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On higher congruences between cusp forms and
Eisenstein series

Bartosz Naskręcki

Abstract In this paper we present several finite families of congruences between
cusp forms and Eisenstein series of higher weights at powersof prime ideals. We
formulate a conjecture which describes properties of the prime ideals and their rela-
tion to the weights and we check its validity on several numerical examples.

1 Introduction

In this paper we present new numerical data concerning congruences between cusp
forms and Eisenstein series.

Let p be a rational prime. For a Hecke eigenformf ∈ Sk(Γ0(p)), let K = K f =
Q({an( f )}n≥0) be the field generated by the Fourier coefficients of the formf and
let O = O f be its ring of integers. From the theorem of Mazur [9] we know that
for k = 2 and for any fixed primep≥ 11 if we choose any primeℓ 6= 2,3 dividing

the numerator of the zeroth coefficient of the Eisenstein seriesE2− pE(p)
2 of weight

2, then there exists a Hecke eigenformf in S2(Γ0(p)) and a maximal idealλ ∈ O

abovel such that
ar( f ) ≡ ar(E2− pE(p)

2 ) modλ (1)

for almost all primesr.
In this paper we present the algorithm which supports the following conjecture

related to the Mazur’s theorem.

Conjecture 1.Let k≥ 2 andp≥ 3 be a prime number. ChooseE = Ek− pk−1E(p)
k ,

whereE(p)
k (τ) = Ek(pτ). Assume there exists a newformf ∈ Sk(Γ0(p)), a natural

numberr ≥ 1 and a maximal idealλ ∈ O f , such that
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an(E)≡ an( f ) modλ r (2)

for all n≥ 0. Let ℓ be the rational prime belowλ . Thenℓ divides the numerator of
a0(E). If ℓ > 2, then

ordλ (ℓ) = 1 or r ≤ ordλ (ℓ).

Moreover, the newformf satisfying the congruence (2) is uniquely determined. The
symbol ordλ denotes theλ -valuation. The valuation is normalized, i.e. ordλ (λ ) = 1.

Congruences between modular forms modulo prime powers werestudied in papers
[3], [4], [7], [8]. In [8] the authors ask a question about thebehaviour of the congru-
ences between cusp forms and Eisenstein series which is related to the conjecture
formulated above.

In Section 2 we introduce basic notation and describe Hecke algebras and Hecke
eigenforms. Next, in Section 3 we describe the algorithm which computes congru-
ences between cuspidal eigenforms and Eisenstein series. We state all necessary
ingredients from algebraic number theory and theory of modular forms. All algo-
rithms were implemented in MAGMA [2] and the source code is available on the
request.

In Section 4 for the convenience of the reader we collected basic facts of the theory
of p-maximal orders which is an important ingredient of our algorithm. These facts
are crucial are for several improvements in the algorithm speed.

Section 5 is devoted to presentation of the numerical data which supports the con-
jecture. We discuss several explicit examples and the numerical data collected in
tables.

2 Notation and definitions

Let p be an odd prime number andk a positive even integer. The spaceMk(Γ0(p))
of holomorphic modular forms of weightk splits overC into a direct sum

Mk(Γ0(p)) = Ek(Γ0(p))⊕Sk(Γ0(p))

of Eisenstein part and the space of cuspidal modular forms (cf.[6]).

From dimension formulas for modular forms we have

dimC(Ek(Γ0(p)) =

{

1, k= 2
2, k≥ 4.

Let σr(n) = ∑d|ndr andq= e2π iτ , whereτ ∈ H . Explicitly, for E2(Γ0(p)) we have
the generator
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E2(τ)− pE2(pτ) =
p−1
24

+
∞

∑
n=1

σ1(n)q
n− p

∞

∑
n=1

σ1(n)q
pn.

Whenk≥ 4 we define

Ek(τ) =−Bk

2k
+

∞

∑
n=1

σk−1(n)q
n.

The spaceEk(Γ0(p)) is generated byEk(τ) andEk(pτ). The sequence of Bernoulli
numbers{Bm}m∈N is defined as usual by the series∑∞

m=0Bmtm = t
et−1.

