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ON ARITHMETIC NUMBERS

ANTONIO M. OLLER-MARCÉN

Abstract. An integer n is said to be arithmetic if the arithmetic mean of its
divisors is an integer. In this paper, using properties of the factorization of
values of cyclotomic polynomials, we characterize arithmetic numbers. As an
application, in Section 2, we give an interesting characterization of Mersenne
numbers.
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1. Introduction

For an integer n we can define [3] the arithmetic function A(n) as the arithmetic

mean of the divisors of n; i.e., A(n) = σ(n)
τ(n) . An integer n is then said to be

arithmetic [2, B2] if A(n) is an integer (see sequence A003601 in OEIS).
Ore [3] characterized square-free arithmetic numbers. The set of arithmetic

numbers has density 1 [4] and Bateman et al. [1] have studied the distribution
of non-arithmetic numbers. Nevertheless, we have not been able to find in the
literature a general solution to the problem of the characterization of arithmetic
numbers.

Since A(n) is an arithmetic function, it is natural to study the case when n = pk

is a prime power. In this case we can easily give an explicit expression for A(n).
Namely:

A(pk) =
1

k + 1

k
∑

i=0

pi =
pk+1 − 1

(k + 1)(p− 1)
=

1

k + 1

∏

16=d|k+1

Φd(p),

where Φd denotes, as usual, the d-th cyclotomic polynomial.
From the above expression it is quite clear that the prime factorization of num-

bers of the form Φd(a) will play a key role. In particular, the following classical
result [5] will be useful.

Theorem 1. Let a, n ≥ 2 be integers and let p be the largest prime factor of n.
Put n = pkm, then:

i) p is a prime factor of Φn(a) if and only if ordp(a) = m (hence m divides
p− 1). Moreover, in this case, p2 does not divide Φn(a).

ii) If q is another prime dividing Φn(a), then ordq(a) = n. Moreover, in this
case, q does not divide n if and only if q ≡ 1 (mod n).
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2. Arithmetic prime powers

The main goal of this section is to find out when the prime-power pk is arithmetic.
We will start considering the case when k + 1 is also a prime power. We have the
following result.

Proposition 1. Let p be a prime and let k be an integer such that k + 1 = qm is
a prime power. Then A(pk) ∈ Z if and only if q divide p− 1.

Proof. First observe that:

A(pk) =
1

k + 1

pk+1 − 1

p− 1
=

1

qm

∏

16=d|qm

Φd(p) =
1

qm

m
∏

j=1

Φqj (p).

By Theorem 1 i), if q divides p − 1; i.e., if ordq(p) = 1, then q divides Φqj (p) for

every 1 ≤ j ≤ m and hence A(pk) ∈ Z.
Conversely, if A(pk) ∈ Z, it follows that pq

m

−1 ≡ 0 (mod q). This clearly implies
(qm and q − 1 being coprime) that p− 1 ≡ 0 (mod q) and the result follows. �

Let us introduce some notation. Given an integer n and its prime power decom-
position n = qm1

1 · · · qmr
r , we define dj(n) := gcd(qj − 1, n).

Remark. If n = qm1
1 · · · qmr

r we can assume that q1 < · · · < qr. If we denote by
nj = qm1

1 · · · q
mj−1

j−1 (n1 = 1), it is easy to see that

gcd(qj − 1, n) = gcd(qj − 1, nj) = gcd(qj − 1, n/q
mj

j ),

because qk cannot divide qj − 1 for any k ≥ j.

We can now prove the following result.

Proposition 2. Let p be a prime and k be any integer. If k + 1 = qm1
1 · · · qmr

r

is the prime power decomposition of k + 1, we have that A(pk) ∈ Z if and only if
qj |pdj(k+1) − 1 for every j = 1, . . . , r.

Proof. In this case A(pk) =
1

k + 1

∏

16=d|k+1

Φd(p). If A(pk) ∈ Z it follows that qj

divides pk+1 − 1 for every j. This imples that qj also divides pgcd(qj−1,k+1) − 1 as
claimed.

