerϕp

=

{

1, remaining case and at least one |η′i(0)|p = 1,

ℓ, remaining case and both |η′i(0)|p 6= 1.

Proof. Apply Corollary 2.19 on the table of the previous proposition to deduce from
the reduction type of both Ei at p the properties of ι1p(A). Then use Corollary 2.18
and Lemma 2.2 to deduce from the reduction type of both Ei the dimension of
H1(Qp, A(Q̄p)[ϕ]). This gives the cardinality of coker ϕp. To summarize we have
the following three collums with respect to the conditions on the left.

reduction type of E1 and E2 ι1p(A) dimH1 #coker ϕp
split-split, both kernels ⊆ E0 ≡ 0 2 ℓ2

at least one Ei split with kernel * E0 injective 1 or 2 1
split-good, kernel ⊆ E0, (⇒ p 6= l) not inj., 6≡ 0 2 ℓ

non-split-good, (⇒ p 6= l) ≡ 0 1 ℓ
non-split-non-split, (⇒ p 6= l) ≡ 0 1 ℓ
good-good, p 6= l,µl ⊆ Qp not inj., 6≡ 0 2 ℓ
good-good, p 6= l,µl * Qp ≡ 0 1 ℓ

good-good, p = l, |η′i(0)|p = 1, one i not inj., 6≡ 0 2 ℓ
good-good, p = l, |η′i(0)|p 6= 1, both i ≡ 0 2 ℓ2

additive-good, |η′i(0)|p = 1, one i not inj., 6≡ 0 2 ℓ
additive-good, |η′i(0)|p 6= 1,both i ≡ 0 2 ℓ2

additive-additive, |η′i(0)|p = 1, one i not inj., 6≡ 0 2 ℓ
additive-additive, |η′i(0)|p 6= 1,both i ≡ 0 2 ℓ2

Since #kerϕv = ℓ we are done. �

3.2. The global quotient. Now we investigate the global quotient

#kerϕQ

#coker ϕQ

#coker ϕ∨

Q

#kerϕ∨

Q

.

The kernels are clear by construction, hence we need a strategy to compute the
cokernels. We will not come up with a formula as for the local quotient, but instead
we will describe a method how to compute the global quotient in case one knows
generators of the cokernels of ηi,Q and η∨i,Q. Clearly, one knows such generators in

case one has a Mordell-Weil basis for Ei(Q) and E′

i(Q). We have the following two
long exact sequences.

0 → kerψ∨

Q → ker ρ∨Q → kerϕ∨

Q → coker ψ∨

Q → coker ρ∨Q → coker ϕ∨

Q → 0

0 → kerϕQ → kerρQ → kerψQ → coker ϕQ → coker ρQ → coker ψQ → 0
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By construction the maps ker ρ∨Q → kerϕ∨

Q and ker ρQ → kerψQ are surjective,
therefore we have two short exact sequences of the cokernels.

0 → coker ψ∨

Q → coker ρ∨Q → coker ϕ∨

Q → 0

0 → coker ϕQ → coker ρQ → coker ψQ → 0

We first have a look at the dual case, which is simpler. There are long exact
sequences of Galois cohomology.

0 // coker ρ∨Q
// H1(Q, (E′

1 × E′

2)(Q̄)[ρ∨]) // . . .

0 // coker ϕ∨

Q
// H1(Q, B∨(Q̄)[ϕ∨]) // . . .

The Kummer sequence for Q and Hilbert’s Theorem 90 yield

δQ : H1(Q,µℓ) ∼= Q∗/Q∗ℓ.

Since E′

i(Q̄)[η∨i ] and B
∨(Q̄)[ϕ∨]) are isomorphic to µℓ as Galois modules for GQ, we

obtain isomorphisms from H1(Q, E′

i(Q̄)[η∨i ]) and H
1(Q, B∨(Q̄)[ϕ∨]) to H1(Q,µℓ).

Hence, composing with δQ we get natural injective group homomorphisms

coker η∨i,Q →֒ Q∗/Q∗ℓ, coker ϕ∨

Q →֒ Q∗/Q∗ℓ.

Note that the images of these embeddings are independent of all choices made. We
get a commutative diagram.

coker ρ∨Q = coker η∨1,Q × coker η∨2,Q
� � /

����

Q∗/Q∗ℓ ×Q∗/Q∗ℓ

��

coker ϕ∨

Q

� � / Q∗/Q∗ℓ

In this diagram the natural surjection coker ρ∨Q ։ coker ϕ∨

Q becomes (x, y) 7→
xm/y as a map from Q∗/Q∗ℓ×Q∗/Q∗ℓ to Q∗/Q∗ℓ, for a suitable m ∈ {1, . . . , ℓ−1}.
It is clear that the image of coker ρ∨Q in the lower right group Q∗/Q∗ℓ is independent
ofm, and for determining the image we can simply setm = 1. The next proposition
explains how to calculate the images of coker η∨i,Q in Q∗/Q∗ℓ, i.e., how to calculate

the upper horizontal map. Combining afterwards with (x, y) 7→ x/y gives coker ϕ∨

Q.