The space of modular formsMk(Γ0(p)) carries a natural action of a commutative
C-algebraT generated by the Hecke operators,cf.[6]. The algebra is generated by
two types of operators. The first type is defined for the primesl 6= p by the formula

Tl ( f ) =
∞

∑
n=0

anl( f )qn+ lk−1
∞

∑
n=0

an( f )qnl ,

wheref ∈ Mk(Γ0(p)) andan( f ) denotes then-th Fourier coefficient of the formf at
infinity. For l = p there is a single operator

Tp( f ) =
∞

∑
n=0

anp( f )qn.

We define the algebraT to be equal to

T= C[{Tq}q∈ Primes].

The action of Hecke algebraT on the spaceMk(Γ0(p)) = Ek(Γ0(p))⊕Sk(Γ0(p))
preserves the direct sum splitting into Eisenstein and cuspidal part. Fork = 2 since

dimE2(Γ0(p)) = 1, the seriesE2 is the Hecke eigenform.

For k ≥ 4 the dimension of the spaceE = E2(Γ0(p)) is equal to two. LetB1(τ) =
Ek(τ) andB2(τ) = E(p)

k (τ) = Ek(pτ). We have a basis ofE consisting of Hecke
eigenforms

F1 = B1− pk−1B2,

F2 = B1−B2.

3 Description of the algorithm

Let k be an even positive integer. We want to find congruences between Eisenstein
eigenforms and cuspidal newforms in the space of modular formsMk(Γ0(p)). For
k= 2 we have one Eisenstein eigenform
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E2− pE(p)
2 =

p−1
24

+
∞

∑
n=1

σ1(n)q
n− p

∞

∑
n=1

σ1(n)q
pn.

Let f be a newform inS2(Γ0(p)) (cf. [6]) and letK f denote the number field gener-
ated by its Fourier coefficients. We denote byO f the ring of integers of the number
field K f . Assume there exists a prime idealλ in O f and a natural numberr such that

an(E2− pE(p)
2 )≡ an( f ) modλ r ,

for all n ≥ 0. The congruences of this type will be of interest to us whenk = 2. If
k≥ 4 there could be a congruence

an(Ek− pk−1E(p)
k )≡ an( f ) modλ r (3)

or
an(Ek−E(p)

k )≡ an( f ) modλ r . (4)

The modular curveX0(p) has two cusps, 0 and∞, for a prime p. Hence for
any modular formf ∈ Mk(Γ0(p)) we haveq-expansions at∞ and 0. We compute

Fourier expansions forf and f |k
(

0 −1
1 0

)

. Then-th coefficient of theq-expansion

at 0 is denoted bya0
n and is then-th coefficient of theq-expansion at∞ of the form

f |k
(

0 −1
1 0

)

. We denote byµ( f ) the coefficienta0
0( f ).

Lemma 1. Let p be a prime number and k≥ 2. Let f ∈S new
k (Γ0(p)) be a newform.

Let K=K f be the field of coefficients of the newform f . Letλ ∈OK be a prime ideal
such that p/∈ λ and r≥ 1 a natural number. Choose E∈ Ek(Γ0(p)) with Kf -rational
q-expansion coefficients. We assume that ordλ (an(E))≥ 0 for all n ≥ 0. Suppose we
have a congruence

an( f )≡ an(E) modλ r (5)

for all n ≥ 0. Thenµ(E) ≡ 0 modλ r . Hence the form E is cuspidal moduloλ r .

Explicitely,µ(αEk+βE(p)
k ) = −Bk

2k (α + β
pk ).

Proof. Let k = 2. ThenE = α(E2 − pE(p)
2 ) for someα ∈ K f with ordλ (α) ≥ 0.

From the assumptions we have 1≡ a1( f )≡ α modλ r . We have

(E2− pE(p)
2 ) |2

(

0 −1
1 0

)

= E2−
1
p

E(1/p)
2 .

Henceµ(E) = α(−B2
4 )(1− 1

p). The assumptionp /∈ λ anda0(E) ≡ 0 modλ r im-
plies thatµ(E)≡ 0 modλ r .