Conversely, assume that qj |pdj(k+1) − 1 for every j = 1, . . . , r. This implies that
ordqj (p) divides dj(k + 1). Now, if we put D(j,i) = ordqj (p)q

i
j we have that D(j,i)

is a divisor of k + 1 and qj is its largest prime factor (see the previous remark).
We can thus apply Theorem 1 i) to conclude that qj divides ΦD(j,i)

(p) for every

1 ≤ j ≤ r and for every 1 ≤ i ≤ mj. Hence q
mj

j divides
∏

16=d|n+1

Φd(p) for every j

and the proof is complete. �

Recall that he radical of an integer is defined to be its largest square-free di-
visor. Namely, if n = qm1

1 · · · qmr
r then rad(n) = q1 . . . qr. Now, let us define

∆(n) = lcm(d1(n), . . . , dr(n)). Recalling the definition of dj(n) it is clear that
∆(n) = gcd(n, lcm(qj − 1)) = gcd(n, λ(rad(n))), where λ is Carmichael’s function
(see A173751 in OEIS).

Observe that, from the definition of dj(n), we have that ∆(n) = qµ1

1 · · · q
µr−1

r−1

with 0 ≤ µj ≤ mj for all j = 1, . . . , r − 1. This observation allows us to prove the
following lemma.
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Lemma 1. For every j = 1, . . . , r, we have that dj(n) = gcd(qj − 1,∆(n)/q
µj

j )

Proof. By definition dj(n) divides ∆(n) and since qj cannot appear in its prime
power decomposition, it clearly divides ∆(n)/q

µj

j . On the other hand gcd(qj −

1,∆(n)/q
µj

j ) must be of the form qe11 . . . q
ej−1

j−1 with 0 ≤ ej ≤ µj ≤ mj . Thus, it
divides nj and the result follows. �

From the previous corollary it follows readily that if a prime power pk is arith-
metic, then rad(k + 1) divides p∆(k+1) − 1. The main result of this section is the
following theorem which proves that the converse is also true.

Theorem 2. Let p be a prime and k be an integer. Then, A(pk) ∈ Z if and only
if rad(k + 1) divides p∆(k+1) − 1.

Proof. If rad(k + 1) divides p∆(k+1) − 1, then qj divides p∆(k+1) − 1 for every

j. Since p∆(k+1) ≡ p∆(k+1)/q
µj

j ≡ 1 ≡ pqj−1 (mod qj) it follows that qj divides

pgcd(qj−1,∆(k+1)/q
µj
j

) − 1 so it is enough to apply the previous lemma together with
Proposition 2. �

The rest of the section will be devoted to present some applications of the pre-
vious results.

In [6], the arithmetic mean of the core divisors of a number A∗(n) is considered,
where a core divisor is one which is a multiple of rad(n). Among other results it is
proved that A∗(pp) is integral for any prime p. Let us see that if p 6= 2 this result
also holds when considering all the divisors.

Proposition 3. If p is an odd prime, then pp is arithmetic.

Proof. We can write p+1 = qm1
1 · · · qmr

r with q1 = 2. Since qj − 1 is even for every
2 ≤ j ≤ r, it follows that ∆(p+1) is also even. Observe that p ≡ −1 (mod qj) and

thus, p∆(p+1) ≡ (−1)∆(p+1) ≡ 1 (mod qj).
The previous reasoning does not work if r = 1, but in such case p+1 is a power

of 2 and it is enough to apply Proposition 1 since p− 1 is even. �

Of course, if p, q are odd primes, pq is not arithmetic in general; e.g., A(35) = 182
3 .

Nevertheless we have the following proposition which was already suggested by the
proof of the previous one.

Proposition 4. If p is an odd prime and m is a Mersenne number, then pm is
arithmetic. In particular pq is arithmetic for every Mersenne prime q.

Proof. In this casem+1 is a power of 2 and p−1 is even, so we can apply Proposition
1. �

Before we pass to the following section we will see that, in fact, the previous
proposition gives us an interesting characterization of Mersenne numbers.

Corollary 1. Let m be any integer. Then pm is arithmetic for every odd prime p
if and only if m is a Mersenne number.

