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Abstract

This paper contains new explicit upper bounds for the number of ze-

roes of Dirichlet L-functions and Dedekind zeta-functions in rectangles.

1 Introduction and Results

This paper pertains to the functions N(T, χ) and NK(T ), respectively the num-
ber of zeroes ρ = β + iγ of L(s, χ) and of ζK(s) in the region 0 < β < 1 and
|γ| ≤ T . The purpose of this paper is to prove the following two theorems.

Theorem 1. Let T ≥ 1 and χ be a primitive nonprincipal character modulo k.
Then

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤ 0.318 logkT + 6.534. (1.1)

In addition, if the right side of (1.1) is written as C1 log kT +C2, one may use
the values of C1 and C2 contained in Table 1.

Theorem 2. Let T ≥ 1 and K be a number field with degree nK = [K : Q] and
absolute discriminant dK . Then

∣

∣

∣

∣

NK(T )−T
π
log

{

dK

(

T

2πe

)nK
} ∣

∣

∣

∣

≤ 0.319 {log dK + nK logT }+6.026nK+3.659.

(1.2)
In addition, if the right side of (1.2) is written as D1 {log dK + nK logT } +
D2nK +D3, one may use the values of D1, D2 and D3 contained in Table 2.

Theorem 1 improves on a result due to McCurley [3, Thm 2.1]; Theorem 2
improves on a result due to Kadiri and Ng [2, Thm 1]. The values of C1 and
D1 given above are less than half of the corresponding values in [3] and [2]. The
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improvement is due to Backlund’s trick — explained in §3 — and some minor
optimisation.

Explicit expressions for C1 and C2 and for D1, D2 and D3 are contained
in (4.13) and (4.14) and in (5.11) and (5.12). These contain a parameter η
which, when varied, gives rise to Tables 1 and 2. The values in the right sides
of (1.1) and (1.2) correspond to η = 1

4 in the tables. Note that some minor
improvement in the lower order terms is possible if T ≥ T0 > 1; Tables 1 and 2
give this improvement when T ≥ 10.

Table 1: C1 and C2 in Theorem 1 and in [3] for various values of η

η McCurley [3] When T ≥ 1 When T ≥ 10
C1 C2 C1 C2 C2

0.05 0.506 16.989 0.248 9.339 8.660
0.10 0.552 13.202 0.265 8.015 7.311
0.15 0.597 11.067 0.282 7.280 6.549
0.20 0.643 9.606 0.300 6.778 6.021
0.25 0.689 8.509 0.317 6.401 5.616
0.30 0.735 7.641 0.334 6.101 5.288
0.35 0.781 6.929 0.351 5.852 5.011
0.40 0.827 6.330 0.369 5.640 4.770
0.45 0.873 5.817 0.386 5.456 4.556
0.50 0.919 5.370 0.403 5.294 4.363

Table 2: D1, D2 and D3 in Theorem 2 and in [2] for various values of η

η Kadiri and Ng [2] When T ≥ 1 When T ≥ 10
D1 D2 D3 D1 D2 D3 D2 D3

0.05 0.506 16.95 7.663 0.248 9.270 3.047 8.637 2.110
0.10 0.552 13.163 7.663 0.265 7.947 3.209 7.288 2.172
0.15 0.597 11.029 7.663 0.282 7.211 3.379 6.526 2.239
0.20 0.643 9.567 7.663 0.300 6.710 3.556 5.997 2.313
0.25 0.689 8.471 7.663 0.317 6.333 3.742 5.593 2.394
0.30 0.735 7.603 7.663 0.334 6.032 3.934 5.265 2.481
0.35 0.781 6.891 7.663 0.351 5.784 4.135 4.987 2.575
0.40 0.827 6.292 7.663 0.369 5.572 4.344 4.746 2.678
0.45 0.873 5.778 7.663 0.386 5.388 4.562 4.532 2.789
0.50 0.919 5.331 7.663 0.403 5.225 4.789 4.339 2.911

Explicit estimation of the error terms of the zero-counting function for
L(s, χ) is done in §2. Backlund’s trick is modified to suit Dirichlet L-functions
in §3. Theorem 1 is proved in §4. Theorem 2 is proved in §5.
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2 Estimating N(T, χ)

Let χ be a primitive nonprincipal character modulo k, and let L(s, χ) be the
Dirichlet L-series attached to χ. Let a = (1 − χ(−1))/2 so that a is 0 or 1
according as χ is an even or an odd character. Then the function

ξ(s, χ) =

(

k

π

)(s+a)/2

Γ

(

s+ a

2

)

L(s, χ), (2.1)

is entire and satisfies the functional equation

ξ(1− s, χ) =
iak1/2

τ(χ)
ξ(s, χ), (2.2)

where τ(χ) =
∑k
n=1 χ(n) exp(2πin/k).

