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On higher congruences between cusp forms and
Eisenstein series

Bartosz Naskrecki

Abstract In this paper we present several finite families of congrasraetween
cusp forms and Eisenstein series of higher weights at posfggeme ideals. We
formulate a conjecture which describes properties of timgideals and their rela-
tion to the weights and we check its validity on several nucaéexamples.

1 Introduction

In this paper we present new numerical data concerning cenges between cusp
forms and Eisenstein series.

Let p be a rational prime. For a Hecke eigenfofre .#(lo(p)), letK = K¢ =
Q{an(f)}n>0) be the field generated by the Fourier coefficients of the féramd
let © = O be its ring of integers. From the theorem of Mazur [9] we knbwatt
for k=2 and for any fixed primg > 11 if we choose any primé+ 2,3 dividing

the numerator of the zeroth coefficient of the Eisensteilesep — pEép> of weight
2, then there exists a Hecke eigenfofrin . (lp(p)) and a maximal ideal € &
abovel such that

a (f) = ar (E2— pEs”) modA (1)

for almost all primes.
In this paper we present the algorithm which supports tHev@hg conjecture
related to the Mazur's theorem.

Conjecture 1Letk > 2 andp > 3 be a prime number. Chooke= Ey — pk*1E§p>,

WhereE&p)(r) = Ex(p1). Assume there exists a newforive .%(Io(p)), a natural

numbenr > 1 and a maximal ideal € 7, such that
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an(E) = an(f) mod A’ 2)

for all n > 0. Let/ be the rational prime below. Then/ divides the numerator of
a(E). If £> 2, then

ordy(¢/)=1 or r<ordy({).

Moreover, the newfornii satisfying the congruendgl(2) is uniquely determined. The
symbol org denotes tha -valuation. The valuation is normalized, i.e. p(d ) = 1.

Congruences between modular forms modulo prime powers stedéd in papers
[3], [41, [I], [B]. In [B] the authors ask a question about thehaviour of the congru-
ences between cusp forms and Eisenstein series which isddtathe conjecture
formulated above.

In Sectior 2 we introduce basic notation and describe Helebeas and Hecke
eigenforms. Next, in Sectidd 3 we describe the algorithncivitiomputes congru-
ences between cuspidal eigenforms and Eisenstein serestaté all necessary
ingredients from algebraic number theory and theory of nerdiorms. All algo-
rithms were implemented in MAGMA[2] and the source code iailable on the
request.

In Sectiorl% for the convenience of the reader we collectsitifacts of the theory
of p-maximal orders which is an important ingredient of our aligpm. These facts
are crucial are for several improvements in the algoritheesp

Sectior{’b is devoted to presentation of the numerical datahndupports the con-
jecture. We discuss several explicit examples and the rigatetata collected in
tables.

2 Notation and definitions

Let p be an odd prime number akd positive even integer. The spaeé(lo(p))
of holomorphic modular forms of weiglktsplits overC into a direct sum

A(To(p)) = &k(lo(p)) © “(To(p))
of Eisenstein part and the space of cuspidal modular forfi{Bf)c
From dimension formulas for modular forms we have
. 1, k=2
dme(6ro(P) = { 5 (= 2

Letor(n) = Y gnd" andg = &7, wheret € 7. Explicitly, for &(Io(p)) we have
the generator
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E2(1) - PE(pT) = 214 S aumq - p Y ou(n)g™
24 n=1 n=1
Whenk > 4 we define
(1) = By i O-1(n)q".
2k &

The spacei(lo(p)) is generated b (1) andEx(pt). The sequence of Bernoulli
numbers{Bm} men is defined as usual by the serigg_oBmt™ = atjl

The space of modular formg#(o(p)) carries a natural action of a commutative
C-algebraT generated by the Hecke operators,¢f.[6]. The algebra isrgésd by
two types of operators. The first type is defined for the primgs by the formula

mn—i%mwwW1i%mw,

wheref € Mi(lo(p)) andan(f) denotes the-th Fourier coefficient of the fornfi at
infinity. For| = p there is a single operator

We define the algebr& to be equal to
T = C[{Ta}tqe Primes:

The action of Hecke algebfB on the space#k(lo(p)) = &k(lo(p)) ® “(Mo(p))
preserves the direct sum splitting into Eisenstein andidaspart. Fork = 2 since

diméy(lo(p)) = 1, the serie&; is the Hecke eigenform.