Proposition 3.7. Let E and E′ be elliptic curves over a number field K and
η : E → E′ an isogeny of prime degree ℓ. Assume that η is obtained by dividing
out a K-rational point T . Let fT ∈ K(E) be a K-rational function on E, such that
div(fT ) = ℓ(T )− ℓ(O). Then there is a unique constant c ∈ K∗/K∗ℓ, such that

coker η∨K → K∗/K∗ℓ

P 7→ c · fT (P ) mod K∗ℓ, for P 6= O, T,

is a well-definied and injective group homomorphism, and its image is independent
of the choice of the point T and function fT and agrees with the image of the natural
injection coker η∨K →֒ K∗/K∗ℓ described above. Furthermore the image lies in the
finite set

K(S, ℓ) := {x ∈ K∗/K∗ℓ | vp(x) ≡ 0 mod ℓ, ∀p /∈ S},
where S is the set of all primes p ⊂ OK dividing the minimal discriminant of E
and the degree of η.
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Proof. This is Exercise 10.1 in [Sil86]. �

Remark 3.8. By Riemann-Roch the vector space of functions fT ∈ K(E) with
div(fT ) = ℓ(T )− ℓ(O) is 1-dimensional, hence such a function always exists. Given
such a fT it is easy to determine c ∈ K∗/K∗ℓ and to find the value for the image of T
inK∗/K∗ℓ by using the fact, that the map c·fT mod K∗ℓ is a group homomorphism.
We will do this explicitly in Propositions 4.4 and 4.12.

Now we consider the remaining case, i.e., determining coker ϕQ. There is no nat-
ural injection of coker ηi,Q into Q∗/Q∗ℓ as before, since Ei(Q̄)[ηi] is not isomorphic
to µℓ as a Galois module for GQ. But Ei(Q̄)[ηi] is isomorphic to µℓ as a Galois
module for GL, for L := Q(µℓ). Note that the natural restriction map

H1(Q, Ei(Q̄)[ηi]) → H1(L,Ei(Q̄)[ηi]) ∼= L∗/L∗ℓ

is injective, as the kernel, which equalsH1(Gal(L/Q), Ei(Q̄)[ηi]), is trivial, since [L :
Q] = ℓ− 1 is coprime to #Ei(Q̄)[ηi] = ℓ. Thus we have the following commutative
diagram.

coker ϕQ
� � /

� _

�

L∗/L∗ℓ

��
coker η1,Q × coker η2,Q

� � /

����

L∗/L∗ℓ × L∗/L∗ℓ

��

coker ψQ
� � / L∗/L∗ℓ

In this diagram the natural surjection coker η1,Q×coker η2,Q ։ coker ψQ is (a, b) 7→
am/b as a map from L∗/L∗ℓ×L∗/L∗ℓ to L∗/L∗ℓ, for a suitable m ∈ {1, . . . , ℓ− 1}.
As before, all images are independent of m, thus we can simply set m = 1. Hence
the kernel, i.e., coker ϕQ, is easy to determine provided we know the images of
coker ηi,Q in L∗/L∗ℓ.

To obtain a map, which computes the images of coker ηi,Q in L∗/L∗ℓ, we note
that the dual isogeny η∨i : E′

i → Ei is obtained by dividing out a L-rational point.
Hence by the previous proposition we need a generator Ť of E′

i[η
∨

i ] and a L-rational

function fŤ ∈ L(E′

i), such that div(fŤ ) = ℓ(Ť )− ℓ(O). Again, the image lies in the
finite set

L(S, ℓ) := {x ∈ L∗/L∗ℓ | vp(x) ≡ 0 mod ℓ, ∀p /∈ S},
where S is the set of all primes p ⊂ OL dividing the minimal discriminant of E/L
and the degree of η.

At the end of this section we will describe the torsion quotient in terms of the
Galois module structure of the ℓ-torsion of the elliptic curves E′

i.

Proposition 3.9. Assume setting 3.2, then

#A(Q) tors #A
∨(Q) tors

#B(Q) tors #B∨(Q) tors
=











1 or ℓ, both E′

i(Q̄)[ℓ] ∼= Z/ℓZ⊕ µℓ,

ℓ3, both E′

i(Q̄)[ℓ] 6∼= Z/ℓZ⊕ µℓ, E
′

1(Q̄)[ℓ] 6∼= E′

2(Q̄)[ℓ],

ℓ2, otherwise.

Proof. Since the four torsion groups are isomorphic at the p-primary parts, for p
a prime 6= ℓ, we only have to consider the ℓ-primary parts. By Mazur’s theorem
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[Maz77] we have that Ei(Q)[ℓ∞] ∼= Z/ℓZ, and that E′

i(Q)[ℓ∞] ∼= Z/ℓZ if and only
if E′

i(Q̄)[l] ∼= Z/ℓZ⊕ µℓ, otherwise it is trivial. It is obvious that

A(Q)[ℓ∞] ∼= A∨(Q)[ℓ∞] ∼= (Z/ℓZ)2.

We claim that

B(Q)[ℓ∞] ∼=
{

Z/ℓZ or (Z/ℓZ)2 or Z/ℓ2Z, both E′

i(Q̄)[l] ∼= Z/ℓZ⊕ µℓ,

Z/ℓZ, otherwise,

and that

B∨(Q)[ℓ∞] ∼=











(Z/ℓZ)2, both E′

i(Q̄)[ℓ] ∼= Z/ℓZ⊕ µℓ,

0, both E′

i(Q̄)[ℓ] 6∼= Z/ℓZ⊕ µℓ, E
′

1(Q̄)[ℓ] 6∼= E′

2(Q̄)[ℓ],

Z/ℓZ, otherwise,

and leave the justification as an exercise, because we are not going to use these
results further. �

Now we will apply our results on two precise families of elliptic curves for the
primes ℓ = 5 and ℓ = 7 respectively.