Let N(T, χ) denote the number of zeroes ρ = β + iγ of L(s, χ) for which
0 < β < 1 and |γ| ≤ T . For any σ1 > 1 form the rectangle R having vertices at
σ1 ± iT and 1 − σ1 ± iT , and let C denote the portion of the rectangle in the
region σ ≥ 1

2 . From Cauchy’s theorem and (2.2) one deduces that

N(T, χ) =
1

π
∆C arg ξ(s, χ).

Thus

N(T, χ) =
1

π

{

∆C arg

(

k

π

)(s+a)/2

+∆C argΓ

(

s+ a

2

)

+∆C argL(s, χ)

}

=
T

π
log

k

π
+

2

π
ℑ log Γ

(

1

4
+
a

2
+ i

T

2

)

+
1

π
∆C argL(s, χ).

(2.3)

To evaluate the second term on the right-side of (2.3) one needs an explicit
version of Stirling’s formula. Such a version is provided in [4, p. 294], to wit

log Γ(z) = (z − 1

2
) log z − z +

1

2
log 2π +

θ

6|z| , (2.4)

which is valid for | arg z| ≤ π
2 , and in which θ denotes a complex number satis-

fying |θ| ≤ 1. Using (2.4) one obtains

ℑ log Γ

(

1

4
+
a

2
+ i

T

2

)

=
T

2
log

T

2e
+
T

4
log

(

1 +
(2a+ 1)2

4T 2

)

+
2a− 1

4
tan−1

(

2T

2a+ 1

)

+
θ

3| 12 + a+ iT | .
(2.5)

Denote the last three terms in (2.5) by g(a, T ). Using elementary calculus one
can show that |g(0, T )| ≤ g(1, T ) and that g(1, T ) is decreasing for T ≥ 1. This,
together with (2.3) and (2.5), shows that

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤ 1

π

∣

∣∆C argL(s, χ)
∣

∣+
2

π
g(1, T ). (2.6)
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All that remains is to estimate ∆C argL(s, χ). Write C as the union of three
straight lines, viz. let C = C1 + C2 + C3, where C1 connects 1

2 − iT to σ1 − iT ;
C2 connects σ1 − iT to σ1 + iT ; and C3 connects σ1 + iT to 1

2 + iT . Since

L(s, χ) = L(s, χ) a bound on C3 will serve as a bound on C1. Estimating the
contribution along C2 poses no difficulty since

| argL(σ1 + it, χ)| ≤ | logL(σ1 + it, χ)| ≤ log ζ(σ1).

To estimate ∆C3
argL(s, χ) write

f(s) =
1

2
{L(s+ iT, χ)N + L(s− iT, χ)N}, (2.7)

for some positive integer N , to be determined later. Thus f(σ) = ℜL(σ +
iT, χ)N . Suppose that there are n zeroes of ℜL(σ + iT, χ)N for σ ∈ C3. These
zeroes partition the segment into n + 1 intervals. On each interval argL(σ +
iT, χ)N can increase by at most π. Thus

|∆C3
argL(s, χ)| = 1

N
|∆C3

argL(s, χ)N | ≤ (n+ 1)π

N
,

whence (2.6) may be written as

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤ 2

π
{log ζ(σ1) + g(1, T )}+ 2(n+ 1)

N
. (2.8)

One may estimate n with Jensen’s Formula.