Proof. If pm is arithmetic for every odd prime, then m+ 1 divides pm+1 − 1 which
implies that gcd(m+ 1, p) = 1. Thus m+ 1 must be a power of 2 as desired. The
converse is given by the previous proposition. �
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3. The general case

To give general conditions for any integer n to be arithmetic is a more difficult
task. Since A(n) is an arithmetic function we can use the results given in the
previous section to obtain the following strightforward result.

Corollary 2. Let p1, . . . , pr be odd prime numbers and let n1, . . . , nr be integers

such that rad(nj + 1) divides p
∆(nj+1)
j − 1 for every 1 ≤ j ≤ r. If N = pn1

1 · · · pnr
r ,

then A(N) ∈ Z. In particular pp1

1 · · · pp
r

r is arithmetic and, if m1, . . . ,mr are
Mersenne numbers then pm1

1 · · · pmr
r is also arithmetic.

In [3] the square-free case was completely solved since it easily follows from the
definition of A(n) that an odd square-free number is always arithmetic and an even
square-free number is arithmetic if and only if one of its prime divisors is of the form
4k − 1. In [6] it was proved that A∗(n) is integral if n is cube-free. Of course this
fact does not remain true when considering all the divisors of n; e.g., A(75) = 62

3 .
We will start the section characterizing cube-free arithmetic numbers. To do so we
first need to prove the following technical lemma.

Lemma 2. Let p be a prime. If 3 divides 1+p+p2, then 9 does not divide 1+p+p2.

Proof. Recall that 3 divides 1 + p + p2 if and only if p = 3k + 1, but it that case
1 + p+ p2 = 9k2 + 9k + 3 is not a multiple of 9. �

Proposition 5. Let n = 2a3bp1 · · · prq21 · · · q
2
s be a cube-free integer. Let α =

card{qi | qi ≡ 2 (mod 3)}. Then:

• If a 6= 1, then A(n) ∈ Z if and only if 3α+[
a
2 ]+[

b
2 ] divides

∏

(pi + 1).

• If a = 1 and b 6= 1, then A(n) ∈ Z if and only if 3α−1+[ b2 ] divides
∏

(pi+1)
and there exists j ∈ {1, . . . , r} such that pj = 4k − 1.

• If a = b = 1, then A(n) ∈ Z if and only if 3α−1 divides
∏

(pi + 1).

Proof. Observe that A(n) =

∑a
i=0 2

i

a+ 1

∑b
i=0 3

i

b+ 1

r
∏

i=1

pi + 1

2

s
∏

i=1

1 + qi + q2i
3

, with 0 ≤

a, b ≤ 2 and where the third factor is always an integer. Then it is enough to apply
Proposition 1 and the previous lemma; also noting that 1+qi+q2i is always odd. �

Before we proceed let us introduce some notation. If N = pn1
1 · · · pnr

r , let {q1 <
· · · < qs} be the set of primes appearing in the factorizations of n1 + 1, . . . , nr + 1.
Thus, for every i ∈ {1, . . . , r} we can put ni +1 = q

ai,1

1 · · · q
ai,s
s with 0 ≤ ai,j . Also,

for every i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, let us define αi,j = ordqi(pj). Observe
that αi,j cannot contain any prime larger than qi because αi,j |qi − 1. We also
introduce the following sets for every i ∈ {1, . . . , s}:

J(i) := {j : αi,j |nj + 1},

E(i) := {j : qi|nj + 1}.

Finally, for every integer n and prime p, |n|p denotes the exponent of p in the prime
power decomoposition of n.

With this notation we have the following result.

Theorem 3. A(N) ∈ Z if and only if the following conditions hold for every i:

a) J(i) 6= ∅,
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b)
r

∑

j=1

aj,i ≤
∑

j∈J(i)∩E(i)

aj,i +
∑

j∈J(i)\E(i)

∣

∣

∣

∣

∣

∣

∏

16=d|nj+1

Φd(pj)

∣

∣

∣

∣

∣

∣

qi

.

Proof. First of all observe that

A(N) =

r
∏

k=1





∏

16=d|nk+1

Φd(pk)





s
∏

k=1

(

q
∑r

j=1 aj,k

k

)

.