Fork > 4 the dimension of the spaege= &>(Io(p)) is equal to two. LeB; (1) =

Ex(1) andBy(1) = E&p)(r) = Ex(p1). We have a basis of consisting of Hecke
eigenforms
FL=B;— p* !By,

F> =B - By

3 Description of the algorithm

Let k be an even positive integer. We want to find congruences leetEesenstein
eigenforms and cuspidal newforms in the space of modulanso#(o(p)). For
k = 2 we have one Eisenstein eigenform
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_ 1 [ee] [ee]
E2-pE” =24 3 i p Y ouma™
n=1 n=1
Let f be a newformin,(lo(p)) (cf. [6]) and letK; denote the number field gener-
ated by its Fourier coefficients. We denotedy the ring of integers of the number
field K¢. Assume there exists a prime id@ain &5 and a natural numbersuch that

an(E2 — PEY”) = an(f) modA ",

for all n > 0. The congruences of this type will be of interest to us wken2. If
k > 4 there could be a congruence

an(Ex— P 1E”) = an(f) modA’ (3)
or
an(Ex — E\”)) = a,(f) modA". (4)

The modular curve{p(p) has two cusps, 0 and, for a prime p. Hence for
any modular formf € My(l'o(p)) we haveg-expansions a¢ and 0. We compute
0-1
10
at 0 is denoted byl and is then-th coefficient of theg-expansion at of the form

flk <0 _1>. We denote by(f) the coefficieng(f).

Fourier expansions fofr and f |k < ) Then-th coefficient of theg-expansion

10

Lemma 1. Let p be a prime number andk2. Let f yknew(l'o(p)) be a newform.
Let K=Ks be the field of coefficients of the newform f. Let Ok be a prime ideal
such that p# A and r> 1a natural number. Choose E &i(Io(p)) with K -rational
g-expansion coefficients. We assume thaj (gl E)) > 0for all n > 0. Suppose we
have a congruence

an(f) = an(E) modA’ (5)
for all n > 0. Thenu(E) = 0modA'. Hence the form E is cuspidal moduld.

Explicitely, u(aEx + BE&D)) = (a+ gk)_

Proof. Letk = 2. ThenkE = a(Ex — pEép)) for somea € K¢ with ord) (a) > 0.
From the assumptions we have=la; (f) = a modA'. We have

(D) 0-1\ ~ 1 _(yp
(Ez DE2)|2(10)—E2 pEz :

Henceu(E) = a(’TBZ)(l— ). The assumptiop ¢ A andag(E) = 0 modA" im-

plies thatu(E) =0 modA'.

1
p

Letk> 2 andeven. Thek = aEH—BE&p) for a, 8 € K such thabrd, (a) > 0 and
ord, () > 0. We haven = a1(E) =1 modA" from the assumptions of the lemma.
By [d, Thm.3] we have that
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ap(f) = —gpp¥2t

for somee, € {—1,1}. On the other sideap(E) = (1+ p*1)a + B. Combining the
facts above
a+pB=—gp/> - pImodA’

becauser = 1 modA'. By (B) forn= 0 we have

—Bx

r
Sk (a+B)=0modA".

Then B

Kp¥/2L(—gp— pY2) =0 moda”.
2k
We multiply both sides by—ep + p*/?) to get

—By ;
ok (1—p*) =0modA".
We divide byp* and multiply by to get
Bk, 1 _ ;
K B(pk 1)=0modA".