Lemma 1 (Jensen’s Formula). Let f(z) be holomorphic for |z − a| ≤ R and
non-vanishing at z = a. Let the zeroes of f(z) inside the circle be zk, where
k = 1, 2, . . . , n, and let |zk − a| = rk. Then

log
Rn

|r1r2 · · · rn|
=

1

2π

∫ 2π

0

log f(a+Reiφ) dφ− log |f(a)|. (2.9)

3 Backlund’s Trick

Backlund’s trick is to use the functional equation to show that if there are
zeroes of ℜL(σ + iT, χ)N on the line σ ∈ [ 12 , σ1], then there are zeroes on the
line σ ∈ [1 − σ1,

1
2 ]. This device was introduced by Backlund in [1] for the

Riemann zeta-function.
For a complex-valued function f(s), define ∆± arg f(s) to be the change in

argument of f(s) as σ varies from 1
2 to 1

2 ±δ, where δ > 0. Following Backlund’s
approach one can easily prove a requisite lemma for L-functions.

Lemma 2. (i) Let N be a positive integer and let T ≥ T0 ≥ 1. Suppose that

|∆+ argL(s, χ) + ∆− argL(s, χ)| < E,
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where E = E(δ, T0). If there are n zeroes of ℜL(σ + iT, χ)N for σ ∈ [ 12 , σ1],
then there are at least n− 1− [NE/π] zeroes in σ ∈ [1− σ1,

1
2 ]

(ii) Denote the zeroes in [ 12 , σ1] by ρν = aν + iT where 1
2 ≤ an ≤ an−1 ≤

· · · ≤ σ1, and the zeroes in [1−σ1, 12 ] as ρ′ν = a′ν + iT where 1−σ1 ≤ a′1 ≤ a′2 ≤
· · · ≤ 1

2 . Then

aν ≥ 1− a′ν , for ν = 1, 2, . . . , n− 1− [NE/π], (3.1)

and, if σ1 = 1
2 +

√
2(η + 1

2 ), then

n
∏

ν=1

|1 + η − aν |
n−1−[NE/π]

∏

ν=1

|1 + η − a′ν | ≤ (12 + η)2n−1−[NE/π]. (3.2)

Proof. Suppose that there exists an n ≥ 1 for which

nπ ≤ |∆C3
argL(s, χ)N | < (n+ 1)π. (3.3)

Thus argL(s, χ)N must increase as σ varies from σ1 to 1
2 . This increase may

only occur if σ has passed over a zero of ℜL(s, χ)N . In particular as σ moves
along C3

|∆argL(s, χ)N | ≥ π, 2π, . . . , nπ.

Let ρν = aν + it denote zeroes of ℜL(s, χ)N the passing over of which forces

|∆argL(s, χ)| ≥ νπ.

It follows that there must be n such points, and that 1
2 ≤ an ≤ an−1 ≤ . . . ≤

a2 ≤ a1 ≤ σ1. Also if δ ≥ aν then

|∆+ argL(s, χ)N | ≥ (n− ν)π. (3.4)

By the hypothesis in Lemma 2 (i),

|∆+ argL(s, χ)N +∆− argL(s, χ)N | < NE. (3.5)

When δ ≥ aν , (3.4) and (3.5) show that

|∆− argL(s, χ)N | ≥ (n− ν −NE/π)π,

for 1 ≤ ν ≤ n − 1 − [NE/π]. The increase in the argument is only possible if
there are zeros of ℜL(s, χ)N in the segment σ ∈ [1− σ1,

1
2 ]. Label these zeroes

ρ′ν = a′ν + it, whence |a′ν − 1
2 | ≤ |aν − 1

2 | for 1 ≤ ν ≤ n − 1 − [NE/π] and so
(3.1) follows. This produces a positive number of zeroes in [1− σ1,

1
2 ] provided

that n ≥ 2 + [NE/π]. If this is not satisfied then (2.8) becomes

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤ 2

π
{log ζ(σ1) + g(1, T ) + E}+ 6

N
. (3.6)

This bound also holds if there is no n ≥ 1 for which (3.3) holds.

5



For zeroes ρν lying to the left of 1 + η one has

|1 + η − aν ||1 + η − a′ν | ≤ (1 + η − aν)(η + aν),

by (3.1). This is a decreasing function for aν ∈ [ 12 , 1+η] and so, for these zeroes

|1 + η − aν ||1 + η − a′ν | ≤ (
1

2
+ η)2. (3.7)

For zeroes lying to the right of 1 + η one has

|1 + η − aν ||1 + η − a′ν | ≤ (aν − 1− η)(η + aν).

