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Abstract

For portfolio choice problems with proportional transaction costs, we discuss whether
or not there exists a shadow price, i.e., a least favorable frictionless market extension
leading to the same optimal strategy and utility.

By means of an explicit counter-example, we show that shadow prices may fail to
exist even in seemingly perfectly benign situations, i.e., for a log-investor trading in an
arbitrage-free market with bounded prices and constant transaction costs of arbitrary
size.

We also clarify the connection between shadow prices and duality theory. Whereas
dual minimizers need not lead to shadow prices in the above “global” sense, we show
that they always correspond to a “local” version.
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1 Introduction

A fundamental question in the theory of portfolio choice with proportional transaction costs
is whether or not there exists a so-called shadow price, i.e., a least favorable frictionless
market extension that leads to the same optimal strategy and utility. If the answer is
affirmative, this implies that the behavior of a given economic agent can be explained by
passing to a suitable frictionless shadow market. Put differently, no qualitatively new effects
arise due to the market frictions. If, on the other hand, a shadow price fails to exist then
transaction costs potentially impact portfolio choice in ways that cannot be reproduced in
any frictionless market.

Answers to this existence question have proved to be rather elusive beyond finite prob-
ability spaces, where shadow prices always exist [14]. Indeed, in an Itô process setting,
Cvitanić and Karatzas [4] proved that a shadow price exists and corresponds to the solution
of a suitable dual problem, if the latter is attained in a set of martingales. Yet, existence of
a dual minimizer could later only be guaranteed in a larger set of supermartingales (cf. [5],
also compare [7, 2]), for which the interpretation as a least favorable market extension is not
clear. Loewenstein [17] showed that shadow prices exist in a continuous filtration if short
positions are ruled out, and this condition is in fact sufficient for the existence of shadow
prices in full generality (cf. Benedetti et al. [1]). However, a counter-example in the last
study shows that shadow prices may fail to exist without further assumptions.1

Neither Loewenstein [17] nor Benedetti et al. [1] explain why the presence of shortselling
constraints leads to positive results. Likewise, it is not clear what properties of the counter-
example presented in [1]– which features unbounded jumps of the stock price, an unbounded
(relative and absolute) bid-ask spread, and where the candidate for the shadow price admits
arbitrage opportunities – causes the non-existence of shadow prices.

In the present study, we shed light on both of these questions. On the one hand, we
present a counter-example showing that shadow prices can fail to exist even in seemingly
perfectly benign settings, i.e., for a log-investor trading in a market with bounded prices
and constant bid-ask spread of arbitrary size. We explain how this happens because trans-
action costs change the set of strategies with non-negative terminal positions. That is,
shadow prices can fail to exist if investment choices with transaction costs are strictly more
constrained than in any potential frictionless shadow market. This observation also explains
why shortselling constraints remedy the problem: Evidently, long-only portfolios always lead
to solvent positions both with and without transaction costs.

In addition to these contributions, we also clarify the connection between shadow prices
and solutions to the dual problem. Starting with the seminal work of Cvitanić and Karatzas
[4], it has become “folklore” that – morally speaking – shadow prices should correspond to
the minimizer of a suitably defined dual problem. We discuss this in a general setting, in
discrete time to avoid technicalities and focus on the main ideas. As in [4], it turns out that
if the minimizer among the dual supermartingales is in fact a martingale, it corresponds to
a shadow price. Conversely – under minimal assumptions guaranteeing their existence – the

1Recently, Rokhlin [18] also discussed the (non-)existence of shadow prices. The counter-examples he
presents, however, are based on the use of the axiom of choice. Moreover, they require the use of a non-
standard utility functional. This is exemplified by the fact that they are set up in one period, where it is
easy to see that a shadow price for the classical utility maximization problem always exists.
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dual minimizers lead to the only potential shadow prices. In view of the counter-examples
in [1] and in the present study, the solution to the dual problem does not, in general, lead to
a shadow price in the above “global” sense. However, it always lies in the superdifferential
of the conditional value process, and hence can be interpreted as a kind of “local” version as
follows. Suppose that, at any fixed trading date, the investor is allowed to carry out a single
trade at the local frictionless shadow price derived from the dual minimizer. Then, even
though this provides potentially more favorable terms of trade, the investor will not deviate
from her optimal position in the financial market with frictions. Across several periods,
however, this property breaks down due to different solvency constraints.

