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Abstract: In this paper we propose a new stochastic model based on a general-
ization of semi-Markov chains to study the high frequency price dynamics of traded
stocks. We assume that the financial returns are described by a weighted indexed semi-
Markov chain model. We show, through Monte Carlo simulations, that the model is
able to reproduce important stylized facts of financial time series as the first passage
time distributions and the persistence of volatility. The model is applied to data from
Italian and German stock market from first of January 2007 until end of December
2010.
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1 Introduction

Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize
at the same time both Markov chains and renewal processes. The main advantage
of SMP is that they allow the use of whatever type of waiting time distribution for
modeling the time to have a transition from one state to another one. On the contrary,
Markovian models have constraints on the distribution of the waiting times in the states
which should be necessarily represented by memoryless distributions (exponential or
geometric for continuous and discrete time cases respectively). This major flexibility
has a price to pay: the parameters to be estimated are more numerous.

Semi-Markov processes (SMP) generalizes also non-Markovian models based on
continuous time random walks extensively used in the econophysics community, see for
example [1, 2]. SMP have been used to analyze financial data and to describe different
problems ranging from credit rating data modeling [3] to the pricing of options [4, 5].

With the financial industry becoming fully computerized, the amount of recorded
data, from daily close all the way down to tick-by-tick level, has exploded. Nowa-
days, such tick-by-tick high-frequency data are readily available for practitioners and
researchers alike [6, 7]. It seemed then natural to us trying to verify the semi-Markov
hypothesis of returns on high-frequency data, see [8]. In [8] we proposed a semi-Markov
model showing its ability to reproduce some stylized empirical facts such for example
the absence of autocorrelations in returns and the gain/loss asymmetry. In that paper
we showed also that the autocorrelation in the square of returns is higher with respect
to the Markov model. Unfortunately this autocorrelation was still too small compared
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to the empirical one. In order to overcome the problem of low autocorrelation, in an-
other paper [9] we proposed an indexed semi-Markov model for price return. More
precisely we assumed that the intraday returns (up to one minute frequency) are de-
scribed by a discrete time homogeneous semi-Markov process where we introduced a
memory index which takes into account the periods of different volatility in the market.
It is well known that the market volatility is autocorrelated, then periods of high (low)
volatility may persist for long time. We made the hypothesis that the kernel of the
semi-Markov process depend on which level of volatility the market is at that time. It
is to be remarked that the weighted memory index is a stochastic process which do
depend on the same Markov Renewal Chain (Jn, Tn) to which the semi-Markov chain
is associated. Then, in our model, the high autocorrelation is obtained endogenously
without introducing external or latent auxiliary stochastic processes. To improve fur-
ther our previous results, in this work, we propose an exponentially weighted index
which will be described in the following.

The database used for the analysis is made of high frequency tick-by-tick price data
from all the stock in Italian and German stock market from first of January 2007 until
end of December 2010. From prices we then define returns at one minute frequency.

The plan of the paper is as follows. In Section 2 we define the weighted indexed
semi-Markov chain model with memory and we explain how to perform a Monte Carlo
simulation of its trajectory. In Section 3, we present the empirical results deriving from
the application of our model to real stock market data. Finally, in Section 4 we present
our conclusion.

2 The Weighted-Indexed Semi-Markov Model

In this section we propose a generalization of the semi-Markov process that is able to
represent higher-order dependencies between successive observations of a state variable.
One way to increase the memory of the process is by using high-order semi-Markov
processes as defined in [10] and more recently reviseted and extended in a discrete
time framework in [11]. A more parsimonious model has been defined by [12] and it is
showed that it describes appropriately important empirical regularities of financial time
series. In this paper we propose a further improvement of the indexed semi-Markov
chain model proposed in reference [12] named Weighted-Indexed Semi-Markov Chain
(WISMC) model which allows the possibility of reproducing long-term dependence in
the square of stock returns in a very efficient way.

Let us assume that the value of the financial asset under study is described by the
time varying asset price S(t). The return at time t calculated over a time interval of

lenght 1 is defined as S(t+1)−S(t)
S(t) . The return process changes value in time, then we

denote by {Jn}n∈IN the stochastic process with finite state space E = {1, 2, ..., s} and
describing the value of the return process at the n-th transition.