The coefficienfu(E) = ’Z—Bkk(a + fg) satisfies the congruence

—Bx B
R

Corollary 1. Let f be a newform im?ﬁknew(l'o(p)) and let K= Ky be the field of
coefficients of f. Suppose that for a naturat 11 we have a congruence

Bk

B B 1
=

)= Zi( a+p)+— (- B+ )= +_2—kB(p —1)=0modA".

an(f) = an(aEk+BEi£p)) modA’

foralln>0.1f p¢ A, then
By —Bx B
r < min{ord, ( K (a+B)) ,ord, (W(OHLE))}'

In particular, if
an(f) = an(Ex — p EP) modA’

foralln > 0and p¢ A, then

r < orthy (51 )

Similarly, if
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an(f) = an(Ex — E”) modA’
foralln>0and p¢ A, then

B
r < ordy (o (1= PY)).

Proof. We observe that the upper bound fois given by the conditiongg(E) =

0 modA" and u(E) = 0 modA'. The statement holds by Lemria 1 and explicit
formulas forag(E) andu(E). In the first special case we pat=1, 8 = —p¥~ 1. In
the second we put = 1 andf3 = —1.

Remark 1/f p € A then we can check that fér> 2 andf = —p“ ! anda =1
we geta = 0 modA which is a contradiction. In the cage= 2, we observe that
’TBZ = 0modA andep = —1 modA. However, in our computations we have not

found any congruence satisfying this condition.

The casgB = —1 anda = 1 for k = 2 implies 0= €, modA which is impossible.
Fork > 2 we don't get any nontrivial condition moduka

LetK = Q(6) be a number field with a primitive elemefitLet &k be its ring of
integers and’ be an-maximal order oveZ.[6] for a fixed prime/. Choosel C Ok
to be a non-zero prime ideal abo&and putA = A N &. By the results of Sectidd 4
below we have that fox € &

X=UqTT

for a uniformizerrin &5 and a unitu;. In the end of Sectiofl4 we definela
valuation
ord; (x) =r.

This extends to the field of fractiohé= Frac(¢’) by the formula

ord; <§) = ord; (x) —ordj (y).
In Sectior 4 we prove that

ord; (x) >r < x=0modA".

In the algorithm presented below we use the last equivalehaslers. It is also cru-
cial for our algorithm that the computation &maximal order is more efficient than
computation of the whole ring of algebraic integers whicloiues factorization of
discriminants.

3.1 Sketch of the algorithm

Input: (p,k) € Z?, wherep is a prime number ankl> 2 is an even integer.
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1. Compute Galois conjugacy classes of newformgiilo(p)). Call the seNew
2. Compute Sturm bourBl= £ [SLx(Z) : [o(p)).

3. LetE be the Eisenstein series of weidh&nd levelp. Compute the coefficients
an(E) = an(Ex — p*2E\)) for n < B, whereEP (1) = Ex(pr).

4. Compute the set of primés= {¢ prime :¢ | Numeratofag(E))}.

5. For each paif?, f) € L x New computeKy, i.e., the coefficient field of. By f we
mean here a choice of a representative in Galois conjugasyg.dFind the primitive
elementd such thaK; = Q(0). Let & be the/-maximal order abovE[6]. Find the
set.” ={A € Specd :ANZ=1I(Z}.

For eachh € . compute

m) = min(ord, (an(f) - an(E))).

If my > 0 then we have a congruence
an(f) =an(E) mod(A 0 )™

foralln>0.

In the computations above we use a straightforward gemataln of the well-
known theorem of Sturni [11].

Theorem 1 ([3],Prop. 1).Let N and n be two positive integers and>k2. Let
f1, f2 € Mk(M(N)) be two modular forms which have coefficientir, the max-
imal order of number field K. Let m [SLy(Z) : I1(N)] andp - a prime ideal in
Ok .

If an(f1) = an(f2) modp" for all 0 < n < X2 then

fi = f, modp".

Proof. The theorem is proved by induction on Instead of working withok we
switch to work with the localizatioridk ),. It is essential to use the property of
'bounded denominators’ for modular forms with respect tmagruence subgroup.