The remainder of the article is organized as follows. In Section 2, we describe our discrete-
time setting, the utility maximization problem under proportional transaction costs, and
the notion of a shadow price. Section 3 contains a discussion of our counter-example on an
intuitive level; the rigorous mathematical derivations are deferred to Appendix A for better
readability. Section 4 studies the dual minimization problem and its connections to the
(non-)existence of shadow prices; the corresponding proofs are collected in Appendix B.

2 Utility maximization with transaction costs

2.1 Preliminaries

We consider a discrete-time financial market with one riskless and one risky asset. The
riskless asset can be traded without frictions and its price is assumed to be normalized to
one. Trading the risky asset incurs proportional transaction costs λ ∈ (0, 1). This means
that one has to pay a higher ask price St when buying risky shares but only receives a lower
bid price (1−λ)St when selling them. Here, S = (St)

T
t=0 denotes a strictly positive, adapted

process defined on a discrete filtered probability space
(
Ω,F , (Ft)

T
t=0, P

)
with fixed finite

time horizon T ∈ N. We assume that F0 is trivial and write ∆Xt := Xt − Xt−1, as well as
ϕ • Xt =

∑t

s=1 ϕs∆Xs for the stochastic integral of ϕ with respect to X .
Trading strategies are modeled by R

2-valued, predictable processes ϕ = (ϕ0
t , ϕ

1
t )
T+1
t=0 ,

where ϕ0
t+1 and ϕ1

t+1 describe the holdings in the riskless and the risky asset, respectively,
after rebalancing the portfolio at time t. A strategy ϕ = (ϕ0

t , ϕ
1
t )
T+1
t=0 is called self-financing,

denoted by ϕ ∈ A, if purchases and sales of the risky asset are accounted for in the riskless
position:

∆ϕ0
t+1 ≤ −(∆ϕ1

t+1)
+St + (∆ϕ1

t+1)
−(1− λ)St, 0 ≤ t ≤ T. (2.1)

We restrict our attention to self-financing strategies starting from a strictly positive initial
cash endowment and liquidating the risky position at the terminal time T , i.e., satisfying
(ϕ0

0, ϕ
1
0) = (x, 0) as well as ϕ0

T+1 ≥ 0 and ϕ1
T+1 = 0. This set is denoted by A(x).

In this discrete-time setting, we consider an investor whose preferences are modeled by
a utility function U : (0,∞) → R in the usual sense.2 Her goal is to trade as to maximize
the expected utility from her terminal cash position:

E[U(g)] → max! (2.2)

2That is, a strictly increasing and strictly concave function that is continuously differentiable and satisfies
the Inada conditions U ′(0) := lim

xց0
U ′(x) = ∞ and U ′(∞) := lim

xր∞
U ′(x) = 0.
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Here, g runs through the set C(x) = {ϕ0
T+1 ∈ L0

+(P ) | ∃(ϕ0, ϕ1) ∈ A(x)} of non-negative
cash positions that can be self-financed with a strategy (ϕ0, ϕ1) starting from the initial
endowment (x, 0).

2.2 Shadow prices

Consider any fictitious risky asset that can be traded without frictions (λ = 0) at a price

S̃ = (S̃t)
T
t=0 taking values in the bid-ask-spread [(1 − λ)S, S] of the original market with

transaction costs. Then, since purchases and sales can be carried out at potentially more
favorable prices, any attainable payoff in the market with bid-ask-spread [(1 − λ)S, S] can

be dominated by a payoff in the frictionless market with price process S̃. Hence,

u(x) := sup
ϕ0
T+1

∈C(x)

E[U(ϕ0
T+1)] ≤ inf

S̃∈[(1−λ)S,S]
sup

ϕ0
T+1

∈C(x;S̃)