Let us consider the stochastic process {Tn}n∈IN with values in IN. The random
variable Tn describes the time in which the n-th transition of the price return process
occurs.

Let us consider also the stochastic process {Uλn}n∈IN with values in IR. The random
variable Uλn describes the value of the index process at the n-th transition.

In reference [9] the process {Un} was defined as a reward accumulation process
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linked to the Markov Renewal Process {Jn, Tn}; in [9] the process {Un} was defined as
a moving average of the reward process. Here, motivated by the application to financial
returns, we consider a more flexible index process defined as follows:

Uλn =

n−1∑
k=0

Tn−k−1∑
a=Tn−1−k

f(Jn−1−k, a, λ), (2.1)

where f : E × IN× IR → IR is a Borel measurable bounded function and Uλ0 is known
and non-random.

The process Uλn can be interpreted as an accumulated reward process with the
function f as a measure of the weighted rate of reward per unit time. The function f
depends on the current time a, on the state Jn−1−k visited at current time and on the
parameter λ that represents the weight.
In next section a specific functional form of f will be selected in order to produce a
real data application.

To construct the WISMC model we have to specify a dependence structure between
the variables. Toward this end we adopt the following assumption:

P[Jn+1 = j, Tn+1 − Tn ≤ t|σ(Jh, Th, U
λ
h ), h = 0, ..., n, Jn = i, Uλn = v]

= P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i, Uλn = v] := Qλij(v; t),
(2.2)

where σ(Jh, Th, U
λ
h ), h ≤ n is the natural filtration of the three-variate process.

The matrix of functions Qλ(v; t) = (Qλij(v; t))i,j∈E has a fundamental role in the the-
ory we are going to expose, in recognition of its importance, we call it weighted-indexed
semi-Markov kernel.

The joint process (Jn, Tn) depends on the process Uλn , the latter acts as a stochastic
index. Moreover, the index process Uλn depends on (Jn, Tn) through the functional
relationship (2.1).

Observe that if

P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i, Uλn = v] = P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i]

for all values v ∈ IR of the index process, then the weigthed indexed semi-Markov
kernel degenerates in an ordinary semi-Markov kernel and the WISMC model becomes
equivalent to classical semi-Markov chain model as presented for example in [13] and
[14].

The triple of processes {Jn, Tn, Uλn} describes the behaviour of the system only in
correspondence of the transition times Tn. To describe the behavior of our model at
whatever time t which can be a transition time or a waiting time, we need to define
additional stochastic processes.

Given the three-dimensional process {Jn, Tn, Uλn} and the weighted indexed semi-
Markov kernel Qλ(v; t), we define by

N(t) = sup{n ∈ N : Tn ≤ t};
Z(t) = JN(t);

Uλ(t) =

N(t)−1+θ∑
k=0

(t∧TN(t)+θ−k)−1∑
a=TN(t)+θ−1−k

f(JN(t)+θ−1−k, a, λ),

(2.3)
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where θ = 1{t>TN(t)}.

The stochastic processes defined in (2.3) represent the number of transitions up
to time t, the state of the system (price return) at time t and the value of the index
process (weighted moving average of function of price return) up to t, respectively. We
refer to Z(t) as a weighted indexed semi-Markov process.

The process Uλ(t) is a generalization of the process Uλn where time t can be a
transition or a waiting time. It is simple to realize that if t = Tn we have that Uλ(t) =
Uλn .

Let
pλij(v) := P[Jn+1 = j|Jn = i, Uλn = v],

be the transition probabilities of the embedded indexed Markov chain. It denotes the
probability that the next transition is in state j given that at current time the process
entered in state i and the index process is equal to v. It is simple to realize that

pλij(v) = lim
t→∞

Qλij(v; t). (2.4)

Let Hλ
i (v; ·) be the sojourn time cumulative distribution in state i ∈ E:

Hλ
i (v; t) := P[Tn+1 − Tn ≤ t|Jn = i, Uλn = v] =

∑
j∈E

Qλij(v; t). (2.5)

It expresses the probability to make a transition from state i with sojourn time less
or equal to t given the indexed process is v.