Now, assume that A(N) ∈ Z and fix qi for some 1 ≤ i ≤ s. It follows that qi divides
Φd(pj) with d|nj + 1 for some 1 ≤ j ≤ r and three cases arise:

i) qi 6 |d. In this cases Theorem 1 ii) applies to obtain that αi,j = d divides
nj + 1.

ii) qi|d and it is the largest prime factor of d. If d = qǫid
′ Theorem 1 i) implies

that αi,j = d′ divides nj + 1.
iii) qi|d and d contains a prime factor qk larger or equal that qi. Theorem 1 i)

implies that qk|d|qi − 1 which is a contradiction.

We have thus seen that αi,j divides nj + 1 for some j; i.e., that J(i) 6= ∅ and a) is
proved.

If j 6∈ J(i), then αi,j does not divide nj+1 and Theorem 1 implies that qi cannot
divide Φd(pj) for any divisor d of nj + 1. Now, if j ∈ J(i) ∩ E(i), Theorem 1 i)
implies that q

aj,i

i is the largest power of qi dividing
∏

16=d|nj+1 Φd(pj). Finally, if

j ∈ J(i) \ E(i) it follows that qi divides Φαi,j
(pj). This proves b).

The converse also follows from Theorem 1 and we give no further details. �

If, in the previous result we assume n1 + 1, . . . , nr + 1 to be distinct primes, we
obtain the following proposition. Although it is a consequence of Theorem 3, we
will give a self-contained proof.

Proposition 6. Let p1, . . . , pr be distinct primes and let q1 < · · · < qr also be
primes. Put n = pq1−1

1 · · · pqr−1
r . Then A(n) ∈ Z if and only if for every i ∈

{1, . . . , r} either qi|pi − 1 or there exists j < i such that ordqi(pj) = qj (hence
qj |qi − 1).

Proof. Observe that A(n) =
Φq1(p1) · · ·Φqr (pr)

q1 · · · qr
. Thus A(n) ∈ Z if and only if qi

divides

r
∏

j=1

Φqj (pj) for every 1 ≤ i ≤ r. Now, fix i and assume that qi divides

Φqj (pj) for some 1 ≤ j ≤ r. Then, two cases arise:

i) i = j. Due to Proposition 1, this happens if and only if qi divides pi − 1.
ii) i 6= j. Theorem 1 ii) implies that ordqi(pj) = qj and qi ≡ 1 (mod qj) (and

consequently j < i).

The converse is obvious since ordqi(pj) = qj clearly implies that qi divides Φqj (pj)
and the proof is complete. �

We will close the paper with a necessary condition for an integer to be arithmetic.
It is a consequence of Theorem 3, so we will keep using the same notation.
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Corollary 3. Let N = pn1
1 · · · pnr

r with p1, . . . , pr being distinct primes and n1, . . . , nr

being any integers. Let us denote by Q the set of primes appearing in the factoriza-
tions of n1 + 1, . . . , nr + 1 and put q1 = minQ. Assume that q|nk + 1 for a unique

k. In this situation if n is arithmetic, then q divides pnk+1
k − 1.

Proof. With the notation of Theorem 3, we have that E(1) = {k}; i.e., ai,1 = 0 for
every i 6= k. Thus J(1) ∩ E(1) = {k} if α1,k divides nk + 1 and empty otherwise.

Assume that q1 does not divide pnk+1
k − 1. This means that α1,k 6∈ J(1) so,

since J(1) 6= ∅ there must exist h 6= k ∈ J(1). Consequently α1,h divides nh + 1
but, since gcd(q1 − 1, nh + 1) = 1 (recall that q1 = minQ) it follows that ph ≡ 1
(mod q1). This clearly implies that q1 divides nh + 1; i.e., that h ∈ E(1) = {k}. A
contradiction. �

Remark. Observe that we can always apply the previous corollary if gcd(ni +
1, nj + 1) = 1 for all i, j, but if q1 = 2 it is only useful when pk = 2.

Example. Let n = 33458724. In this case minP = 3 and it only divides n2+1 = 9
and we can apply the previous proposition. Since 3 does not divide 59 − 1 we
conclude that n is not arithmetic.
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