In fact, we can replace the subgrofgN) with any congruence subgrouipwhich
contains containing (N) for someN. The proof goes through in the same way. We
use the casé = pH(N).

4 Orders in number fields

In this section we introduce the concept opamaximal order. The content of this
section is well-known, however we present the main theoifemthe convenience
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of the reader. We follow the exposition of the subject présgim [5], [10]. In this
section letk = Q(8) denotes a fixed number field with a primitive elemént

Definition 1. An order in a number field is a subringR C K which is a finitely
generated&-module of rank de@).

By 0k we will denote the ring of algebraic integerddror equivalently the maximal
order inK.

Definition 2. Let p be a prime number aridl be a number field. An orde? in K is
p-maximal if
pt [0k : O).

Definition 3. Let & be an order in a number field and letp be a prime number.
The p-radical of ¢ is the set

Ip(0)={x€ O:3m>1 X" €p0r}.
Lemma 2 ([5],Prop.6.1.2) The p-radical is an ideal ii0'. Moreover there is a de-

composition
Ip(@) =[] wi
I

where the product runs over prime idealsn ¢ lying over p. Moreover there exists
a positive integer m such thai(l')™ C po.
Lemma 3 ([5],Thm.6.1.3).Let & be an order in K and fix a prime p. The set
O'=1p(0) :15(0)] ={xe K :Xlp(O) C1p(0)}.

The set/” is an order in K and either

0=10
in which case/ is p-maximal, equivalently P[0k : 0] or

ocCo
and[¢0’ : 0] = p" for some positive integer n.
Moreover, if0 = 0", then

0={xec0k|3j>1 p'xedo}.

Corollary 2. Let K= Q(8) be a number field. Letg== Z[6] and define the chain
of rings
R CR1

by the condition R 1 = R{. There exists an m such that the chain stabilizes

Rm=Rm1
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and then _
Rn={xedk|3j>1 p'xeZb]}.

Proof. By Lemmd3 it follows that fom such thaRy = Ry.1 we have

Rn={x€ 0k |3j>1 p'xeRn}.

LetL={xe€ 0k |3j>1 pxeZ[O]} andx € L. Thenpx € Z[6] for some
positive j. But Z[6] = Ry C Ry C ... C Ry. Thereforep!x € Ry, hencex € Ry,
provingL C Ry.

Let x € Rn. Thenx € Ok. By definition Ry = R, ; = {x € K | XIp(Rn-1) C
Ip(Rm-1)}. By Lemmal2 we have thdp(Rm-1) = [T; pi, primesp; in Ry_1 con-
taining p. So there existk > 1 such thap* € Ip(Ry_1). Sop*x € I5(Rm_1), hence
px € Ry_1. By induction we can show that there is a postigich thaip®x € Z[6),
sinceRy = Z[6)]. It implies that

R, C L.

This corollary shows that for each choice of the primitiversénté we can
construct go-maximal order containing|[8].

Theorem 2.Let p be a prime number, K a number field afid the maximal order
in K and & a p-maximal order. We have a factorization into powers ofnarideals

po = ﬂp?

pﬁK —il_ﬂlgzia

and

with Z,N 0 = p;.

Finally, we can define a valuation on elementgpeahaximal order with respect
to any prime ideal ovep.

Let K be a number field ang a prime number. Assume we haveganaximal
order? in Ok. For a nonzero prime ideale Specd we have a prime ideal? =
POk in Ok by theorem above. Any elemext ¢ is equal to

X=WTT = Uuxf1"

forup € 0,5, € (0k)7, and uniformizergtand /T in (), and(0k) » respec-
tively. This common exponent of uniformizers we denote by

ord,(x) =r.

The definition extends further € = Frac(&') by
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X
ord, (;) = ord, (x) — ord, (y).

The following equivalence holds for amyge & C Ok

ord,(x) >r < x=0modZ".