Let k> 2 and even. ThenE =αEk+βE(p)
k for α,β ∈K f such thatordλ (α)≥ 0 and

ordλ (β )≥ 0. We haveα ≡ a1(E)≡ 1 modλ r from the assumptions of the lemma.
By [1, Thm.3] we have that
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ap( f ) =−εppk/2−1

for someεp ∈ {−1,1}. On the other side,ap(E) = (1+ pk−1)α +β . Combining the
facts above

α +β ≡−εppk/2−1− pk−1 modλ r

becauseα ≡ 1 modλ r . By (5) for n= 0 we have

−Bk

2k
(α +β )≡ 0 modλ r .

Then
−Bk

2k
pk/2−1(−εp− pk/2)≡ 0 modλ r .

We multiply both sides by(−εp+ pk/2) to get

−Bk

2k
(1− pk)≡ 0 modλ r .

We divide bypk and multiply byβ to get

−Bk

2k
β (

1
pk

−1)≡ 0 modλ r .

The coefficientµ(E) = −Bk
2k (α + β

pk ) satisfies the congruence

−Bk

2k
(α+

β
pk )≡

−Bk

2k
(α +β )+

−Bk

2k
(−β +

β
pk )≡ 0+

−Bk

2k
β (

1
pk −1)≡ 0 modλ r .

Corollary 1. Let f be a newform inS new
k (Γ0(p)) and let K= K f be the field of

coefficients of f . Suppose that for a natural r≥ 1 we have a congruence

an( f ) ≡ an(αEk+βE(p)
k ) modλ r

for all n ≥ 0. If p /∈ λ , then

r ≤ min{ordλ

(−Bk

2k
(α +β )

)

,ordλ

(−Bk

2k
(α +

β
pk )

)

}.

In particular, if

an( f ) ≡ an(Ek− pk−1E(p)
k ) modλ r

for all n ≥ 0 and p/∈ λ , then

r ≤ ordλ (
−Bk

2k
(1− p)).

Similarly, if
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an( f )≡ an(Ek−E(p)
k ) modλ r

for all n ≥ 0 and p/∈ λ , then

r ≤ ordλ (
−Bk

2k
(1− pk)).

Proof. We observe that the upper bound forr is given by the conditionsa0(E) ≡
0 modλ r and µ(E) ≡ 0 modλ r . The statement holds by Lemma 1 and explicit
formulas fora0(E) andµ(E). In the first special case we putα = 1, β =−pk−1. In
the second we putα = 1 andβ =−1.

Remark 1.If p ∈ λ then we can check that fork > 2 andβ = −pk−1 andα = 1
we getα ≡ 0 modλ which is a contradiction. In the casek = 2, we observe that
−B2

4 ≡ 0 modλ andεp ≡ −1 modλ . However, in our computations we have not
found any congruence satisfying this condition.

The caseβ = −1 andα = 1 for k = 2 implies 0≡ εp modλ which is impossible.
Fork> 2 we don’t get any nontrivial condition moduloλ .

Let K =Q(θ ) be a number field with a primitive elementθ . LetOK be its ring of
integers andO be anℓ-maximal order overZ[θ ] for a fixed primeℓ. Chooseλ ⊂OK

to be a non-zero prime ideal aboveℓ and putλ̃ = λ ∩O. By the results of Section 4
below we have that forx∈ O

x= u1π r

for a uniformizerπ in Oλ̃ and a unitu1. In the end of Section 4 we define aλ̃ -
valuation

ordλ̃ (x) = r.

This extends to the field of fractionsK = Frac(O) by the formula

ordλ̃

(

x
y

)

= ordλ̃ (x)−ordλ̃ (y).

In Section 4 we prove that

ordλ̃ (x)≥ r ⇔ x≡ 0 modλ r .

In the algorithm presented below we use the last equivalenceof orders. It is also cru-
cial for our algorithm that the computation ofℓ-maximal order is more efficient than
computation of the whole ring of algebraic integers which involves factorization of
discriminants.

3.1 Sketch of the algorithm

Input:(p,k) ∈ Z2, wherep is a prime number andk≥ 2 is an even integer.
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1. Compute Galois conjugacy classes of newforms inSk(Γ0(p)). Call the setNew.

2. Compute Sturm boundB= k
12[SL2(Z) : Γ0(p)].

3. LetEk be the Eisenstein series of weightk and levelp. Compute the coefficients

an(E) = an(Ek− pk−1E(p)
k ) for n≤ B, whereE(p)

k (τ) = Ek(pτ).