This is increasing with an and so, for these zeroes

|1 + η − aν ||1 + η − a′ν | ≤ σ2
1 − σ1 − η(1 + η). (3.8)

The bounds in (3.7) and (3.8) are equal1 when σ1 = 1
2 +

√
2(η+ 1

2 ). Thus (3.2)

holds for σ1 = 1
2 +

√
2(η + 1

2 ). For the unpaired zeroes one may use the bound
|1 + η − aν | ≤ 1

2 + η, whence (3.2) follows.

3.1 Calculation of E in Lemma 2 (i)

From (2.1) and (2.2) it follows that

∆+ arg ξ(s, χ) = −∆− arg ξ(s, χ).

Since arg(π/k)−
s+a

2 = − t
2 log(π/k) then ∆±(π/k)

−
s+a

2 = 0, whence

|∆+ argL(s, χ) + ∆− argL(s, χ)| = |∆+ arg Γ( s+a2 ) + ∆− argΓ( s+a2 )|.
Using (2.4) one may write

∣

∣

∣

∣

∆+ argΓ

(

s+ a

2

)

+∆− argΓ

(

s+ a

2

)
∣

∣

∣

∣

≤ G(a, δ, t), (3.9)

where

G(a, δ, t) =
1

2
(a− 1

2
+ δ) tan−1 a+

1
2 + δ

t
+

1

2
(a− 1

2
− δ) tan−1 a+

1
2 − δ

t

− (a− 1

2
) tan−1 a+

1
2

t
− t

4
log

[

1 +
2δ2{t2 − (12 + a)2}+ δ4

{

t2 + (12 + a)2
}2

]

+
1

3

{

1

| 12 + δ + a+ it| +
1

| 12 − δ + a+ it| +
2

| 12 + a+ it|

}

.

(3.10)

One can show that G(a, δ, t) is decreasing in t and that G(1, δ, t) ≤ G(0, δ, t).
Therefore, since, in Lemma 2 (i), one takes σ1 = 1

2 +
√
2(12 + η) it follows that

δ =
√
2(12 + η), whence one may take

E = G(0,
√
2(12 + η), t0), (3.11)

for t ≥ t0.

1McCurley does not use Backlund’s trick. Accordingly, his upper bounds in place of (3.7)
and (3.8) are 1

2
+ η and σ1 − 1− η. These are equal at σ1 = 3

2
+2η, which is his choice of σ1.
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4 Proof of Theorem 1

In Lemma 1, take a = 1 + η, f(z) as in (2.7), and R = r(12 + η), where
r > 1. Suppose that there are n zeroes of ℜL(σ+ iT, χ)N for σ ∈ [ 12 , σ1], where

σ1 = 1
2 +

√
2(η + 1

2 ).

4.1 Applying Backlund’s Trick

If 1+η−r(12+η) ≤ 1−σ1 then all of the 2n−1−[NE/π] zeroes of ℜL(σ+iT, χ)N
are included in the contour. Thus the left side of (2.9) is

log
{r(12 + η)}2n−1−[NE/π]

|1 + η − a1| · · · |1 + η − an||1 + η − a′1| · · · |1 + η − a′n−1−[NE/π]|
≥ (2n− 1− [NE/π]) log r,

(4.1)

by (3.2). If the contour does not enclose all of the 2n − 1 − [NE/π] zeroes of
ℜL(σ+iT, χ)N , then the following argument, thoughtfully provided by Professor
D.R. Heath-Brown, allows one still to make a saving.

To a zero at x+ it, with 1
2 ≤ x ≤ 1 + η one may associate a zero at x′ + it

where, by (3.1), 1− x ≤ x′ ≤ 1
2 . Thus, for an intermediate radius, zeroes to the

right of 1
2 yet still close to 1

2 will have their pairs included in the contour. Let
X satisfy 1 + η − (12 + η)/r < X < min{1 + η, r(12 + η) − η}. Since r > 1, this
guarantees that X > 1

2 . For a zero at x + it consider two cases: x ≥ X and
x < X .