5 Numerical data

We present numerical data supporting the conjecture. We fawnd 740 differ-
ent congruences with varying exponent and level. The lemetsranges we have
examined are summarized in Table 1

Table 1 Range of computations

k 2 |4|6]|8]|10|12|14|{16|18(20[22
primeN <|1789397(229/193/109/113|97|71|67|67(59

In total, we found 740 congruences of the foirth (2) for the emngnd weights de-
scribed above.

There are 67 congruences such thatl. We found 106 congruences such thas
ramified, i.e.ord, (/) > 1. Only 6 among them have the property that 1.

In the conjecture we have excluded a pritne2 because we found two congruences
for the levelp = 257, weightk = 2 and primeZ = 2 which provide example where
the exponent of the congruence is greater thami, (¢). In Table[3 we present data
concerning congruences for whiolnd, (¢) = 1. In Tabl€4 we present cases where
r > 1 andord, (¢) > 1.

We are interested in a congruence of the type

an(E) = an(f) modA’

for all n > 0, between the Eisenstein series= &i(lo(p)) and the newformf e
(Mo(p)) for different weightsk and prime levelg. We denote by a degree of
the number fieldK; containing coefficients of the forrhandA is a prime ideal in
the ring of integers oKy, above the rational primec Z. The column labelled by
nmcontains the number of elements in the residue field assalcigith A. Number
e denotes the ramification of the ide&lat ¢ andm = ord, (u(E)). The column
labelled byi contains the number of the Galois orbit of representing newff
(with respect to the internal Magma numbering).

Let k =2 andp = 1201. We find a newfornf € .#,(I5(1201)) such thatk; =
Q(v2) and
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f=q—?—q*+2v29" +3q® - 30° + (2+v2)q'* + ...

We have the Eisenstein series

E2— 120EE)*"Y =50+ ¥ a1(n)q"— 1201y 03(n)q">™".
n=1 n=1

We check, by the algorithm, that for the prime idaak (1/2)
an(f) = an(E2 — 1201E5*°Y) mod A

for all naturaln > 0. We observe that the ide@®) € 0r = Z[\/2] is totally ramified

with (2) = A2. Moreovera1(E, — 1201E§1201)) =12 anday(f) = 24 /2, hence

the maximal exponemtof the congruence is equal to 1. The upper bound proposed
in the conjecture is equal to 2, so it is not always the cagdlieanaximal exponent

r is equal to that bound.

Letk = 2 andN = 109. In this example we choose any root Q of the equation
a*+a®—5a°—4a+3=0

and formK = Q(a). We have the Galois conjugacy class of newforms with the
g-expansion

f=q+aq®+(1+4a—- o3P+ (a?-2)q*—ag®+....
The ring of integerg’; of K¢ = K is equal toZ[a] and
(3)=(3,0)(3,2+a+a’+ad

is the factorization into prime ideals ifi;. We find, by the algorithm, that fox =
(3,a)

an(f) = an(E2 — 109%51°%) mod A2

for all naturaln > 0. In fact, this is the maximal possible exponent, sip¢g, —

1095&109)) = % and org (9) = 2. In the unramified case, the conjecture only predicts
that the upper bound for the maximal exponerns smaller or equal to the one
described in Corollariyl1. This example shows that we canae¢ fa smaller bound

in general.

Letk = 8 andN = 43. We choose any roat € Q of the equation
—281015823360- 26122731136 + 258404298242 — 34580064>

—584457696* — 13609592r° + 506121&1°+ 1697261’
—1849&% — 7170° + 240+ at =0
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and formK = Q(a). The ring of integers has the discriminant divisible exabt}
7. We have the Galois conjugacy class of newforms withgtegpansion

f=q+ag®+aq®+ (a®—128q" +....

Itis congruent to a suitable Eisenstein series modulo agidi@al above 7 which is
ramified of exponent 2 and has a presentation

_ B
A= <7’ 3456
where
B = 8448+ 4384 + 38112 + 62483 + 77520* + 591&°
+2106a°+ 2030 " + 6008 + a®.