4. Compute the set of primesL = {ℓ prime :ℓ | Numerator(a0(E))}.

5. For each pair(ℓ, f )∈ L×New, computeK f , i.e., the coefficient field off . By f we
mean here a choice of a representative in Galois conjugacy class. Find the primitive
elementθ such thatK f =Q(θ ). LetO be theℓ-maximal order aboveZ[θ ]. Find the
setS = {λ ∈ SpecO : λ ∩Z= ℓZ}.

For eachλ ∈ S compute

mλ = min
n≤B

(ordλ (an( f )−an(E))).

If mλ > 0 then we have a congruence

an( f ) ≡ an(E) mod(λOK)
mλ

for all n≥ 0.

In the computations above we use a straightforward generalization of the well-
known theorem of Sturm [11].

Theorem 1 ([3],Prop. 1). Let N and n be two positive integers and k≥ 2. Let
f1, f2 ∈ Mk(Γ1(N)) be two modular forms which have coefficients inOK , the max-
imal order of number field K. Let m= [SL2(Z) : Γ1(N)] and p - a prime ideal in
OK .

If an( f1)≡ an( f2) modpn for all 0≤ n≤ km
12 then

f1 ≡ f2 modpn.

Proof. The theorem is proved by induction onn. Instead of working withOK we
switch to work with the localization(OK)p. It is essential to use the property of
’bounded denominators’ for modular forms with respect to a congruence subgroup.

In fact, we can replace the subgroupΓ1(N) with any congruence subgroupΓ which
contains containingΓ (N) for someN. The proof goes through in the same way. We
use the caseΓ = Γ0(N).

4 Orders in number fields

In this section we introduce the concept of ap-maximal order. The content of this
section is well-known, however we present the main theoremsfor the convenience
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of the reader. We follow the exposition of the subject presented in [5], [10]. In this
section letK =Q(θ ) denotes a fixed number field with a primitive elementθ .

Definition 1. An order in a number fieldK is a subringR⊂ K which is a finitely
generatedZ-module of rank deg(K).

By OK we will denote the ring of algebraic integers inK or equivalently the maximal
order inK.

Definition 2. Let p be a prime number andK be a number field. An orderO in K is
p-maximal if

p ∤ [OK : O].

Definition 3. Let O be an order in a number fieldK and letp be a prime number.
The p-radical ofO is the set

Ip(O) = {x∈ O : ∃m≥1 xm ∈ pO}.

Lemma 2 ([5],Prop.6.1.2).The p-radical is an ideal inO. Moreover there is a de-
composition

Ip(O) = ∏
i
pi

where the product runs over prime idealspi in O lying over p. Moreover there exists

a positive integer m such that Ip(O)m ⊂ pO.

Lemma 3 ([5],Thm.6.1.3).LetO be an order in K and fix a prime p. The set

O
′ = [Ip(O) : Ip(O)] = {x∈ K : xIp(O)⊂ Ip(O)}.

The setO ′ is an order in K and either

O = O
′

in which caseO is p-maximal, equivalently p∤ [OK : O] or

O ( O
′

and[O ′ : O] = pn for some positive integer n.

Moreover, ifO = O ′, then

O = {x∈ OK | ∃ j≥1 p jx∈ O}.

Corollary 2. Let K = Q(θ ) be a number field. Let R0 = Z[θ ] and define the chain
of rings

Ri ⊂ Ri+1

by the condition Ri+1 = R′
i . There exists an m such that the chain stabilizes

Rm = Rm+1
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and then
Rm = {x∈ OK | ∃ j ≥ 1 p jx∈ Z[θ ]}.

Proof. By Lemma 3 it follows that form such thatRm = Rm+1 we have

Rm = {x∈ OK | ∃ j ≥ 1 p jx∈ Rm}.

Let L = {x ∈ OK | ∃ j ≥ 1 p jx ∈ Z[θ ]} and x ∈ L. Then p jx ∈ Z[θ ] for some
positive j. But Z[θ ] = R0 ⊆ R1 ⊆ . . . ⊆ Rm. Thereforep jx ∈ Rm, hencex ∈ Rm,
provingL ⊂ Rm.

