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Abstract

Is an option to early terminate a swap at its market value worth zero? At first sight it is, but in

presence of counterparty risk it depends on the criteria used to determine such market value. In case

of a single uncollateralised swap transaction under ISDA between two defaultable counterparties, the

additional unilateral option to early terminate the swap at predefined dates requires a Bermudan credit

valuation adjustment. We give a general pricing formula assuming a default-free close-out amount,

and apply it in a simplified setting with deterministic intensity and one single date of optional early

termination, showing that the impact on the fair value of the transaction at inception might be non

negligible.
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1 Summary

The impact of close-out conventions in the ISDA setting has been highlighted in [1], [2] with particular
regard to the consequences on bilateral counterparty risk adjustments. The authors show how crucial
is the contractual definition of the close out amount (“risk-free” vs “substitution”) in case of default,
even on the fair price at inception of the transaction; moreover, the ISDA protocol extends such
conventions to any Additional Early Termination event (ATE), see 6(e)(ii)(1) and pag 17 (par 5) in
[11]. A wide debate [5], [6] has taken place on the implication of the close-out definition and has
focused in particular on the rating-triggered ATEs [4].

Here, we focus instead on how to value a single uncollateralised transaction where a party has the
option to early terminate the transaction at predefined dates by exchanging the default-free amount
with the other party. This kind of ATE is commonly introduced to shorten the horizon of the credit
line between the parties; in the following we will refer to it as a break clause (BC). Therefore this

∗Preliminary version. Comments welcome. This paper reflects the authors’ opinions and not necessarily those of their

employers.
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case is different, and to a certain extent simpler, from those examined in previous literature where
the exercise date of the early termination is a priori unknown. We will get a general but remarkably
simple pricing formula for the case of default-free close out amount, a particularly interesting choice,
being the only counterparty-independent one, therefore a good candidate to a less arbitrary close-out
convention [8] even if subject to criticism [3]. Another reason of interest of this close-out convention
is that, as we will show, in case of a bilateral BC it is effective in reducing the counterparty risk
of the transaction by canceling its contribution after the first exercise date, thus supporting capital
relief discussed in [9]. Quasi-analytical results are available, at least assuming deterministic intensities
for the default processes, using the well known Geske-Johnson approach (see e.g. [10]) to bermudan
derivatives pricing, which is an effective technique when the exercise dates are few - as is often the case
(e.g. for medium dated swaps i.e. with maturity between 7 and 10 years). For illustrative purposes
we apply the pricing formula in a simplified setting, but more general results are straightforward; the
results show a considerable impact on the par strike.

Even if our approach is at a transaction level and cannot easily include the netting effects with
possible other transaction referenced to the same ISDA agreement, we point out that our work has
practical implications, due to the wide presence in the market of uncollateralized swap referenced to a
single-transaction agreement, or of portfolios composed by a few large transactions with the same side
(e.g. a portfolio of payer interest rate swaps). For instance, consider the case of a derivative between
a bank and a corporate, a bank and a sovereign (see the discussion in [8] for a notable example), and
the so-called back-swap linked to securitization or covered bond. The last two cases often concern
long-dated swaps and typically involve break clause.

2 Notation

In the following we refer to the notation and the results of [2]. The value V AB
B (t0) of a derivative

contract between two defaultable counterparty A and B as seen from B in t0 is

V AB
B (t0) = V 0

B(t0)−E

{

LAIA(t0, T )D(t0, τA)
[

V 0
B(τA)

]+
∣

∣

∣
t0

}

+E

{

LBIB(t0, T )D(t0, τB)
[

−V 0
B(τB)

]+
∣

∣

∣
t0

}

,

(1)
where D(t1, t2) is the stochastic discount factor between two dates, τX is the default time of coun-
terparty X , IA(t1, t2) = It1<τA<min(τB ,t2), IB(t1, t2) = It1<τB<min(τA,t2), T is the last payment date of
the derivative, LX the loss given default of counterparty X , and V 0