We get the congruence
an(f) = an(Es — 437E{"¥) mod A2
for all n> 0 and the exponent is maximal, what confirms the conjecture.

Itis interesting to observe that some levels are better ¢tiaers, because they pro-
vide much more congruences. For examplep 163 we obtain four different
congruences for weights= 2,4,6 and 8 with ideals above 3 raised to the powers
3,3,2 and 3 respectively. For weight= 2 or k = 8 the exponent of the ideal is
maximal possible (cf13). Fdc= 2 we find a number field of degree 7 ov@with

a primitive elementr with a minimal polynomial

6+4a —23a%+19%*-50°-3a®+a’ =0.
The ring of integers is equal #[a]. Its discriminant is equal to 82536739 and
3Z[a] = (3,a)(3,1+a+a*+a*+a®).
We find a newform of level 163 and weight 2 wiexpansion

f =q+ag?+ (—2+5a+5a2—-6a°—a*+a®)q®
+(—2+a)q*+ (6+6a —11a?—6a>+7a*+a°—a®)q® + ...
Itis congruentto Eisenstein serigs— 163!55163> =24y 101(N)g"— 163y 01(n)gted
modulo(3,a)3.

Remark 21t is not always true that if we have a congruence modulo a pofva
prime ideal abové andK; = Q(8), then/-maximal order abov&[6] that we get
from the algorithm is equal to the ring[8]. We summarize several examples in
Table[2. The primé is unramified inK;. By i we denote the number of the Galois
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orbit of the newform and bind the index[& : Z[6]] for the /-maximal order above
Z10].

Table 2 Index of the order

p |k|¢]i]ind
101(6|5(2|625]
751(2|5|2(625|
162112|3|3| 3
1667)2|7|2|343]