Let x ∈ Rm. Then x ∈ OK . By definition Rm = R′
m−1 = {x ∈ K | xIp(Rm−1) ⊂

Ip(Rm−1)}. By Lemma 2 we have thatIp(Rm−1) = ∏i pi, primespi in Rm−1 con-
taining p. So there existsk≥ 1 such thatpk ∈ Ip(Rm−1). Sopkx∈ Ip(Rm−1), hence
pkx∈Rm−1. By induction we can show that there is a postivessuch thatpsx∈ Z[θ ],
sinceR0 = Z[θ ]. It implies that

Rn ⊂ L.

This corollary shows that for each choice of the primitive elementθ we can
construct ap-maximal order containingZ[θ ].

Theorem 2.Let p be a prime number, K a number field andOK the maximal order
in K andO a p-maximal order. We have a factorization into powers of prime ideals

pO =
n

∏
i=1

p
ei
i

and

pOK =
n

∏
i=1

P
ei
i

with Pi ∩O = pi.

Finally, we can define a valuation on elements ofp-maximal order with respect
to any prime ideal overp.

Let K be a number field andp a prime number. Assume we have ap-maximal
orderO in OK . For a nonzero prime idealp ∈ SpecO we have a prime idealP =
pOK in OK by theorem above. Any elementx∈ O is equal to

x= u1π r = u2Π r

for u1 ∈ O×
p ,u2 ∈ (OK)

×
P

and uniformizersπ andΠ in (O)p and(OK)P respec-
tively. This common exponent of uniformizers we denote by

ordp(x) = r.

The definition extends further toK = Frac(O) by
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ordp

(

x
y

)

= ordp(x)−ordp(y).

The following equivalence holds for anyx∈ O ⊂ OK

ordp(x)≥ r ⇔ x≡ 0 modP
r .

5 Numerical data

We present numerical data supporting the conjecture. We have found 740 differ-
ent congruences with varying exponent and level. The levelsand ranges we have
examined are summarized in Table 1

Table 1 Range of computations

k 2 4 6 8 10 12 14 16 18 20 22
primeN ≤ 1789 397 229 193 109 113 97 71 67 67 59

In total, we found 740 congruences of the form (2) for the ranges and weights de-
scribed above.

There are 67 congruences such thatr > 1. We found 106 congruences such thatλ is
ramified, i.e.ordλ (ℓ)> 1. Only 6 among them have the property thatr > 1.

In the conjecture we have excluded a primeℓ= 2 because we found two congruences
for the levelp= 257, weightk= 2 and primeℓ = 2 which provide example where
the exponentr of the congruence is greater thanordλ (ℓ). In Table 3 we present data
concerning congruences for whichordλ (ℓ) = 1. In Table 4 we present cases where
r > 1 andordλ (ℓ)> 1.
We are interested in a congruence of the type

an(E)≡ an( f ) modλ r

for all n ≥ 0, between the Eisenstein seriesE ∈ Ek(Γ0(p)) and the newformf ∈
Sk(Γ0(p)) for different weightsk and prime levelsp. We denote byd a degree of
the number fieldK f containing coefficients of the formf andλ is a prime ideal in
the ring of integers ofK f , above the rational primel ∈ Z. The column labelled by
nmcontains the number of elements in the residue field associated withλ . Number
e denotes the ramification of the idealλ at ℓ andm= ordλ (µ(E)). The column
labelled byi contains the number of the Galois orbit of representing newform f
(with respect to the internal Magma numbering).

Let k = 2 and p = 1201. We find a newformf ∈ S2(Γ0(1201)) such thatK f =

Q(
√

2) and
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f = q−q2−q4+2
√

2q7+3q8−3q9+(2+
√

2)q11+ . . . .

We have the Eisenstein series

E2−1201E(1201)
2 = 50+

∞

∑
n=1

σ1(n)q
n−1201

∞

∑
n=1

σ1(n)q
1201n.

We check, by the algorithm, that for the prime idealλ = (
√

2)

an( f ) ≡ an(E2−1201E(1201)
2 ) modλ

for all naturaln≥ 0. We observe that the ideal(2) ∈ O f = Z[
√

2] is totally ramified

with (2) = λ 2. Moreover,a11(E2−1201E(1201)
2 ) = 12 anda11( f ) = 2+

√
2, hence

the maximal exponentr of the congruence is equal to 1. The upper bound proposed
in the conjecture is equal to 2, so it is not always the case that the maximal exponent
r is equal to that bound.