B(t) is the value of the equivalent
default-free derivative as seen from B,

V 0
B(t) = E {ΠB(t, T )| t} = E

{

N
∑

i=1

D(t, Ti)Ci(Ti)

∣

∣

∣

∣

∣

t

}

, (2)

with T1 > t, TN = T , and Ci the cashflow paid in Ti that depends on the values of the risk factors
(e.g. interest rates, stock prices) in Ti. We also define τ = min(τA, τB), and we will use the notation
PA(t1, t2) = E {IA(t1, t2)}, and analogous for B, for the unconditioned probabilities. We will omit
conditioning on t0 henceforth.

The last two terms in eq. (1) define the Bilateral Credit Valuation Adjustment (BCVA) and Debt
Valuation Adjustment (BDVA) respectively as seen from B,

BCV AB(t, T ) = E

{

LAIA(t, T )D(t, τA)
[

V 0
B(τA)

]+
∣

∣

∣
t
}

, (3)

BDV AB(t, T ) = E

{

LBIB(t, T )D(t, τB)
[

−V 0
B(τB)

]+
∣

∣

∣
t
}

, (4)

so that we can write the well known formula

V AB
B (t0) = V 0

B(t0)−BCV AB(t0, T ) +BDV AB(t0, T ). (5)
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3 General Results

3.1 Unilateral Break Clause

Let us assume that party B has a BC at time t̂ < T , i.e. she has the right to terminate the derivative
at time t̂ by liquidating its default-free fair value V 0

B(t̂). It is easy to show that the equivalent of
eq. (1) becomes

V̂ AB
B (t0) = V 0

B(t0)−

E

{

LAIA

(

t0, t̂
)

D(t0, τA)
[

V 0
B(τA)

]+
}

+ E

{

LBIB

(

t0, t̂
)

D(t0, τB)
[

−V 0
B(τB)

]+
}

− (6)

E

{

IV 0

B(t̂)≤V AB
B (t̂)

(

LAIA(t̂, T )D(t0, τA)
[

V 0
B(τA)

]+
− LBIB(t̂, T )D(t0, τB)

[

−V 0
B(τB)

]+
)}

,

the exercise condition of the BC being

V 0
B(t̂) ≥ V AB

B (t̂). (7)

By conditioning on t̂ the inner part of the last term in (6), we obtain our main result:

V̂ AB
B (t0) = V 0

B(t0)−BCV AB(t0, t̂) +BDV AB(t0, t̂) +

E

{

Iτ>t̂D(t0, t̂)
[

BDV AB(t̂, T )−BCV AB(t̂, T )
]+

}

(8)

The last term is equivalent to

E

{

Iτ>t̂D(t0, t̂)
[

V AB
B (t̂)− V 0

B(t̂)
]+

}

,

where one easily recognizes the payoff linked to the continuation value of the option to early liquidate
the derivative in t̂.

3.2 Multiple Unilateral Break Clause

Define the last three terms of eq. (8) as UBC(t0, t̂) so that we can write V̂ AB
B (t0) = V 0

B(t0) +
UBC(t0, t̂). If we add an additional BC in t̂2 > t̂ we can repeat the same arguments of the previous
section to see that eq. (8) becomes

V̂ AB
B,multiple(t0) = V 0

B(t0)−BCV AB(t0, t̂) +BDV AB(t0, t̂) + E

{

Iτ>t̂D(t0, t̂)
[

UBC(t̂, t̂2)
]+

}

, (9)

and analogous results can be obtained for an arbitrary number of BC.