Table 3 Congruences with exponent greater than one and withouficarinon

p [k |Z[rim|i[d|nm p_tkj € rimji]djnm

163(6| 3 (2[2(2(35| 3
769| 2 |2|5/5(2(36| 2

19314 2 2[2(1|23| 2
1459 2 |3|5/5(3[71| 3

19712| 7 |2 23|10| 7
2574 |2|4|4|1)|28| 2

19714| 7 |2(2|1|22| 7
641|2(2|4{4]2(33| 2

25114| 5(2|2{1[24] 5
1409 2 |2|4| 4|3|65| 2

379(2| 3(2|2|2[18| 3
163|2(3[3[3|3|7]| 3

37914 3(2|2|1[44| 3
163| 4 (3]3|3|1[19| 3

433|2| 3|2|2|4|16| 3
163| 8 (3]3|3|1|46| 3

491 2| 7|2|2]|3|29| 7
193] 2(2/3]3(3|8]| 2

601(2| 5(2|2{2[29( 5
193] 6 (2]3]3(2|41]| 2

673(2| 2 (2| 23|24 2
2512 |5|3|3|2|17| 5

677|2|13|2| 2{4[35[ 13
4492 2|3|3(2|23| 2

727|2|11|2| 2{2[36[ 11
4872 |3|3|4|4|16| 3

751(2| 5(2|3(2[38[ 5
577|2(2|3|3|4[18| 2

75712| 3(2|2{2[33[ 3
811|23|3|3|3[40[ 3

883(2| 7(2|2(2[39( 7
1373 2|7|3|3|3[60| 7

929(2| 2 (2| 2(3[47[ 2
1601 2 |2|3[3|2[80| 2

1051|2| 52| 2(3|48[ 5
1783 2(3|3[3(2(82| 3

1151|2| 52| 2|3{68[ 5
97 |2 2|2|2]2| 4] 2

115312| 2 |2|4|3[50[ 2
97 | 6 (2|2|2]2|21] 2

1201|2| 52| 2|3|51| 5
97 [10(2|2|2|2|37| 2

1217)2| 2 |2| 3|2[58| 2
101|2(5/2(2|2|7| 5

1301|2| 52| 2|3|66[ 5
101 6 [5]2|2(2|24| 5

145112| 52| 2|2|73[ 5
101|10(5|2|2|2|41| 5

14532(11|2|2]2|63| 11
109| 2 (3]2(2(3|4]| 3

147102( 7 (2|1 2|2(72 7
109 4 [3]2|2|1|12| 3

1567|2| 3|2|2|4{69( 3
109 8 {3]2(2(1(30| 3

1601|2| 52| 2{2|80[ 5
109|10{3]2|2(2|42| 3

1621|2| 3|2|3|3{70[ 3
151|2(5/2/2|3|6| 5
15116 51221238 5 1667|2| 72| 2|2[82[ 7

1697|12| 2 |2|2|2[77| 2

From Table B we can read off many properties of the congrieratsfying
ordy (¢) = 1. For 1< r < ord, (u(E)) we found only 5 congruences that do not
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satisfyr = ord, (1 (E)) and 56 that satisfy this condition. Observe that the expbnen
was not maximal only fok = 2. In fact, for weightk > 2 we found congruences
with nonmaximal exponent only for primes above 2. In all safgeind, the residue
degree was always equal to 1. Conjecfdre 1 is confirmed ima#icwe found.

Moreover, if we fixr > 2 and look for a newform satisfying the congruerice (2)
for r = ord, (u(E)) and for a fixed Eisenstein series of leyelve can find several
examples for varyingf,e.g. forp = 163 or for 197.

Some obvious necessary condition is thgtf) = aq(E) = ¢<* +1 modA" for
primeq ¢ pA. In fact, when we look for a rational newform of weigkt= 2, by
Modularity theorem this implies that we look for an elliptiarve F without com-
plex multiplication, defined ove® such that

|F(Fq)| =0 mod/".

We have found only such examples fo 1.

In Table[4 we collect data about all congruences for whbith (1) > 1 andr > 1. For
primesp > 3 we found only three such cases and they agree with the ¢arge€or
r less than 2 we found in total 100 congruences and they agtbeive conjecture.
They are presented in Talglk 5.

Table 4 Congruences with exponent greater than one and with raniifica

p | k[Z|r[m]e[i]d[nm
43|(8|7|2| 2 |2|1|11] 7
4320|7]2| 2 |2|1]|32| 7
353[ 4 [2[2| 2 |2|1|40| 2
919 2 (3|2 4 |2|3]|47| 3
257[ 2 |2(5[10|2(2|14] 2
257 4 |2(5| 8 |2|1|28] 2
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Table 5 Congruences with exponent equal to one and with ramification