In the former, there is no guarantee that the paired zero x′+ it is included in
the contour. Thus the zero at x+ it is counted in Jensen’s formula with weight

log
r(12 + η)

1 + η − x
≥ log

r(12 + η)

1 + η −X
. (4.2)

Now, when x < X , the paired zero at x′ is included in the contour, since
1+η−r(12+η) < 1−X < 1−x ≤ x′. Thus, in Jensen’s formula, the contribution
is

log
r(12 + η)

1 + η − x
+ log

r(12 + η)

1 + η − x′
≥ log

r(12 + η)

1 + η − x
+ log

r(12 + η)

η + x

= log
r2(12 + η)2

(1 + η − x)(η + x)
.

(4.3)

The function appearing in the denominator of (4.3) is decreasing for x ≥ 1
2 .

Thus the zeroes at x+ it and x′ + it contribute at least 2 log r.
Suppose now that there are n zeroes in [ 12 , σ1], and that there are k zeroes the

real parts of which are at least X . The contribution of all the zeroes ensnared
by the integral in Jensen’s formula is at least

k log
r(12 + η)

1 + η −X
+ 2(n− k) log r = k log

(12 + η)

r(1 + η −X)
+ 2n log r ≥ 2n log r,

which implies (4.1)
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4.2 Remainder of Proof

To apply Jensen’s formula it is necessary to show that f(1+ η) is non-zero: this
is easy to do upon invoking an observation due to Rosser [6]. Write L(1 + η +
iT, χ) = Keiψ, where K > 0. Choose a sequence of N ’s tending to infinity for
which Nψ tends to zero modulo 2π. Thus

f(1 + η)

|L(1 + η + iT, χ)|N → 1. (4.4)

Since χ is a primitive nonprincipal character then f(s) is holomorphic on the
circle. It follows from (2.9) and (4.1) that

n ≤ 1

4π log r
J − 1

2 log r
log |f(1 + η)|+ 1

2
+
NE

2π
, (4.5)

where

J =

∫ 3π
2

−
π

2

log |f(1 + η + r(
1

2
+ η)eiφ)| dφ.

Write J = J1 + J2 where the respective ranges of integration of J1 and J2 are
φ ∈ [−π/2, π/2] and φ ∈ [π/2, 3π/2]. For σ > 1

ζ(2σ)

ζ(σ)
≤ |L(s, χ)| ≤ ζ(σ), (4.6)

which shows that

J1 ≤ N

∫ π/2

−π/2

log ζ(1 + η + r(12 + η) cosφ) dφ. (4.7)

On J2 use
log |f(s)| ≤ N log |L(s+ iT, χ)|,

and the convexity bound [5, Thm 3]

|L(s, χ)| ≤
(

k|s+ 1|
2π

)(1+η−σ)/2

ζ(1 + η), (4.8)

valid for −η ≤ σ ≤ 1 + η, where 0 < η ≤ 1
2 , to show that

J2 ≤ πN log ζ(1 + η) +N
r(12 + η)

2

∫ 3π/2

π/2

(− cosφ) log

{

kTw(T, φ, η, r)

2π

}

dφ,

(4.9)
where

w(T, φ, η, r)2 =

1 +
2r(12 + η) sin θ

T
+
r2(12 + η)2 + (2 + η)2 + 2r(12 + η)(2 + η) cos θ

T 2
.
(4.10)
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For φ ∈ [π/2, π], the function w(T, φ, η, r) is decreasing in T ; for φ ∈ [π, 3π/2]
it is bounded above by w∗(T, φ, η, r) where

w∗(T, φ, η, r)2 = 1 +
r2(12 + η)2 + (2 + η)2 + 2r(12 + η)(2 + η) cos θ

T 2
, (4.11)

which is decreasing in T .
To bound n using (4.5) it remains to bound − log |f(1+ η)|. This is done by

using (4.4) and (4.6) to show that

− log |f(1 + η)| → −N log |L(1 + η + iT )| ≤ −N log[ζ(2 + 2η)/ζ(1 + η)].

This, together with (2.8), (3.6), (4.5), (4.7), (4.9) and sending N → ∞, shows
that, when T ≥ T0

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤ r(12 + η)

2π log r
log kT + C2, (4.12)

where

C2 =
2

π

{

log ζ(12 +
√
2(12 + η)) + g(1, T ) +

E

2

}

+
3

2 log r
log ζ(1 + η)

− log ζ(2 + 2η)

log r
+

1

2π log r

∫ π/2

−π/2

log ζ(1 + η + r(12 + η) cosφ) dφ

+
r(12 + η)

4π log r

{

− 2 log 2π +

∫ π

π/2

(− cosφ) logw(T0, φ, η, r) dφ

+

∫ 3π/2

π

(− cosφ) logw∗(T0, φ, η, r) dφ

}

.