E[U(ϕ0
T+1)]

=: inf
S̃∈[(1−λ)S,S]

u(x; S̃), (2.3)

where C(x; S̃) denotes the set of non-negative payoffs that can be attained by self-financing

strategies (ϕ0, ϕ1) ∈ A(x; S̃). The natural question that arises here is whether one can find
some particularly unfavorable frictionless shadow market with the same maximal expected
utility as the original market with transaction costs. To achieve this, the corresponding
frictionless optimizer has to purchase resp. sell stocks only when S̃ matches the ask resp. bid
price, because trades at strictly more favorable prices would lead to higher utility. Then, the
frictionless optimizer in this “shadow market” is also available in the original market with
transaction costs and hence optimal there as well. This motivates the following notion:

Definition 2.1. An adapted process Ŝ = (Ŝt)
T
t=0 is called a shadow price if it takes values in

the bid-ask spread [(1−λ)S, S] and there is a solution (ϕ0, ϕ1) to the corresponding frictionless
utility maximization problem

E[U(ϕ0
T+1)] = E[U(x+ ϕ1

• S̃T )] → max!, (ϕ0, ϕ1) ∈ A(x; Ŝ), (2.4)

which trades only at bid-ask prices:

{∆ϕ1
t+1 > 0} ⊆ {Ŝt = St} and {∆ϕ1

t+1 < 0} ⊆ {Ŝt = (1− λ)St}, for t = 0, . . . , T.

Note that a shadow price Ŝ = (Ŝt)
T
t=0 depends on the process S, the investor’s utility

function, and on her initial endowment.

3 A counter-example

In this section, we present an example showing that shadow prices can fail to exist even in
markets with bounded prices and constant transaction costs. The discussion is kept on an
informal level for better readability; the rigorous proofs are deferred to Appendix A.

The example is a variant of Example 5.1’ in [16]. Consider an investor with logarithmic
utility U(x) = log(x) and an initial endowment of x = 1 units of bond and zero units of stock.
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Figure 1: Illustration of the ask-price in the example.

The ask price St of the risky asset evolves as illustrated in Figure 1 and the corresponding
bid price is given by (1− λ)St for a constant transaction cost λ ∈ (0, 1).

By choosing the constants ε and εn,1, n = 0, 1, . . . in Figure 1 sufficiently small,3 downward
moves of the risky asset become very unlikely, making it increasingly attractive for the
investor to purchase as many shares of the risky asset as possible. In particular, the investor’s
positions in the risky asset will always be non-negative in this case.

On the other hand, the investor’s investment is limited by the constraint that she has
to have a positive position after liquidating her portfolio at the terminal time T to avoid
bankruptcy. Since the bid price of the risky asset (at which the investor’s non-negative risky
position has to be liquidated) can go up or down in both periods, the liquidation value of
the investor’s portfolio has to be positive also at time t = 1. Hence, the investor’s trade ∆ϕ1

1

in the first period has to satisfy the following solvency constraint:

1−∆ϕ1
1S

1
0 +∆ϕ1

1(1− λ)S1
1 ≥ 0,

for all values of S1
1 . Since the latter can go down arbitrarily close to 1, this implies that the

investor’s initial purchase ∆ϕ1
1 of risky assets is limited by 1/(1 + λ). If the probabilities of

downward movements are chosen small enough, this upper bound becomes binding, i.e., the
investor buys the maximal number ∆ϕ1

1 = 1/(1 + λ) of risky shares at time 0 that allows
her to avoid bankruptcy.

In the second period, the price of the risky asset can again go up or down. But now, the
solvency constraint at time t = 2 allows the investor to increase her position in the risky
asset in each of the states, which she will do if a suitable choice of the εn,1 makes downward
movements of the latter sufficiently unlikely.

3The formal definition is provided after Theorem A.1.
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At the terminal time t = 2, the investor just liquidates the positive number of risky assets
she is holding.