Let k= 2 andN = 109. In this example we choose any rootα ∈Q of the equation

α4+α3−5α2−4α +3= 0

and formK = Q(α). We have the Galois conjugacy class of newforms with the
q-expansion

f = q+αq2+(1+4α −α3)q3+(α2−2)q4−αq5+ . . . .

The ring of integersO f of K f = K is equal toZ[α] and

(3) = (3,α)(3,2+α +α2+α3)

is the factorization into prime ideals inO f . We find, by the algorithm, that forλ =
(3,α)

an( f )≡ an(E2−109E(109)
2 ) modλ 2

for all naturaln ≥ 0. In fact, this is the maximal possible exponent, sinceµ(E2−
109E(109)

2 ) = 9
2 and ordλ (9) = 2. In the unramified case, the conjecture only predicts

that the upper bound for the maximal exponentr is smaller or equal to the one
described in Corollary 1. This example shows that we cannot have a smaller bound
in general.

Let k= 8 andN = 43. We choose any rootα ∈Q of the equation

−281015823360+26122731136α+25840429824α2−34580064α3

−584457696α4−13609592α5+5061216α6+169726α7

−18498α8−717α9+24α10+α11 = 0
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and formK = Q(α). The ring of integers has the discriminant divisible exactly by
7. We have the Galois conjugacy class of newforms with theq-expansion

f = q+αq2+a3q3+(α2−128)q4+ . . . .

It is congruent to a suitable Eisenstein series modulo a prime ideal above 7 which is
ramified of exponent 2 and has a presentation

λ =

(

7,
β

3456

)

where

β = 8448+43840α+38112α2+6248α3+7752α4+5918α5

+2106α6+203α7+60α8+α9.

We get the congruence

an( f )≡ an(E8−437E(43)
8 ) modλ 2

for all n≥ 0 and the exponent is maximal, what confirms the conjecture.

It is interesting to observe that some levels are better thanothers, because they pro-
vide much more congruences. For example, ifp = 163 we obtain four different
congruences for weightsk = 2,4,6 and 8 with ideals above 3 raised to the powers
3,3,2 and 3 respectively. For weightk = 2 or k = 8 the exponent of the ideal is
maximal possible (cf. 3). Fork= 2 we find a number field of degree 7 overQ with
a primitive elementα with a minimal polynomial

6+4α −23α2+19α4−5α5−3α6+α7 = 0.

The ring of integers is equal toZ[α]. Its discriminant is equal to 2·82536739 and

3Z[α] = (3,α)(3,1+α +α3+α4+α6).

We find a newform of level 163 and weight 2 withq-expansion

f = q+αq2+(−2+5α +5α2−6α3−α4+α5)q3

+(−2+α2)q4+(6+6α −11α2−6α3+7α4+α5−α6)q5+ . . .

It is congruent to Eisenstein seriesE2−163E(163)
2 = 27

4 +∑∞
n=1 σ1(n)qn−163∑∞

n=1 σ1(n)q163n

modulo(3,α)3.

Remark 2.It is not always true that if we have a congruence modulo a power of a
prime ideal aboveℓ andK f = Q(θ ), thenℓ-maximal order aboveZ[θ ] that we get
from the algorithm is equal to the ringZ[θ ]. We summarize several examples in
Table 2. The primeℓ is unramified inK f . By i we denote the number of the Galois
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orbit of the newform and byind the index[O : Z[θ ]] for theℓ-maximal order above
Z[θ ].