3.3 Mutual Break Clause

In case of mutual BC (i.e. both parties have the right to liquidate the position in t̂), it is easy to see
that, if both parties apply the same mark-to-market rules, the BC is automatically exercised. In fact,
the exercise condition for party A is

V 0
A(t̂) ≥ V AB

A (t̂), (10)

and since V 0
A = −V 0

B and (see again [2]) V AB
A = −V AB

B , it becomes

V 0
B(t̂) ≤ V AB

B (t̂). (11)

Hence, either A or B will exercise, and we can write

V̂ AB
B,mutual(t0) = V 0

B(t0)−BCV AB(t0, t̂) +BDV AB(t0, t̂). (12)
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4 Application and results in a simplified setting

We apply the pricing formula (8) to the case of an equity swap on a non dividend paying stock St

following Black and Scholes dynamics, with strike K, maturity T and unilateral BC at a single date
t̂ < T , and we will adopt simplifying assumptions in order to obtain analytical results. Like in [2]
we assume that the default times have a bivariate exponential distribution obtained combining ex-
ponential marginal distributions P (τX > t) = e−λX t with a Gumbel copula, disallowing simultaneous
default. Furthermore we assume independence between default events and the market risk factors.
For the payer case we get from (3) and (4) respectively

BCV AB(t, T ) = LA

∫ T

t0

dτA

∫ +∞

τA

dτB p(τA, τB)Call(t,K, τA), (13)

BDV AB(t, T ) = LB

∫ T

t0

dτB

∫ +∞

τB

dτA p(τA, τB)Put(t,K, τB). (14)

where Call(t,K, τ) stands for the value in t of a European call option with maturity τ on the contingent
claim D(τ, T )(ST −K). To simplify the subsequent formulas let us assume that default can happen up
to t̂− or T−, and in case of default the parties exchange the amount as evaluated at t̂ or T respectively
instead of at the time to default. Therefore we obtain the pricing formula without BC from (5)

V AB
B,payer(t0) = S0 −KP (t0, T )−

LAPA(t0, t̂)Call(t0;KP (t̂, T ), t̂) + LBPB(t0, t̂)Put(t0;KP (t̂, T ), t̂)−

LAPA(t̂, T )Call(t0;K,T ) + LBPB(t̂, T )Put(t0;K,T ). (15)

We point out here that the inclusion of the counteparty risk terms BCVA and BDVA changes the par
strike i.e. the strike that brings the value of the swap to zero at inception. Only in case of a contract
between two identical counterparties (LA = LB = L and λA = λB = λ), the par strike remains
unchanged, even if the value of the swap is changed.

Now, introducing the break clause at t̂ in favor of B we have to calculate the last expectation term
of (6) or (8), which under our hypothesis becomes

E

{

D(t0, t̂)
[

LBPB(t̂, T )Put(t̂;K,T )− LAPA(t̂, T )Call(t̂;K,T )
]+

}

,

which is positive when the continuation condition

LBPB(t̂, T )Put(t̂;K,T ) ≥ LAPA(t̂, T )Call(t̂;K,T ) (16)

is satisfied. In order to apply the Geske-Johnson technique we determine the boundary of such region,
that is we look for a St̂ = Ke such that

LBPB(t̂, T )Put(t̂;K,T ) = LAPA(t̂, T )Call(t̂;K,T ); (17)

this allows us to write the call and put payoffs in terms of indicator functions, arriving at the final
formula

V̂ AB
B,payer(t0) = S0 −KP (t0, T )−

LAPA(t0, T )Call(t0;KP (t̂, T ), t̂) + LBPB(t0, T )Put(t0;KP (t̂, T ), t̂) +

LBPB(t̂, T )E
{

D(T0, T )(K − ST )ISt̂<KeIST<K

}

−

LAPA(t̂, T )E
{

D(T0, T )(ST −K)ISt̂<KeIST>K

}

. (18)

It is straightforward to price analytically these barrier options within a Black and Scholes approxima-
tion, computing a two-dimensional Gaussian integral1. Analogous results are obtained for a receiver
equity swap.

1a multiple break clause with n exercise dates would require a n+ 1-dimensional Gaussian integral.