4.3 A small improvement

Consider that what is really sought is a number p satisfying −η ≤ p < 0 for
which one can bound L(p + it, χ), provided that 1 + η − r(12 + η) ≥ p. Indeed
the restriction that p ≥ −η can be relaxed by adapting the convexity bound,
but, as will be shown soon, this is unnecessary.

The convexity bound (4.8) becomes the rather ungainly

|L(s, χ)| ≤
{

(

k|1 + s|
2π

)(1/2−p)(1+η−σ)

ζ(1 − p)1+η−σζ(1 + η)σ−p

}1/(1+η−p)

,

valid for −η ≤ p ≤ σ ≤ 1 + η. Such an alternation only changes J2, whence the
coefficient of log kT in (4.12) becomes

r(12 + η)(12 − p)

π(1 + η − p) log r
.
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This is minimised when r = (1 + η − p)/(1/2 + η), whence (4.12) becomes

∣

∣

∣

∣

N(T, χ)− T

π
log

kT

2πe

∣

∣

∣

∣

≤
1
2 − p

π log
(

1+η−p
1/2+p

) log kT + C2, (4.13)

where

C2 =
2

π

{

log ζ(12 +
√
2(12 + η)) + g(1, T ) +

G(0,
√
2(12 + η), T0)

2

}

+
1

log
(

1+η−p
1/2+η

)

{

3

2
log ζ(1 + η)− log ζ(2 + 2η) +

1

π
log

ζ(1− p)

ζ(1 + η)

+
1

2π

∫ π/2

−π/2

log ζ(1 + η + (1 + η − p) cosφ) dφ +
1
2 − p

2π

(

− 2 log 2π

+

∫ π

π/2

(− cosφ) logw(T0, φ, η, r) dφ +

∫ 3π/2

π

(− cosφ) logw∗(T0, φ, η, r) dφ

)}

,

(4.14)

in which g(1, T ), G(a, δ, T0), w and w∗ are defined in (2.5), (3.10), (4.10) and
(4.11).

The coefficient of log kT in (4.13) is minimal when p = 0 and r = 1+η
1/2+η . One

cannot choose p = 0 nor should one choose p to be too small a negative number
lest the term log ζ(1−p)/ζ(1+η) become too large. Choosing p = −η/7 ensures
that C2 in (4.13) is always smaller than the corresponding term in McCurley’s
proof. Theorem 1 follows upon taking T0 = 1 and T0 = 10. One could prove
different bounds were one interested in ‘large’ values of kT . In this instance the
term C2 is not so important, whence one could choose a smaller value of p.

5 The Dedekind zeta-function

This section employs the notation of §§2-3. Consider a number field K with
degree nK = [K : Q] and absolute discriminant dK . In addition let r1 and r2
be the number of real and complex embeddings in K, whence nK = r1 + 2r2.
Define the Dedekind zeta-function to be

ζK(s) =
∑

a⊂OK

1

(Na)s
,

where a runs over the non-zero ideals. The completed zeta-function

ξK(s) = s(s− 1)

(

dK
πnK22r2

)s/2

Γ(s/2)r1Γ(s)r2ζK(s) (5.1)

satisfies the functional equation

ξK(s) = ξK(1− s). (5.2)
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Let a(s) = (s− 1)ζK(s) and let

f(σ) =
1

2

{

a(s+ iT )N + a(s− iT )N
}

. (5.3)

It follows from (5.1) and (5.2) that

∣

∣

∣

∣

∆+ arg a(s) + ∆− arg a(s)

∣

∣

∣

∣

≤ F (δ, t) + nKG(0, δ, t), (5.4)

where F (δ, t) = 2 tan−1 1
2t − tan−1 1/2+δ

t − tan−1 1/2−δ
t , and G(0, δ, t) is defined

in (3.10).
Thus, following the arguments in §§2-4.2, one arrives at

∣

∣

∣

∣

NK(T )− T

π
log

{

dK

(

T

2πe

)nK
} ∣

∣

∣

∣

≤ 2(n+ 1)