Table 2 Index of the order
p k ℓ i ind

101 6 5 2 625
751 2 5 2 625
1621 2 3 3 3
1667 2 7 2 343

Table 3 Congruences with exponent greater than one and without ramification

p k ℓ r m i d nm
769 2 2 5 5 2 36 2
1459 2 3 5 5 3 71 3
257 4 2 4 4 1 28 2
641 2 2 4 4 2 33 2
1409 2 2 4 4 3 65 2
163 2 3 3 3 3 7 3
163 4 3 3 3 1 19 3
163 8 3 3 3 1 46 3
193 2 2 3 3 3 8 2
193 6 2 3 3 2 41 2
251 2 5 3 3 2 17 5
449 2 2 3 3 2 23 2
487 2 3 3 4 4 16 3
577 2 2 3 3 4 18 2
811 2 3 3 3 3 40 3
1373 2 7 3 3 3 60 7
1601 2 2 3 3 2 80 2
1783 2 3 3 3 2 82 3
97 2 2 2 2 2 4 2
97 6 2 2 2 2 21 2
97 10 2 2 2 2 37 2
101 2 5 2 2 2 7 5
101 6 5 2 2 2 24 5
101 10 5 2 2 2 41 5
109 2 3 2 2 3 4 3
109 4 3 2 2 1 12 3
109 8 3 2 2 1 30 3
109 10 3 2 2 2 42 3
151 2 5 2 2 3 6 5
151 6 5 2 2 2 35 5

p k ℓ r m i d nm
163 6 3 2 2 2 35 3
193 4 2 2 2 1 23 2
197 2 7 2 2 3 10 7
197 4 7 2 2 1 22 7
251 4 5 2 2 1 24 5
379 2 3 2 2 2 18 3
379 4 3 2 2 1 44 3
433 2 3 2 2 4 16 3
491 2 7 2 2 3 29 7
601 2 5 2 2 2 29 5
673 2 2 2 2 3 24 2
677 2 13 2 2 4 35 13
727 2 11 2 2 2 36 11
751 2 5 2 3 2 38 5
757 2 3 2 2 2 33 3
883 2 7 2 2 2 39 7
929 2 2 2 2 3 47 2
1051 2 5 2 2 3 48 5
1151 2 5 2 2 3 68 5
1153 2 2 2 4 3 50 2
1201 2 5 2 2 3 51 5
1217 2 2 2 3 2 58 2
1301 2 5 2 2 3 66 5
1451 2 5 2 2 2 73 5
1453 2 11 2 2 2 63 11
1471 2 7 2 2 2 72 7
1567 2 3 2 2 4 69 3
1601 2 5 2 2 2 80 5
1621 2 3 2 3 3 70 3
1667 2 7 2 2 2 82 7
1697 2 2 2 2 2 77 2

From Table 3 we can read off many properties of the congruences satisfying
ordλ (ℓ) = 1. For 1< r ≤ ordλ (µ(E)) we found only 5 congruences that do not
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satisfyr = ordλ (µ(E)) and 56 that satisfy this condition. Observe that the exponent
was not maximal only fork = 2. In fact, for weightsk > 2 we found congruences
with nonmaximal exponent only for primes above 2. In all cases found, the residue
degree was always equal to 1. Conjecture 1 is confirmed in all cases we found.

Moreover, if we fix r ≥ 2 and look for a newform satisfying the congruence (2)
for r = ordλ (µ(E)) and for a fixed Eisenstein series of levelp we can find several
examples for varyingk,e.g. forp= 163 or for 197.

Some obvious necessary condition is thataq( f ) ≡ aq(E) = qk−1 + 1 modλ r for
prime q /∈ pλ . In fact, when we look for a rational newform of weightk = 2, by
Modularity theorem this implies that we look for an ellipticcurveF without com-
plex multiplication, defined overQ such that

|F(Fq)| ≡ 0 modℓr .

We have found only such examples forr = 1.

In Table 4 we collect data about all congruences for whichordλ (l)>1 andr >1. For
primesp≥ 3 we found only three such cases and they agree with the conjecture. For
r less than 2 we found in total 100 congruences and they agree with the conjecture.
They are presented in Table 5.

Table 4 Congruences with exponent greater than one and with ramification

p k ℓ r m e i d nm
43 8 7 2 2 2 1 11 7
43 20 7 2 2 2 1 32 7
353 4 2 2 2 2 1 40 2
919 2 3 2 4 2 3 47 3
257 2 2 5 10 2 2 14 2
257 4 2 5 8 2 1 28 2
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Table 5 Congruences with exponent equal to one and with ramification