4. Elliptic curves over Q with rational ℓ-torsion

For a prime ℓ 6= 2, Mazur’s theorem [Maz77] tells us, that the rational ℓ-torsion
subgroup E(Q)[ℓ] of an elliptic curve E/Q is either trivial or cyclic of order ℓ, where
the non-trivial case can only happen, if ℓ = 3, 5 or 7. Unfortunately this reduces
the method described in the previous sections to be applicable only for the two
primes ℓ = 5 or 7.

4.1. Prime ℓ = 5. It is a well-known fact that all elliptic curves over a number
field K with non-trivial 5-torsion are parametrized by the Weierstraß equations

Ed : y
2 + (d+ 1)xy + dy = x3 + dx2,

for d ∈ K. Clearly the discriminant

∆d = −d5(d2 + 11d− 1)

has to be different from zero. For K = Q this is exactely the case when d 6= 0
holds. The curve Ed is isogenous to the elliptic curve

E′

d : y
2+(d+1)xy+dy = x3+dx2+(5d3−10d2−5d)x+(d5−10d4−5d3−15d2−d),

∆′

d = −d(d2 + 11d− 1)5,

via the isogeny ηd which has exactly the five rational 5-torsion points as kernel.
These points are

Ed(Q)[5] = {O, T = (0, 0), 2T = (−d, d2), 3T = (−d, 0), 4T = (0,−d)}.
Now assume K = Q. If we write d = u/v, with u, v ∈ Z coprime, then Ed is
isomorphic to

Eu,v : y2 + (u + v)xy + uv2y = x3 + uvx2,

∆u,v = −(uv)5(u2 + 11uv − v2),

and E′

d is isomorphic to

E′

u,v : y2 + (u + v)xy + uv2y =

x3 + uvx2 + (5u3v − 10u2v2 − 5uv3)x+ (u5v − 10u4v2 − 5u3v3 − 15u2v4 − uv5),
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∆′

u,v = −uv(u2 + 11uv − v2)5,

c′4,u,v = u4 − 228u3v + 494u2v2 + 228uv3 + v4.

To determine the local quotient we have to know the reduction type of Ed at p
and the value |η′d(0)|p.
Lemma 4.1. Let p be a prime number and let E := Ed be an elliptic curve as
above parametrized by d = u/v ∈ Q∗, with u, v ∈ Z coprime.

(i) If p|uv then E has split multiplicative reduction at p with E(Q)[5] * E0(Qp).
(ii) If p|u2 + 11uv − v2 then E(Q)[5] ⊆ E0(Qp), and E has split multiplicative

reduction at p if and only if p ≡ 1 mod 5, additive reduction if and only if p = 5,
and otherwise non-split multiplicative reduction with p ≡ −1 mod 5.

(iii) a) v5(u
2 + 11uv − v2) ∈ {0, 2, 3},

b) v5(u
2 + 11uv − v2) = 0 ⇔ u 6≡ 2v mod 5,

c) v5(u
2 + 11uv − v2) = 3 ⇔ u ≡ 7v mod 25,

d) u ≡ 2v mod 5 ⇒ 54 | c′4,u,v
Proof. Consider the reduction-mod-p map E(Q) → Ẽ(Fp) and the point T = (0, 0),

which generates E(Q)[5]. If p|uv then Ẽ : ȳ2 + αx̄ȳ = x̄3, for a non-zero α ∈ Z/pZ.
In particular T̄ is a node of Ẽ and the tangent cone is generated by x̄ = −αȳ and
by ȳ = 0. Thus the reduction type is split multiplicative and T /∈ E0(Qp), which
proves (i).

If p|u2 + 11uv − v2 then T̄ is non-singular, hence E(Q)[5] ⊆ E0(Qp). Also T̄ is

non-trivial, therefore it has order 5. Since the order of T̄ divides #Ẽ0(Fp), which
equals p−1 if the reduction is split multiplicative, p+1 if the reduction is non-split
multiplicative, and p if the reduction is additive, we get (ii).

Part (iii) is an easy calculation. Note, that any pair of integers u and v making
the expression u2+11uv− v2 divisible by 54 is not coprime, since u and v will both
be divisible by 5. �

Proposition 4.2. Let ηd : Ed → E′

d be the isogeny described above, for d = u/v.
Then

|η′d(0)|p =
{

1/5, p = 5 and u ≡ 7v mod 25,

1, otherwise.

Proof. It is clear that |η′d(0)|p equals 1, if p 6= 5 or if p is a place of multiplicative
reduction, see Proposition 2.11 and Corollary 2.18. So it only remains the case p = 5
and p is good or additive, by the previous lemma. For places of good reduction
the Weierstrass equations Eu,v and E′

u,v are minimal. In case p = 5 is additive,
combining Lemma 4.1 with [Sil86, Exercise 7.1] gives that the Weierstrass equation
for Eu,v is minimal and the one for E′

u,v is not minimal if and only if u ≡ 7v mod 25.