p|k|Z|rimleli|[d[nm p |k| £ |rfm]|efi|d|[nm
31(2|5](1|2(2|1] 2| 5 761|2]19(1|2|2(3]41| 19
31|6|5(1/2(2[2|8| 5 881| 2| 2 (1| 2| 2(2]46] 2
31]10| 51| 2|2(2(13| 5 911|2| 7 (1| 2|2 (3|53| 7
31(14(5|1|2|2|2|18| 5 941(2| 51|12 |2]|2|50] 5
3118/ 5(1|2|2[2|23| 5 971| 2| 5 |1| 2|2 (2|55 5
31(22|5(1|2|2|2|28] 5| (1021 2|17|1|2|2|2]|47|17
47(10(23|1| 2|2|2|20{ 23| (1091 2| 5 |1{2|2(3|62 5
47(12|23|1| 2|2|1]|18| 23| (1201 2| 2 [1{2|2(1]2] 2
47(16(23|1|2|2|1]|26| 23| (1279 2| 3 |1|2|2(2|64] 3
47(20(23|1|2|2|1|34| 23| (1289 2| 7 (1| 2|2 |4|61| 7
53| 6|13|1|2|2[2[{12[ 13| |1291] 2| 5 [1]2|2(2|62] 5
53118|13|1|2|2[2(38[ 13| |1381 2| 5 [1|2|2(2|63] 5
674|111 2|2|1| 7 (11| (1447 2|241)1| 2| 2(2|71|241
6714|111 2|2|2[37|11| |1474 2| 5 |1]2|2(2|72| 5
103 2 |17|1|2|2|2| 6 [17| (1483 2| 13|1|2|2(4]67|13
113/ 2| 2|1/ 2]2|2[ 2| 2 15111 2| 5 |1| 2| 22|87 5
11316 | 2 |1|2|2|1[21f 2 15311 2| 3 |1| 2|2 (4|73 3
113( 6|2 (1| 2|2(1]|21]| 4 1531 2| 5 |112|2(4(73] 5
1136 | 2 |1| 2|2|2[25( 2 1553 2| 2 |1| 2| 2]2|74] 2
113/ 6 | 2 |1| 2|2|2[25( 2 1693 2| 3 |1| 2| 23|72 3
12712 7(1|2(2|2[7( 7 1697/ 2|53 (1| 2| 2|2|77| 53
127/ 8| 71| 2]2|1[34| 7 177712 2 |1| 2| 22|79 2
131/ 2| 5|1/ 2|2|2{10[ 5| (1789 2|149|1| 2 | 2 [2]80[149
1311 6| 5(1|2{2|2[32 5 101{4| 5 (1]3|3(1|9] 5
1911 6| 5|1|2|2|2|46[ 5 101|8| 5 1] 3|3(1[26] 5
199 2| 3|1/ 2|2|3[10[ 3 101(12| 5 [1]3|3(1|42| 5
199/ 4| 3|1|2|2|1{20[ 3 181(2| 5 (1/3|3(2[9] 5
211 21511({2|2|1|2| 5 181|6| 5 (1| 3| 3]2|40[ 5
211{ 6 [ 5|1| 2|2]|2|47| 5 353| 4] 2 1] 3|3(1]40[ 2
2231 4137|1|2|2|1|24| 37| |1321f 2| 11|1| 3 |3|4|56| 11
281( 2 [5(1|2|2|2|16]| 5| (1381 2|23|1|3|3|2|63|23
3074 (3(1/2|2|1|35 3| (1571 2| 5 |1]/3|3(2|82[ 5
337221 2]|2|2|15] 2 174712 3 |1| 3|3 (3|77 3
3374 (7|1 2|2|1|40] 7 353|4] 2 |1|5|5(1]40[ 2
353[4(2(1]2]|2|2|48| 2 353|4] 2 |1|5|5(2]48] 2
353[ 4 [11{1|2|2|1|40|11| [353|4| 2 |1|5]|5]2|48| 2
367/ 4161|1|2|2|1|41|61| |1201 2| 2 |1|5|5]|3|51] 2
4011 4151 2|2|1|45| 5 577(2| 2 |1|6|2|4]|18]| 2
409 2 |17|1}2|2(2|20|17| [1601f 2| 2 |1/6|2]|2|80| 2
409 4 |17|1| 2|2|1|47| 17 2574 2 |1/ 8|2]1]|28]| 2
419 4(19(1|2|2(1|43|19| |[353(2| 2 |1|10|5 |4|14| 2
523[2[31|2]2]3]|26]| 3 257 4] 2 1|12 3[1]28] 2
541 2[5 (1| 2|2|2|24| 5 25714 2 |1]16| 4 [2]36[ 2
571{ 2| 5(1|2]|2|9|18| 5| (1153 2| 2 |1|16| 4 |3|50| 2
593[ 2 [ 21| 2]2|5|27| 2 257 4] 2 120 5[1]28] 2
661 2 [11{1|2]2|3|29|11| [257|4| 2 |1|20| 5 |2|36| 2
683[ 2 [11(1|2|2|3|31|11| [257|4| 2 |1|20]| 5|2|36| 2
691 2 (51| 2]2|2|33| 5 2571 2| 2 |1]|25|5(2[14] 2
733[ 2 [61(1|2]|2|4|32|61| (1249 2| 2 |1|26|13|3|59| 2
761 2| 5(1|2|2|3|41| 5| (1217 2| 2 |1|39|13|2|58| 2
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