In summary, the optimal strategy prescribes purchasing strictly positive amounts of the
risky asset at times t = 0, 1, and liquidating the portfolio with a final sell trade at time
t = 2. Since a shadow price Ŝ must by definition coincide with the trading prices whenever
the optimal strategy transacts, the only candidate is given by

Ŝ0 = S1
0 , Ŝ1 = S1

1 , Ŝ2 = (1− λ)S1
2 .

In contrast to the example of [1], this frictionless market is arbitrage-free, and in fact can be
shown to correspond to the minimizer of the dual problem (cf. Appendix A). Nevertheless,

the corresponding optimal strategy for the frictionless market Ŝ does not coincide with the
one in the original market with transaction costs. The reason is that in the frictionless shadow
market the maximal number of shares that can be held in the first period is strictly bigger
than in the original market with transaction costs. Indeed, any initial purchase 0 ≤ ∆ϕ1

1 ≤ 1

satisfies the frictionless solvency constraint 1 + ∆ϕ1
1(Ŝ1 − Ŝ0) ≥ 0. Hence, the investor can

invest strictly more into the risky asset than in the original market with transaction costs
(where the upper bound is 1/(1 + λ)), and this is indeed optimal if the probabilities of
downward moves are chosen sufficiently small. Hence, the optimal strategy in the candidate
shadow market Ŝ strictly outperforms its frictional counterpart. Consequently, Ŝ cannot be
a shadow price and – since it was the only candidate – no shadow price exists in the example
at hand.

In fact, one can verify that the above counter-example shows even more. Fix the above
ask price for some λ ∈ (0, 1). Then, no shadow price exists for all bid-ask spreads λ′ ∈ (0, λ).
That is, a shadow price need not exist even for a fixed ask (or, equivalently, mid) price and
arbitrarily small transaction costs.

4 Duality

We now discuss the connection between shadow prices and convex duality. To this end, we
first formulate a suitable dual minimization problem (compare [4, 5, 7, 2]) and show that the
abstract versions of the results of Kramkov and Schachermayer [16] allow to extend the key
assertions of the frictionless theory also to the frictional case in a straightforward manner.

Fix a frictionless market S̃ = (S̃t)
T
t=0 and consider the primal utility maximization prob-

lem (2.3). To formulate a corresponding dual minimization problem, consider the con-
jugate function V of U , that is, the Legendre transform of −U(−x) given by V (y) :=
supx>0{U(x)−xy} for y > 0. In the frictionless case [16], a suitable domain of dual variables
is given by

Y(y; S̃) = {Y = (Y )Tt=0 ≥ 0 | Y0 = y and Y (ϕ0 + ϕ1S̃) =
(
Yt(ϕ

0
t + ϕ1

t S̃t)
)T
t=0

is a non-negative supermartingale for all (ϕ0, ϕ1) ∈ A(1; S̃)},

that is, the set of supermartingale deflators [15] that turn all wealth process (in terms of

the frictionless price process S̃) with a non-negative terminal payoff into supermartingales.
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Focusing on terminal values of the processes in Y(y; S̃), we define the set

D(y; S̃) = {h ∈ L0
+(P ) | ∃Y ∈ Y(y; S̃) with h ≤ YT}, for y > 0,

of random variables dominated by a dual element. Then, the dual problem corresponding
to the frictionless utility maximization problem is given by

E[V (YT )] → min!, Y ∈ Y(y; S̃), (4.1)

or, equivalently,
E[V (h)] → min!, h ∈ D(y; S̃).

With transaction costs, any frictionless price process with values in the bid-ask spread
can potentially be used to valuate the risky position in the investor’s portfolio. At first
glance, it is therefore appealing to use as dual variables the set of all such “consistent price
processes” and, for each one, the set of associated supermartingale deflators. Unfortunately,
this set is in general not large enough to contain the dual minimizer. Therefore, one has to
work with the following slightly different notions:

B(y) =
{
(Y 0, Y 1) ≥ 0

∣∣ Y 0
0 = y, Y

1

Y 0 ∈ [(1− λ)S, S] and Y 0(ϕ0 + ϕ1 Y 1

Y 0 ) = Y 0ϕ0 + Y 1ϕ1

is a non-negative supermartingale for all (ϕ0, ϕ1) ∈ A(1)
}
,

and, accordingly,

D(y) = {h ∈ L0
+(P ) | ∃(Y

0, Y 1) ∈ B(y) with h ≤ Y 0
T } for y > 0.