The conditional waiting time distribution function G expresses the following prob-
ability:

Gλij(v; t) := P[Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j, Uλn = v]. (2.6)

It is simple to establish that

Gλij(v; t) =


Qλij(v;t)

pλij(v)
if pλij(v) 6= 0

1 if pλij(v) = 0.
(2.7)

In the papers [9] and [8] explicit renewal-type equations were given to describe the
probabilistic behaviour of the indexed semi-Markov chain. We could derive similar
results for the WISMC model but here we prefer do not report these results applied to
our model because, in the implementation of the model given in next section we follow
a Monte Carlo simulation based approach. For this reason we give a Monte Carlo
algorithm in order to simulate a trajectory of a given WISMC in the time interval
[0, T ]. The output of the algorithm consists in the successive visited states {J0, J1, ...},
the jump times {T0, T1, ...} and the index values {Uλ0 , Uλ1 , ...} up to the time T .
1) Set n = 0, J0 = i, T0 = 0, Uλ0 = v, horizon time= T ;
2) Sample J from pλJn,·(U

λ
n ) and set Jn+1 = J(ω);

3) Sample W from GλJn,Jn+1
(Uλn , ·) and set Tn+1 = Tn +W (ω);

4) Set Uλn+1 =
∑n

k=0

∑Tn+1−k−1
a=Tn−k

f(Jn−k, a, λ);

5) If Tn+1 ≥ T stop
else set n = n+ 1 and go to 2).
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Figure 1: Discretization of returns

3 Empirical results

In the following we show as our model performs comparing its statistical features and
those of real data returns. The comparison is done by means of Monte Carlo simulations
according to the algorithms described in the previous section.

For our analysis we choose 4 stocks from two databases of tick-by-tick quotes of
real stocks from the Italian Stock Exchange (“Borsa Italiana”) and the German Stock
Exchange (“Deutsche Börse”). The chosen stocks are ENI and FIAT from the Italian
database and Allianz and VolksWagen from the German database.The period used goes
form January 2007 to December 2010 (4 full years). The data have been re-sampled to
have 1 minute frequency. The number of returns analyzed is then roughly 500 ∗ 103 for
each stock.

To be able to model returns as a semi-Markov process the state space has been
discretized. In the 4 examples shown in this work, we discretized returns into 5 states
chosen to be symmetrical with respect to returns equal zero and to keep the shape of
the distribution unchanged. Returns are in fact already discretized in real data due to
the discretization of stock prices which is fixed by each stock exchange and depends
on the value of the stock. Just to make an example, in the Italian stock market for
stocks with value between 5.0001 and 10 euros the minimum variation is fixed to 0.005
euros (usually called tick). We then tried to remain as much as possible close to this
discretization. In Figure 1 we show an example of the discretization of the returns of
one of the analyzed stocks. The model described in the previous section requires the
specification of a function f in the definition of the weighted index Uλn in (2.1). Let
us briefly remind that volatility of real market is long range positively autocorrelated
and then clustered in time. This implies that, in the stock market, there are periods
of high and low volatility. Motivated by this empirical facts we suppose that also the
transition probabilities depends on whether the market is in a high volatility period or
in a low one. In a previous work [9], for simplicity reason, we used a moving average of
the squares of returns as the index variable U . In that case we imposed that the index
depended only on a memory m which was the number of transitions in the past used
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Figure 2: Discretization of index values

for the moving average. In this work we decided to use a more appropriate expression
for f . We use an exponentially weighted moving average (EWMA) of the squares of
returns which as the following expression:

f(Jn−1−k, a, λ) =
λTn−aJ2

n−1−k∑n−1
k=0

∑Tn−k−1
a=Tn−1−k

λTn−a
(3.8)

and consequently the index process becomes

Uλn =
n−1∑
k=0

Tn−k−1∑
a=Tn−1−k

(
λTn−aJ2

n−1−k∑n−1
k=0

∑Tn−k−1
a=Tn−1−k

λTn−a

)
. (3.9)

The index Uλ was also discretized into 5 states of low, medium low, medium, medium
high and high volatility. An example of the discretization used in the analysis is shown
in Figure 2.