In this case v5(∆
′

u,v) = 15 and c′4,u,v is divisible at least by 54, so the Weierstrass
equation of E′

u,v will become minimal if we make the following change of variables,

x 7→ x/52 and y 7→ y/53. For the moment assume that the equation for E′

u,v is
minimal. We will now compute the p-adic valuation of the leading coefficent of the
power series representation of ηd. We claim that ηd(z) = z + ... as a power series
in z in a neighbourhood of O.

Set ηd(x, y) =: (x̃(x, y), ỹ(x, y)), then by [Vél71] we have − x̃(x,y)
ỹ(x,y) =

p(x)
q(x,y) , for

p(x) := x(d + x)[d4 + (3d3 + d4)x+ (3d2 + 3d3)x2 + (d+ 3d2 − d3)x3 + 2dx4 + x5]
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= x7 + . . . ,

q(x, y) := d6 + (5d5 + 2d6)x+ (10d4 + 8d5 + d6)x2 + (10d3 + 13d4 + 4d5)x3

+(5d2 + 10d3 + 4d4)x4 + (d+ 3d2 + d3 − d4)x5

+y[2d5+(7d4+d5)x+(9d3+3d4)x2+(5d2+3d3+d4)x3+(d−d2−d3)x4−3dx5−x6]
= −yx6 + . . .

For z := −x/y, we have x(z) = z−2 + . . . and y(z) = −z−3 + . . . as Laurent series

for x and y (see [Sil86, IV.1]), therefore ηd(z) =
z−14+...
z−15+... = z + . . . as power series

in z. Hence η′d(0) = 1, and therefore |η′d(0)|p = 1.
In case the equation for E′

u,v was not minimal, we have to replace z by 5z, which
gives ηd(z) = 5z + . . ., and therefore η′d(0) = 5. Hence |η′d(0)|5 = 1/5. �

Combining the above lemma and proposition with Theorem 3.6 gives complete
control of the local quotient.

Theorem 4.3. Assume Setting 3.2 with ℓ = 5. Let Ei be given by di = ui/vi, for
di ∈ Q∗, ui, vi ∈ Z coprime. If p ∈MQ is a place, then

#coker ϕp
#kerϕp

=































1/5, p = ∞,

1/5, p | u1v1u2v2,
5, p | gcd(u21 + 11u1v1 − v21 , u

2
2 + 11u2v2 − v22), p ≡ 1(5),

5, u1 ≡ 7v1 mod 25, u2 ≡ 7v2 mod 25, p = 5,

1, otherwise.

Next comes the global quotient. As the ηi are obtained by dividing out the
Q-rational point Ti = (0, 0), we will use Proposition 3.7 to calculate coker η∨i,Q in

Q∗/Q∗5.

Proposition 4.4. For T = (0, 0) set

fT := −x2 + xy + y ∈ K(Ed).

The image of the natural embedding coker η∨d,Q →֒ Q∗/Q∗5 equals the image of

fT (x, y) mod Q∗5, for P = (x, y) 6= O, T.

By linearity fT (T ) = d4, and fT (coker η
∨

d,Q,tors) = 〈d〉 in Q∗/Q∗5.

Proof. For functions x, y, x + y + d ∈ K(E) one easily sees, that div(x) = (T ) +
(4T )−2(O), div(y) = 2(T )+(3T )−3(O), and div(x+y+d) = 2(3T )+(4T )−3(O),
hence div((xy2)/(x + y + d)) = 5(T ) − 5(O). Multiplying (xy2)/(x + y + d) with
(−y − dx)/(−y − dx) yields −x2 + xy + y in K(E). By Proposition 3.7 we obtain
fT = c(−x2 + xy + y). Since (fT (2T ))

2 = fT (4T ), we deduce c = 1 and that
fT (T ) ≡ fT (2T )

3 ≡ d4 mod Q∗5. �

Corollary 4.5. With notation as above, E′

d(Q)[5] ∼= Z/5Z ⇔ d ∈ Q∗5.

Proof. We have that E′

d(Q)[5] is non-trivial if and only if coker η∨d,Q is trivial

on the torsion part, i.e., the injective map η∨d,Q,tors : E
′

d(Q) tors → Ed(Q) tors is an

isomorphism. The cokernel of η∨d,Q,tors is generated by d in Q∗/Q∗5. Hence E′

d(Q)[5]

is non-trivial if and only if d is trivial in Q∗/Q∗5. �

Now we calculate coker ηQ in L∗/L∗5, for L = Q(ξ), with ξ a fifth root of

unity. Fix a generator Ť of E′(Q̄)[η∨]. Since Ť is defined over L, we have that
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E′(L)[η∨] ∼= Z/5Z and hence (E′/L, Ť ) is isomorphic over L to an (Ed̃, (0, 0)) as

above, for d̃ ∈ L. Such an isomorphism τ is given by four values r, s, t ∈ L and
w ∈ L∗ and has the form x = w2x′ + r and y = w3y′ + w2sx′ + t, compare [Sil86,
III.1]. Having such an isomorphism τ and the formula of fT from Proposition 4.4,
we can determine fŤ , since

fŤ (x, y) ≡ τ∗fT (x
′, y′) mod L∗5.