In the above definition of B(y), the investor’s risky position ϕ1 is valued at the frictionless
price process Y 1/Y 0. However, multiplication with the supermartingale Y 0 only needs to
turn those frictionless wealth processes ϕ0 +ϕ1Y 1/Y 0 into supermartingales that are gener-
ated by a strategy (ϕ0, ϕ1) which is admissible in the original market with transaction costs.
Since this is a (potentially strict) subset of the set of admissible strategies in the frictionless
market with price process Y 1/Y 0, the process Y 0 need not be an admissible dual variable
for the frictionless market with price process Y 1/Y 0. This subtle distinction disappears if
the dual variable (Y 0, Y 1) is a martingale (cf. the proof of Lemma 4.5), but plays a crucial
role in the examples where shadow prices do not exist (compare Appendix A).

Remark 4.1. Let us compare these definitions with the notion of consistent price sys-
tems [19] for transaction costs λ (henceforth CPSλ) ubiquitous in the theory of no-arbitrage
with transaction costs (cf., e.g., [10, 13, 11, 19] as well as the monograph of Kabanov and
Safarian [12] and the references therein). The set Z of λ-consistent price systems consists of
those martingales (Z0, Z1) ≥ 0 such that the ratio Z1/Z0 evolves within the bid-ask spread
[(1 − λ)S, S]. Since its first component is the density process of an equivalent martingale
measure for the frictionless risky asset Z1/Z0, existence of a CPSλ rules out arbitrage also in
the original market with transaction costs, since the trading prices are never more favorable
in the latter. The Fundamental Theorem of Asset Pricing with Transaction Costs then states
that the converse is (essentially) also true (see, e.g., [13, 19]); in this sense, CPSλ play a role
analogous to martingale measures in the frictionless case. One readily verifies that the set Z
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of λ-consistent price systems is contained in B(y) if the initial value of the first component
is rescaled by y. Hence, the set B(y) of dual variables is an extension of the set of CPSλ,
just as martingale measures are contained in the set of supermartingale deflators used in the
frictionless case. Indeed, the set of dual variables is precisely the Fatou-closure of the smaller
sets in both cases.4 More specifically, the proof of Lemma B.1 below shows that the set B(y)
of supermartingale densities in the definition of the dual variables D(y) can be replaced by
almost sure limits of CPSλ: Let

B̃(y) =
{
Y = (Y 0

t , Y
1
t )

T
t=0

∣∣∣ ∃(Z0,n, Z1,n) ∈ Z such that

Y 0
t = lim

n→∞
yZ0,n

t and Y 1
t = lim

n→∞
yZ1,n

t for each t = 0, . . . , T
}
.

Then, D(y) = {h ∈ L0
+(P ) | ∃(Y

0, Y 1) ∈ B̃(y) with h ≤ Y 0
T } for y > 0.

Using the dual variables proposed above, we have the following duality results in direct
analogy to the frictionless case [16, Theorems 2.1 and 2.2]. For better readability, the proof
is deferred to Appendix B.

Theorem 4.2. Suppose that S satisfies (CPSλ
′

) for some λ′ ∈ [0, λ), the asymptotic elastic-

ity of U is strictly less than one, i.e., AE(U) := lim sup
x→∞

xU ′(x)
U(x)

< 1, and the maximal expected

utility is finite, u(x) := supg∈C(x)E[U(g)] <∞, for some x ∈ (0,∞). Then:

1) The primal value function u and the dual value function

v(y) := inf
h∈D(y)

E[V (h)]

are conjugate, i.e.,

u(x) = inf
y>0

{v(y) + xy}, v(y) = sup
x>0

{u(x)− xy},

and continuously differentiable on (0,∞). The functions u and −v are strictly concave,
strictly increasing, and satisfy the Inada conditions

lim
x→0

u′(x) = ∞, lim
y→∞

v′(y) = 0, lim
x→∞

u′(x) = 0, lim
y→0

v′(y) = −∞.