p k ℓ r m e i d nm
31 2 5 1 2 2 1 2 5
31 6 5 1 2 2 2 8 5
31 10 5 1 2 2 2 13 5
31 14 5 1 2 2 2 18 5
31 18 5 1 2 2 2 23 5
31 22 5 1 2 2 2 28 5
47 10 23 1 2 2 2 20 23
47 12 23 1 2 2 1 18 23
47 16 23 1 2 2 1 26 23
47 20 23 1 2 2 1 34 23
53 6 13 1 2 2 2 12 13
53 18 13 1 2 2 2 38 13
67 4 11 1 2 2 1 7 11
67 14 11 1 2 2 2 37 11
103 2 17 1 2 2 2 6 17
113 2 2 1 2 2 2 2 2
113 6 2 1 2 2 1 21 2
113 6 2 1 2 2 1 21 4
113 6 2 1 2 2 2 25 2
113 6 2 1 2 2 2 25 2
127 2 7 1 2 2 2 7 7
127 8 7 1 2 2 1 34 7
131 2 5 1 2 2 2 10 5
131 6 5 1 2 2 2 32 5
191 6 5 1 2 2 2 46 5
199 2 3 1 2 2 3 10 3
199 4 3 1 2 2 1 20 3
211 2 5 1 2 2 1 2 5
211 6 5 1 2 2 2 47 5
223 4 37 1 2 2 1 24 37
281 2 5 1 2 2 2 16 5
307 4 3 1 2 2 1 35 3
337 2 2 1 2 2 2 15 2
337 4 7 1 2 2 1 40 7
353 4 2 1 2 2 2 48 2
353 4 11 1 2 2 1 40 11
367 4 61 1 2 2 1 41 61
401 4 5 1 2 2 1 45 5
409 2 17 1 2 2 2 20 17
409 4 17 1 2 2 1 47 17
419 4 19 1 2 2 1 43 19
523 2 3 1 2 2 3 26 3
541 2 5 1 2 2 2 24 5
571 2 5 1 2 2 9 18 5
593 2 2 1 2 2 5 27 2
661 2 11 1 2 2 3 29 11
683 2 11 1 2 2 3 31 11
691 2 5 1 2 2 2 33 5
733 2 61 1 2 2 4 32 61
761 2 5 1 2 2 3 41 5

p k ℓ r m e i d nm
761 2 19 1 2 2 3 41 19
881 2 2 1 2 2 2 46 2
911 2 7 1 2 2 3 53 7
941 2 5 1 2 2 2 50 5
971 2 5 1 2 2 2 55 5
1021 2 17 1 2 2 2 47 17
1091 2 5 1 2 2 3 62 5
1201 2 2 1 2 2 1 2 2
1279 2 3 1 2 2 2 64 3
1289 2 7 1 2 2 4 61 7
1291 2 5 1 2 2 2 62 5
1381 2 5 1 2 2 2 63 5
1447 2 241 1 2 2 2 71 241
1471 2 5 1 2 2 2 72 5
1483 2 13 1 2 2 4 67 13
1511 2 5 1 2 2 2 87 5
1531 2 3 1 2 2 4 73 3
1531 2 5 1 2 2 4 73 5
1553 2 2 1 2 2 2 74 2
1693 2 3 1 2 2 3 72 3
1697 2 53 1 2 2 2 77 53
1777 2 2 1 2 2 2 79 2
1789 2 149 1 2 2 2 80 149
101 4 5 1 3 3 1 9 5
101 8 5 1 3 3 1 26 5
101 12 5 1 3 3 1 42 5
181 2 5 1 3 3 2 9 5
181 6 5 1 3 3 2 40 5
353 4 2 1 3 3 1 40 2
1321 2 11 1 3 3 4 56 11
1381 2 23 1 3 3 2 63 23
1571 2 5 1 3 3 2 82 5
1747 2 3 1 3 3 3 77 3
353 4 2 1 5 5 1 40 2
353 4 2 1 5 5 2 48 2
353 4 2 1 5 5 2 48 2
1201 2 2 1 5 5 3 51 2
577 2 2 1 6 2 4 18 2
1601 2 2 1 6 2 2 80 2
257 4 2 1 8 2 1 28 2
353 2 2 1 10 5 4 14 2
257 4 2 1 12 3 1 28 2
257 4 2 1 16 4 2 36 2
1153 2 2 1 16 4 3 50 2
257 4 2 1 20 5 1 28 2
257 4 2 1 20 5 2 36 2
257 4 2 1 20 5 2 36 2
257 2 2 1 25 5 2 14 2
1249 2 2 1 26 13 3 59 2
1217 2 2 1 39 13 2 58 2
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