To obtain τ we use [Sil86, III Table 1.2]. As the a6 of the Weierstraß equation of
(Ed̃, (0, 0)) vanishes, we get (r, t) = Ť . The kernel polynomial of the dual isogeny
η∨d : E′

d → Ed is

x2 + (d2 + d+ 1)x+
1

5
(d4 − 3d3 − 26d2 + 8d+ 1),

thus, for ϑ := ξ + ξ−1 = (
√
5− 1)/2, we may chose

r =
1

5
[(−ϑ− 3)d2 + (−11ϑ− 8)d+ (ϑ− 2)] ∈ Q(ϑ) = Q(

√
5),

t =
1

5
[(ξ2 + 2ξ + 2)d3 + (ξ3 + 10ξ2 + 23ξ + 11)d2

+(11ξ3 − 12ξ2 + 9ξ + 2)d+ (−ξ3 + ξ2 − ξ + 1)] ∈ L.

Since a4 of (Ed̃, (0, 0)) also vanishes we deduce

s =
1

5
[(−4ξ3 − 3ξ2 − 7ξ − 6)d+ (3ξ3 − 4ξ2 − ξ − 3)],

and since a3 = a2 we deduce

w =
1

5
[(−ξ3 − 7ξ2 − 8ξ − 4)d+ (7ξ3 − ξ2 + 6ξ + 3)].

Also one can use the conditions on the ai to calculate d̃ = (5ϑ−3)d+1
d−(5ϑ−3) . All in all we

described an algorithm to compute fŤ . If one multiplies the obtained result by w5

to get rid of denominators one obtains

fŤ (x, y) =
1

25
[(3 + 6ξ − ξ2 + 7ξ3) + (80 + 235ξ − 60ξ2 + 245ξ3)d

+(220 + 465ξ + 185ξ2 + 205ξ3)d2 + (15 + 55ξ − 55ξ2 + 160ξ3)d3

+(140 + 280ξ + 245ξ2 + 35ξ3)d4 + (−4− 8ξ − 7ξ2 − ξ3)d5]

+[(−1 + ξ − ξ2) + (3 + 9ξ + 2ξ2 + 2ξ3)d+ (2 + 6ξ + 8ξ2 − 3ξ3)d2

+(−1− ξ + ξ3)d3]x+ [(−ξ + ξ2 − 2ξ3) + (2 + 3ξ + 2ξ2 + ξ3)d]x2

+[(−3− 2ξ2 − 2ξ3) + (−1− 3ξ2 − 3ξ3)d+ (−1 + 2ξ2 + 2ξ3)d2]y + xy ∈ L(E′

u,v).

Now we can state the torsion quotient in terms of the di. Recall, that if the
two elliptic curves Ei have both rank equal to zero the regulator quotient equals 1,
hence the global quotient is just the torsion quotient. If elliptic curves of positive
rank are involved, we need generators for the cokernels of ηi,Q and η∨i,Q in order to
use the above described procedure to calculate the global quotient.
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Proposition 4.6. Assume Setting 3.2 with ℓ = 5. Let Ei be given by di ∈ Q∗.
Then the following holds.

#A(Q) tors #A
∨(Q) tors

#B(Q) tors #B∨(Q) tors
=



















1 or 5, d1, d2 ∈ Q∗5,

52, di ∈ Q∗5, dj /∈ Q∗5, i 6= j,

52, 〈1〉 6= 〈d1〉 = 〈d2〉 6= 〈1〉 in Q∗/Q∗5,

53, 〈1〉 6= 〈d1〉 6= 〈d2〉 6= 〈1〉 in Q∗/Q∗5.

To be more precise, in case both di ∈ Q∗5, set di =: D5
i , for Di ∈ Q∗, and define

U1 := −ξ4(ξ + 1), U2 := −ξ(ξ + 1), U3 := −ξ3(ξ + 1) and U4 := −(ξ + 1). Then
the torsion quotient equals 1 if and only if
〈

4
∏

j=1

(D1 + Uj)
j(D1 − 1/Uj)

j

〉

=

〈

4
∏

j=1

(D2 + Uj)
j(D2 − 1/Uj)

j

〉

in L∗/L∗5.

Proof. Recall that the torsion quotient equals 5·#coker ϕ∨

Q,tors/#coker ϕQ,tors, and

that coker ϕ∨

Q,tors equals the image of coker η∨1,Q,tors× coker η∨2,Q,tors in Q∗/Q∗5. As

coker η∨i,Q,tors is generated by di mod Q∗5 and the map on coker ϕ∨

Q,tors is (x, y) 7→
x/y, we get

#coker ϕ∨

Q,tors =



















1, d1, d2 ∈ Q∗5,

5, di ∈ Q∗5, dj /∈ Q∗5, i 6= j,

5, 〈1〉 6= 〈d1〉 = 〈d2〉 6= 〈1〉 in Q∗/Q∗5,

52, 〈1〉 6= 〈d1〉 6= 〈d2〉 6= 〈1〉 in Q∗/Q∗5.