2) For all x, y > 0, the solutions ĝ(x) ∈ C(x) and ĥ(y) ∈ D(y) to the primal problem

E [U(g)] → max!, g ∈ C(x),

and the dual problem
E [V (h)] → min!, h ∈ D(y), (4.2)

exist, are unique, and there are
(
ϕ̂0(x), ϕ̂1(x)

)
∈ A(x) and

(
Ŷ 0(y), Ŷ 1(y)

)
∈ B(y) such

that
ϕ̂0
T+1(x) = ĝ(x) and Ŷ 0

T (y) = ĥ(y). (4.3)

4Compare the discussion in [20, p. 47] for the frictionless case.
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3) For all x > 0, let ŷ(x) = u′(x) > 0 which is the unique solution to

v(y) + xy → min!, y > 0.

Then, ĝ(x) and ĥ
(
ŷ(x)

)
are given by (U ′)−1

(
ĥ
(
ŷ(x)

))
and U ′

(
ĝ(x)

)
, respectively, and

we have that E
[
ĝ(x)ĥ

(
ŷ(x)

)]
= xŷ(x). In particular, the process

Ŷ 0
(
ŷ(x)

)
ϕ̂0(x) + Ŷ 1

(
ŷ(x)

)
ϕ̂1(x) =

(
Ŷ 0
t

(
ŷ(x)

)
ϕ̂0
t (x) + Ŷ 1

t

(
ŷ(x)

)
ϕ̂1
t (x)

)
0≤t≤T

is a martingale for
(
ϕ̂0(x), ϕ̂1(x)

)
∈ A(x) and

(
Ŷ 0
(
ŷ(x)

)
, Ŷ 1

(
ŷ(x)

))
∈ B

(
ŷ(x)

)
satis-

fying (4.3) with y = ŷ(x).

4) Moreover,

Ŷ 0
(
ŷ(x)

)
ϕ̂0(x) + Ŷ 1

(
ŷ(x)

)
ϕ̂1(x) = Ŷ 0

(
ŷ(x)

) (
x+ ϕ̂1(x) •

Ŷ 1

Ŷ 0

)
,

which implies that {∆ϕ̂1
t+1 > 0} ⊆

{
Ŷ 1
t

Ŷ 0
t

= St

}
and {∆ϕ̂1

t+1 < 0} ⊆
{
Ŷ 1
t

Ŷ 0
t

= (1− λ)St

}

for t = 0, . . . , T .

5) Finally, we have v(y) = inf
(Z0,Z1)∈Z

E[V (yZ0
T )].

Remark 4.3. 1) We note that while the terminal values ϕ̂0
T+1(x) and Ŷ

0
T (y) are unique,

this is not necessarily true for the processes
(
ϕ̂0(x), ϕ̂1(x)

)
and

(
Ŷ 0(y), Ŷ 1(y)

)
.

2) We have formulated Theorem 4.2 in a discrete-time setting to avoid the technicalities
necessary to introduce the corresponding framework in continuous time [3]. The most
subtle point is the issue of admissibility which does not play a role in the present finite
discrete time setting.

Under the assumptions of Theorem 4.2, we have the following two results clarifying the
connection between dual minimizers and shadow prices. The proofs are again postponed to
Appendix B. The first result shows that the following insight of Cvitanić and Karatzas [4]
is also true in the present context: If there is no loss of mass in the dual problem with
transaction costs, then its minimizer corresponds to a shadow price.

Proposition 4.4. If a dual minimizer (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
is a martingale, then Ŷ 1/Ŷ 0 is

a shadow price.

Conversely, the following result shows that if a shadow price exists, it is necessarily
derived from a dual minimizer.