N
+
2nK
π

{|g(0, T )|+ log ζ(σ1)}+2,

(5.5)
where n is bounded above by (4.5), in which f(s) is defined in (5.3). Using the
right inequality in

ζK(2σ)

ζK(σ)
≤ |ζK(s)| ≤ {ζ(σ)}nK , (5.6)

one can show that the corresponding estimate for J1 is

J1/N ≤ π logT +

∫ π/2

−π/2

{

log w̃(T, φ, η, r) + nK log ζ(1 + η + r(12 + η) cosφ)
}

dφ

(5.7)
where

w̃(T, φ, η, r)2 = 1+
2r(12 + η) sin θ

T
+
r2(12 + η)2 + η2 + 2rη(12 + η) cos θ

T 2
. (5.8)

For φ ∈ [0, π/2], the function w̃(T, φ, η, r) is decreasing in T ; for φ ∈ [−π/2, 0]
it is bounded above by w̃∗(T, φ, η, r) where

w̃∗(T, φ, η, r)2 = 1 +
r2(12 + η)2 + η2 + 2rη(12 + η) cos θ

T 2
. (5.9)

which is decreasing in T .
The integral J2 is estimated using the following convexity result.

Lemma 3. Let −η ≤ p < 0. For p ≤ 1+ η− r(12 + η) the following bound holds

|a(s)|1+η−p ≤
(

1 + η

1− η

)1+η−σ

ζK(1 + η)σ−pζK(1− p)1+η−σ|1 + s|1+η−p

×
{

d

( |1 + s|
2π

)n}(1+η−σ)(1/2−p)

.

Proof. See [5, §7]. When p = −η the bound reduces to that in [5, Thm 4].
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Using this it is straightforward to show that

J2/N ≤ 2r(12 + η)

1 + η − p

{

log
ζK(1− p)

ζk(1 + η)
+ log

1 + η

1− η
+ (1/2− p) log

d

(2π)n

}

+ πζK(1 + η) + logT

(

π +
2rnK(12 + η)(12 − p)

1 + η − p

)

+

∫ 3π/2

π/2

logw(T0, r, η, φ) dφ

(

1 +
nKr(

1
2 + η)(12 − p)(− cosφ)

1 + η − p

)

dφ

(5.10)

The quotient of Dedekind zeta-functions can be dispatched easily enough using

−ζ
′
K

ζK
(σ) ≤ nK

{

−ζ
′

ζ
(σ)

}

to show that

log
ζK(1− p)

ζK(1 + η)
=

∫ 1+η

1−p

−ζ
′
K

ζK
(σ) dσ ≤ nK

∫ 1+η

1−p

−ζ
′

ζ
(σ) dσ ≤ nK log

ζ(1− p)

ζ(1 + η)
.

Finally the term − log |f(1+ η)| is estimated as in the Dirichlet L-function case
— cf. (4.4). This shows that

log |f(1 + η)| ≥ N log
ζK(2 + 2η)

ζK(1 + η)
+
N

2
log(η2 + T 2) + o(1).

This, together with (5.5), (5.7), (5.8), (5.9) and (5.10) and sending N → ∞,
shows that, when T ≥ T0,
∣

∣

∣

∣

NK(T )− T

π
log

{

dK

(

T

2πe

)nK
} ∣

∣

∣

∣

≤ r(12 + η)(12 − p)

π log r(1 + η − p)
{log dK + nK logT }

+

(

C2 −
2

π
[g(1, T )− |g(0, T )|]

)

nK +D3,

(5.11)

where C2 is given in (4.14) and

D3 = 2 +
r(12 + η)

π log r(1 + η − p)
log

(

1 + η

1− η

)

+
1

π
F (0,

√
2(
1

2
+ η), T0)

+
1

2π log r

(
∫ 0

−π/2

log w̃∗(T0, r, η, φ) dφ +

∫ π/2

0

log w̃(T0, r, η, φ) dφ

+

∫ π

π/2

logw(T0, r, η, φ) dφ +

∫ 3π/2

π

logw∗(T0, r, η, φ) dφ

)

(5.12)

Should one choose p = −η/5, to ensure that the lower order terms in (5.11) are
smaller than those in [2], one arrives at Theorem 2. One may choose a smaller
value of p if one is less concerned about the term D2.
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