We have seen above that E′

d(Q)[5] ∼= Z/5Z if and only if d ∈ Q∗5, hence
coker ηi,Q,tors is trivial in case di /∈ Q∗5, otherwise it is 1-dimensional. Looking
at the kernel of (x, y) 7→ x/y gives

#coker ϕQ,tors =

{

1 or 5, d1, d2 ∈ Q∗5,

1, otherwise,

which finishes the first part.
For the second part note, that if di = D5

i , then E′

d(Q)[5] is generated by the
point Pi = (xi, yi), where

xi = Di + 2D2
i + 3D2

i + 5D4
i + 2D5

i + 2D6
i −D7

i +D8
i ,

yi = D2
i + 3D3

i + 5D4
i + 11D5

i + 13D6
i + 10D7

i +D8
i −D10

i +D11
i +D12

i .

The image of 〈Pi〉 under fŤ in L∗/L∗5, i.e., the image of coker ηi,Q,tors in L
∗/L∗5,

is
〈

4
∏

j=1

(Di + Uj)
j(Di − 1/Uj)

j

〉

,

which completes the second part. �

Finally, we give two unconditional examples of an abelian surface B over Q of
rank 0, respectively of rank 1, such that #X(B/Q) = 5.

Example 4.7. If d1 = u1/v1 = 1/11 and d2 = u2/v2 = 2/9, then #X(B/Q) = 5.
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Proof. We start with the local quotient. There are three different primes dividing
u1v1u2v2 = 2 · 32 · 11. Then we have the contribution of the prime at infinity
and that’s it, as ui 6≡ 7 · vi mod 25, for both i, and gcd(u21 + 11u1v1 − v21 , u

2
2 +

11u2v2 − v22) = 1. Hence the local quotient equals 1/54. Both elliptic curves Edi
have analytic rank equal to 0, hence we know that X(A/Q) and X(B/Q) are finite
and that the global quotient equals the torsion quotient. Thus the global quotient
equals 53. We conclude that #X(B/Q) = 5 ·#X(A/Q).

It remains to show, that both X(Ei/Q) are trivial. The predicted size by the
Birch and Swinnerton-Dyer formula is 1. Both Ei are non-CM curves of conductor
≤ 1000, hence we can apply [Ste09, Theorem 3.31 and Theorem 4.4]. This gives
us that #X(Ei/Q)[p∞] = 1, for all primes p 6= 5. (The primes occurring as the
degrees of cyclic isogenies or dividing any Tamagawa number are only 2 and 5.) Now
use [Fis01, Theorem 1 or Table 3 in the Appendix] to calculate Selηi(Ei/Q) = 0 and

Selη
∨

i (E′

i/Q) ∼= Z/5Z, for both i. As coker ηi,Q = 0 and coker η∨i,Q
∼= Z/5Z we have

X(Ei/Q)[ηi] = X(E′

i/Q)[η∨i ] = 0 and thus X(Ei/Q)[5] = 0. Hence X(Ei/Q) is
trivial. �

Example 4.8. If d1 = u1/v1 = 1/10 and d2 = u2/v2 = 3/1, then #X(B/Q) = 5.

Proof. We have u1v1u2v2 = 2 · 3 · 5, ui 6≡ 7 · vi mod 25, for both i, and gcd(u21 +
11u1v1−v21 , u22+11u2v2−v22) = 1. Hence the local quotient equals 1/54. The elliptic
curve E1 is of analytic rank 0 and E2 of analytic rank 1. A generator of the free part
of E2(Q) is the point P = (−6, 12). We will now determine coker η∨i,Q as a subset of

Q∗/Q∗5. For the first curve this equals just the torsion part of the cokernel, hence
coker η∨1,Q is generated by {2 ·5}. The second cokernel is generated by the image of

the torsion point, which is 3, and by the image of P under f = −x2+xy+y, which
is −3 · 25 ≡ 3 mod Q∗5. Therefore coker η∨2,Q is generated only by {3} and hence

coker ϕ∨

Q has dimension equal to 2. Since both di are no fifth powers, we get that
the dimension of coker η1,Q equals 0 and the one of coker η2,Q equals 0 or 1, thus
the dimension of coker ϕQ equals 0. We conclude that the global quotient equals
53, which gives #X(B/Q) = 5 ·#X(A/Q). Now one can use a similar strategy as
in the previous example to show that X(A/Q) is trivial. �

4.2. Prime ℓ = 7. The situation is very similar to the case ℓ = 5, so we mostly just
state the results. The elliptic curves with non-trivial 7-torsion are parametrized by
the Weierstraß equations

Ed : y2 + (1 + d− d2)xy + (d2 − d3)y = x3 + (d2 − d3)x2,

∆d = −d7(1 − d)7(d3 − 8d2 + 5d+ 1).

Thus for K = Q we have d 6= 0, 1. The isogenous curve is

E′

d : y
2 + (1 + d− d2)xy + (d2 − d3)y =

x3 + (d2 − d3)x2 + (5d− 35d2 + 70d3 − 70d4 + 35d5 − 5d7)x

+(d− 19d2 + 94d3 − 258d4 + 393d5 − 343d6 + 202d7 − 107d8 + 46d9 − 8d10 − d11),

∆′

d = −d(1− d)(d3 − 8d2 + 5d+ 1)7,

and the 7-torsion points are

E(Q)[7] = {O, T = (0, 0), 2T = (d3 − d2, d5 − 2d4 + d3), 3T = (d2 − d, d3 − 2d2 + d),

4T = (d2 − d, d4 − 2d3 + d2), 5T = (d3 − d2, 0), 6T = (0, d3 − d2)}.
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If we write d = u/v, with u, v ∈ Z coprime, we get