A very important feature of stock market data is that, while returns are uncorre-
lated and show an i.i.d. like behavior, their square or absolute values are long range
correlated. It is very important that theoretical models of returns do reproduce this
features. We then tested our model to check whether it is able to reproduce such be-
havior. Given the presence of the parameter λ in the index function, we tested the
autocorrelation behavior as a function of λ. Note that in the definition of the index
variable the EWMA is performed over all the previous square of returns each with its
weight. Before summing over all past returns we decided to check whether a better
memory time m exists. For this reason we checked our model also against this other
parameter. With this choice formula (3.9) takes the form:

Uλn (m) =

n−1∑
k=n−m

Tn−k−1∑
a=Tn−1−k

(
λTn−aJ2

n−1−k∑n−1
k=n−m

∑Tn−k−1
a=Tn−1−k

λTn−a

)
. (3.10)

We remind the definition of the autocorrelation function: if Z indicates returns, the
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Figure 3: Mean square error between autocorrelation functions from real and simulated
data as functions of m and for different values of λ.

time lagged (τ) autocorrelation of the square of returns is defined as

Σ(τ) =
Cov(Z2(t+ τ), Z2(t))

V ar(Z2(t))
(3.11)

We estimated Σ(τ) for real data and for returns time series simulated with different
values of the memory time m and the weights λ. The time lag τ was made to run from
1 minute up to 100 minutes. Note that to be able to compare results for Σ(τ) each
simulated time series was generated with the same length as real data. In Figure 3 we
show the mean square error between Σ(τ) obtained from real and simulated returns
(using definition (3.10) for the index process) for the four stocks analyzed and for
different m and λ. Let us make some considerations on the results shown in Figure 3:
m should be chosen as big as possible and then definition (3.9) is appropriate as far as
λ is chosen less than 1, in fact, in this last case definition 3.9 becomes equivalent to a
moving average without weights and results presented in [9] hold for m. In Figure 4 we
show again the mean square error but only as a function of the weights λ then using
definition (3.9) for the index process. We can notice that the behavior is very similar
for the different analyzed stocks even if the best value for λ is not the same for all of
them. As it is possible to see the best values of λ for the stocks Fiat, Eni, Allianz and
VolksWagen are 0.96, 0.97, 0.97 and 0.98, respectively.
The comparison between the autocorrelations for the best values of λ for each stock
and real data is shown in Figure 5. This figure shows that real and synthetic data have
almost the same autocorrelation function for the square of returns.
We tested our model also to verify if it is able to reproduce the feature shown by real
data regarding the first passage time (fpt) distribution [8, 15, 16]. Let us remind here
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Figure 4: Mean square error between autocorrelation functions from real and simulated
data as functions of λ.
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Figure 6: First passage time distribution of real data (solid line) and synthetic (dashed
line) time series for the analyzed stocks.

the definition of fpt: the fpt for an investment made at time t at price S(t) is defined
as the time interval τ = t′ − t, t′ > t where the relation S(t + τ)/S(t) ≥ ρ is fulfilled
for the first time. We will denote the fpt as Γρ(t). Then

Γρ(t) = min{τ ≥ 0;S(t+ τ)/S(t) ≥ ρ}.

In [8] we have shown how to calculate analytically such distribution for a semi-Markov
process then we will not repeat that here. Using the best values for λ for each stock
Fiat, Eni, Allianz and VolksWagen and choosing a value ρ = 1.005 for all of them we
compare in Figure 6 results for the first passage time distribution for each stock. It can
be noticed that they are almost identical improving the results obtained for a simple
semi-Markov process presented in [8].

The results obtained here improve those obtained in our previous work [9, 8] even
further showing that the semi-Markov approach is adequate to model high frequency
financial time series.

4 Conclusions

We have modeled financial price changes through a semi-Markov model where we have
added a weighted index. Our work is motivated by two main results: the existence in
the market of periods of low and high volatility and our previous work [9], where we
showed that an indexed semi-Markov model, is able to capture almost all the correlation
in the square of returns present in real data. The results presented here show that the
semi-Markov kernel is influenced by the past volatility and that its influence decrease
exponentially with time. In fact, if the past volatility is used as an exponentially
weighted index, the model is able to reproduce almost exactly the behavior of market
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returns: the returns generated by the model are uncorrelated while the square of returns
present a long range correlation very similar to that of real data.

We have also shown, by analyzing different stocks from different markets (Italian
and German), that results do not depend on the particular stock chosen for the analysis
even if the value of the weights may depends on the stock.

We stress that out model is very different from those of the ARCH/GARCH family.
We do not model directly the volatility as a correlated process. We model returns and
by considering the semi-Markov kernel conditioned by a weighted index the volatility
correlation comes out freely.
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