4



5 Numerical Results

In this section we evaluate the impact of the BC by comparing the at-the-money strike implied
by eq. (18) with that coming from eq. (15). All the results are obtained for S0 = 1, σt = 0.3,
LA = LB = 100% and zero interest rates. The Gumbel copula for the default times gives the
following survivalship probability

P (τA > tA, τB > tB) = e−[(λAtA)θ+(λBtB)θ]1/θ , (19)

with θ ∈ [1,+∞). Observe that Kendall’s Tau τK is worth

τK = 1−
1

θ
, (20)

so that the independent case corresponds to θ = 1, and the comonotonic to θ = ∞. We will report
the results also for the receiver swap, that are almost perfectly antithetic to those of the payer swap
(this effect is enhanced by the choice of zero interest rate and dividend yield, and of equal loss given
default). We point out that this instrument is particularly sensitive to counterparty risk, since all
cash flows are concentrated at the end of its life, and is therefore an ideal case to illustrate the effects
of the BC.

We examine first the effect of the distance between t̂ and T for τK = 0 and τK = 0.75. In figure (1),
where λA = 0.1, λB = λA/2, we see that as t̂ approaches 0 the counterparty risk is completely removed
(the par strike is equal to 1, the at-the-money forward when counterparty risk is not included), since
it is convenient to exercise the BC as soon as possible, being A the riskier counterpary. As t̂ increases,
the effect of the BC is reduced, and the par strike approaches that implied by the full BCVA and
BDVA contributions. When t̂ is halfway through the life of the swap, it reduces by almost a factor of
two the counterparty risk. In figure (2), with the same set of parameters but λA = 0.05, λB = 2λA,
we do not notice any efficient removal of counterparty risk, an effect that is common to most examples
below when the counterparty that has the BC is more risky than the other, i.e. when λB > λA.

In figure (3) we show for τK ranging from 0 to 0.75 that the correction due to the BC decreases as
λB grows larger than λA and goes to zero faster for large θ. This effect can be explained by noticing
that the more probable is that τB < τA, the less useful is the BC to B.

Figure (4) shows, again with λA = 0.1, λB = λA/2, how effective the BC is in reducing the
expected length of the transaction across all values of θ: the par strike of a 4 years and a 2 year swap
with a BC after 1 year is almost identical to that of the 1 year swap. As expected, the case with
λB > λA (not shown) displays almost no dependence on the BC.

6 Conclusions

The financial effect of the BC (both unilateral and bilateral) is quite strong for a large range of the
parameter space. This result must be contrasted with the historically low propensity of counterparties
to exercise the BC in order not to compromise their relationship with clients.

Our approach can be generalized to more complex break clauses, for instance conditioned to rating
downgrade, that we leave for future work. Another development will be to investigate the effect of
stochastic default rates that will add volatility to the credit adjustment and also alter the order of
default of the counterparties by weakening the dependence of the result on the ratio between λB and
λA that is kept constant in our examples.
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Figure 1: Par strike as a function of t̂ for a 4y equity swap with λA = 0.1, λB = 0.05, θ = 4 (full lines)
and θ = 1 (dashed lines). As t̂ approaches 0 the counterparty risk is completely removed, since it is
convenient to exercise the BC as soon as possible, being A the riskier counterpary.
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Figure 2: Par strike as a function of t̂ for a 4y equity swap with λA = 0.05, λB = 0.1, θ = 4 (full lines)
and θ = 1 (dashed lines). Contrary to the λB < λA case, now the results depend very weakly on the BC.
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Figure 3: Par strike as a function of λB for an equity swap with λA = 0.1, T = 4, t̂ = 2, θ = 1 (full
lines), θ = 2 (dashed lines) and θ = 4 (dotted lines). The correction due to the BC decreases as λB

grows larger than λA and goes to zero faster for large θ.
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Figure 4: Par strike as a function of θ for an equity swap with λA = 0.1, λB = 0.05, t̂ = 1, T = 4 (full
lines) and T = 2 (dashed lines). Notice how the break clause reduces the 4 years and the 2 years cases
to the 1y with no BC (dotted line).
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