Eu,v : y2 + ((v − u)(v + u) + uv)xy + (v − u)u2v3y = x3 + (v − u)u2vx2,

∆u,v = −(uv)7(v − u)7(u3 − 8u2v + 5uv2 + v3),

E′

u,v : y2 + ((v − u)(v + u) + uv)xy + (v − u)u2v3y =

x3 + (v − u)u2vx2 + (−5u7v + 35u5v3 − 70u4v4 + 70u3v5 − 35u2v6 + 5uv7)x

−u11v − 8u10v2 + 46u9v3 − 107u8v4 + 202u7v5 − 343u6v6

+393u5v7 − 258u4v8 + 94u3v9 − 19u2v10 + uv11,

∆′

u,v = −uv(v − u)(u3 − 8u2v + 5uv2 + v3)7,

c′4,u,v = u8 + 228u7v + 42u6v2 − 1736u5v3 + 3395u4v4

−3360u3v5 + 1666u2v6 − 236uv7 + v8.

As before, to determine the local quotient we have to know the reduction type
of Ed at p and the value |η′d(0)|p.

Lemma 4.9. Let p be a prime number and let E := Ed be an elliptic curve as
above parametrized by d = u/v ∈ Q∗, with u, v ∈ Z coprime.

(i) If p|uv(v − u) then E has split multiplicative reduction at p with E(Q)[7] *
E0(Qp).

(ii) If p|u3 − 8u2v + 5uv2 + v3 then E(Q)[7] ⊆ E0(Qp), and E has split multi-
plicative reduction at p if and only if p ≡ 1 mod 7, additive reduction if and only if
p = 7, and otherwise non-split multiplicative reduction with p ≡ −1 mod 7.

(iii) a) v7(u
3 − 8u2v + 5uv2 + v3) ∈ {0, 2},

b) v7(u
3 − 8u2v + 5uv2 + v3) = 2 ⇔ u ≡ 5v mod 7,

c) u ≡ 5v mod 7 ⇒ 76 | c′4,u,v.

Proof. Analogous to the proof of Lemma 4.1. �

Proposition 4.10. Let ηd : Ed → E′

d be the isogeny described above, for d = u/v.
Then

|η′d(0)|p =
{

1/7, p = 7 and u ≡ 5v mod 7,

1, otherwise.

Proof. Analogous to the proof of Proposition 4.2. �

Hence, for the local quotient we have the following

Theorem 4.11. Assume Setting 3.2 with ℓ = 7. Let Ei be given by di = ui/vi, for
di ∈ Q∗, ui, vi ∈ Z coprime. If p ∈MQ is a place, then

#coker ϕp
#kerϕp

=































1/7, p = ∞,

1/7, p | u1v1u2v2(v1 − u1)(v2 − u2),

7, p | gcd(u31 − 8u21v1 + 5u1v
2
1 + v31 , u

3
2 − 8u22v2 + 5u2v

2
2 + v32), p ≡ 1(7),

7, u1 ≡ 5v1 mod 7, u2 ≡ 5v2 mod 7, p = 7,

1, otherwise.

Next comes the global quotient.
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Proposition 4.12. For T = (0, 0) set

fT := d2x2 + x3 + dx3 − d2y − xy − 2dxy − x2y ∈ K(E).

Then the image of the natural embedding coker η∨Q →֒ Q∗/Q∗7 equals the image of

fT (x, y) mod Q∗7, for P = (x, y) 6= O, T.

By linearity fT (T ) = d3(d− 1)6, and fT (coker η
∨

Q,tors) = 〈d(d− 1)2〉 in Q∗/Q∗7.

Proof. We have that div(x) = (T ) + (6T ) − 2(O), div(y) = 2(T ) + (5T ) − 3(O),
div(x(d− 1)− y) = (T ) + 2(3T )− 3(O), and div(x+ y − d3 + d2) = (3T ) + (5T ) +
(6T ) − 3(O), hence div(x2y2(x(d − 1) − y)/(x + y − d3 + d2)2) = 7(T ) − 7(O).
Multiplying with (−y− (1 + d− d2)x− (d2 − d3))/(−y− (1 + d− d2)x− (d2 − d3))
gives d2x2 + x3 + dx3 − d2y − xy − 2dxy − x2y. Proceed as in Proposition 4.4. �

Corollary 4.13. With notation as above, E′

d(Q)[7] = 0.

Proof. As in Corollary 4.5, E′

d(Q)[7] is non-trivial if and only if d(d−1)2 is trivial in
Q∗/Q∗7, which is equivalent to d and d−1 being a seventh power, for d ∈ Q\{0, 1}.
But Fermat’s Last Theorem for exponent 7 says that this can never happen. �

Now set L := Q(ξ), for ξ a seventh root of unity. As in case ℓ = 5, we want
to compute a function fŤ , which calculates the image of coker ηQ in L∗/L∗7, and

which depends on a point Ť = (r, t) ∈ E′(Q̄)[η∨]. The coefficients r, t, s, w for the
isomorphism τ : (E′

d/L, Ť ) → (Ed̃, (0, 0)) can be computed in the same manner as
before. The kernel polynomial of the dual isogeny η∨d : E′

d → Ed is

1

7
(d12 + 3d11 − 51d10 + 185d9 − 767d8 + 2097d7 − 2835d6

+1738d5 − 295d4 − 116d3 + 55d2 − 15d+ 1)

+(d8 − d7 − 14d6 + 32d5 − 29d4 + 7d3 + 11d2 − 7d+ 1)x

+(2d4 − 5d3 + 6d2 − 3d+ 2)x2 + x3,

hence for ϑ := ξ + ξ−1 we may chose

r =
1

7
[(3ϑ2 + 2ϑ− 9)d4 + (−25ϑ2 − 19ϑ+ 47)d3

+(23ϑ2 + 34ϑ− 41)d2 + (−2ϑ2 − 13ϑ+ 6)d+ (−ϑ2 − 3ϑ− 4)] ∈ Q(ϑ),

t =
1

7
[(−3ξ5 − 6ξ4 − ξ3 − ξ2 − 5ξ − 5)d6 + (28ξ5 + 59ξ4 + 7ξ3 + 10ξ2 + 45ξ + 33)d5

+(−52ξ5−119ξ4+6ξ3−16ξ2−62ξ−51)d4+(56ξ5+54ξ4−35ξ3−37ξ2−9ξ+13)d3

+(−13ξ5+30ξ4+54ξ3+75ξ2+60ξ+32)d2+(−10ξ5−16ξ4−22ξ3−25ξ2−22ξ−17)d

+(−ξ5 − 3ξ4 − 5ξ3 − 6ξ2 − 5ξ − 1)] ∈ L.

Using the conditions on the ai gives

s =
1

7
[(3ξ5 + 6ξ4 − 5ξ3 − 2ξ2 + ξ + 4)d2 + (−16ξ5 − 11ξ4 − 6ξ3 − ξ2 − 17ξ − 12)d

+(5ξ5 + 3ξ4 + 8ξ3 + 6ξ2 + 11ξ + 2)],

w =
1

7
[(−3ξ5 − 6ξ4 − ξ3 − ξ2 − 5ξ− 5)d6 + (28ξ5 +59ξ4 +7ξ3 +10ξ2 + 45ξ+ 33)d5

+(−52ξ5−119ξ4+6ξ3−16ξ2−62ξ−51)d4+(56ξ5+54ξ4−35ξ3−37ξ2−9ξ+13)d3

+(−13ξ5+30ξ4+54ξ3+75ξ2+60ξ+32)d2+(−10ξ5−16ξ4−22ξ3−25ξ2−22ξ−17)d

+(−ξ5 − 3ξ4 − 5ξ3 − 6ξ2 − 5ξ − 1)],
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d̃ =
(ϑ2 + 3ϑ+ 2)d− (ϑ2 + 3ϑ+ 1)

d− (ϑ2 + 3ϑ+ 2)
.

Now putting everything together gives

fŤ ≡ w7 · fT ((x − r)/w2, (y − t− s(x− r))/w3)

= w3d̃2(x−r)2+w(x−r)3+wd̃(x−r)3−w4d̃2(y−t−s(x−r))−w2(x−r)(y−t−s(x−r)),
which yields a one page long formula for fŤ .

For the torsion quotient we get the following

Proposition 4.14. Assume Setting 3.2 with ℓ = 7. Let Ei be given by di ∈
Q \ {0, 1}. Then

#A(Q) tors #A
∨(Q) tors

#B(Q) tors #B∨(Q) tors
=

{

72, 〈d1(d1 − 1)2〉 = 〈d2(d2 − 1)2〉 in Q∗/Q∗7,

73, otherwise.

Proof. Since A(Q)[7∞] ∼= (Z/7Z)2 and A′(Q)[7∞] = 0 we have B(Q)[7∞] ∼= Z/7Z,
and hence

#coker ϕQ,tors = 1.

We know that coker η∨i,Q,tors is generated by di(di − 1)2 in Q∗/Q∗7 and as the

product of these two cokernels maps surjectively onto coker ϕ∨

Q,tors via the map

(x, y) 7→ x/y, we conclude that

#coker ϕ∨

Q,tors =

{

7, 〈d1(d1 − 1)2〉 = 〈d2(d2 − 1)2〉 in Q∗/Q∗7,

72, otherwise,

which completes the proof. �

We finish by giving an unconditional example of an abelian surface B over Q of
rank equal to 0, such that #X(B/Q) = 7.

Example 4.15. If d1 = u1/v1 = 1/3 and d2 = u2/v2 = 1/4, then #X(B/Q) = 7.

Proof. We have u1v1u2v2(v1 − u1)(v2 − u2) = 23 · 32, u1 ≡ 5 · v1 mod 7, u2 6≡
5 · v2 mod 7, and gcd(u31 − 8u21v1 + 5u1v

2
1 + v31 , u

3
2 − 8u22v2 + 5u2v

2
2 + v32) = 1.

Hence the local quotient equals 1/73. Both elliptic curves Ei have analytic rank
equal to 0, hence we know that X(A/Q) and X(B/Q) are finite and that the
global quotient equals the torsion quotient. For a = 4 we have that da1(d1 − 1)2a ≡
2 · 32 ≡ d2(d2 − 1)2 mod Q∗7, thus the global quotient equals 72. We conclude that
7 · #X(A/Q) = #X(B/Q). As in the examples of ℓ = 5, one can use [Ste09]
and [Fis01] to show that X(A/Q) is trivial. �
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