Proposition 4.5. If a shadow price Ŝ exists, it is given by Ŝ = Ŷ 1/Ŷ 0 for a dual minimizer

(Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
.
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In view of the counter-example presented in Section 3, the dual minimizer from Theorem
4.2 does not necessarily give rise to a frictionless shadow market in the “global” sense of
Definition 2.1. Locally for each period (t, t + 1), however, it can always be interpreted in
a such a manner. To make this idea precise, we consider the two-dimensional optimization
problem corresponding to (2.2), given by

E[U(ϕ0
T+1, ϕ

1
T+1)] → max!, (ϕ0, ϕ1) ∈ A(x), (4.4)

with the two-dimensional objective function

U(x, y) :=

{
U(x) : y ≥ 0 and x > 0,

−∞ : else.

For every t = 0, . . . , T and every (ψ0, ψ1) ∈ L0(Ω,Ft, P ;R
2), we define the Ft-conditional

value function:5

Ut(ψ
0, ψ1) := ess sup

(ϕ̃0,ϕ̃1)∈A

E
[
U
(
ψ0 + (ϕ̃0

T+1 − ϕ̃0
t ), ψ

1 + (ϕ̃1
T+1 − ϕ̃1

t )
)∣∣Ft

]
.

All dual minimizers then lie in the Ft-conditional superdifferential along the optimal strategy
(ϕ̂0, ϕ̂1) of this Ft-conditional concave function in the following sense:

Proposition 4.6. For any dual minimizer (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
, we have that

Ut(ψ
0, ψ1) ≤ Ut(ϕ̂

0
t , ϕ̂

1
t ) + (ψ0 − ϕ̂0

t )Ŷ
0
t + (ψ1 − ϕ̂1

t )Ŷ
1
t (4.5)

a.s. for all (ψ0, ψ1) ∈ L0(Ω,Ft, P ;R
2) and all t = 0, . . . , T .

This result can be interpreted as follows. Suppose that at time t the investor is allowed to
make a trade in terms of the frictionless price Ŷ 1

t /Ŷ
0
t corresponding to the dual minimizer.

If she trades a number ν of shares, her risky position then moves to ψ1
t := ϕ̂1

t + ν, whereas

her cash balance changes to ψ0
t := ϕ̂0

t − νŶ 1
t /Ŷ

0
t . Inequality (4.5) implies that none of these

trades increases the investor’s utility:

Ut(ψ
0
t , ψ

1
t ) ≤ Ut(ϕ̂

0
t , ϕ̂

1
t ).

Consequently, allowing the investor to trade in terms of the potentially more favorable fric-
tionless price Ŷ 1

t /Ŷ
0
t at a single trading time t does not cause her to deviate from the

frictional optimal policy. Note, however, that in contrast to Definition 2.1 this interpreta-
tion is only “local”: The value functions on both sides of the above inequality still refer to
the transaction cost problem in all other periods. In the counter-example from Section 3, for
example, increasing the risky investment in the first period beyond the value of the frictional
optimizer would still lead to bankruptcy when liquidating at bid-ask prices later on, unlike
when considering – simulataneously in all periods – the “global” frictionless market Ŷ 1/Ŷ 0

derived from the dual minimizer.
5Here, we use a generalized conditional expectation: setting +∞−∞ = −∞, we define

E
[
U
(
ψ0 + (ϕ̃0

T+1 − ϕ̃0
t
), ψ1 + (ϕ̃1

T+1 − ϕ̃1
t
)
)∣∣Ft

]
:=E

[(
U
(
ψ0 + (ϕ̃0

T+1 − ϕ̃0
t
), ψ1 + (ϕ̃1

T+1 − ϕ̃1
t
)
))+∣∣Ft

]

− E
[(
U
(
ψ0 + (ϕ̃0

T+1 − ϕ̃0
t
), ψ1 + (ϕ̃1

T+1 − ϕ̃1
t
)
))−∣∣Ft

]
.
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A Rigorous analysis of the counter-example

This section contains a precise mathematical analysis of the counter-example discussed on
an informal level in Section 3.

Theorem A.1. Fix λ ∈ (0, 1). There exists an arbitrage-free bounded process S = (St)
2
t=0

based on a countable probability space Ω = {ωn,1, ωn,2}
∞
n=0 with the following properties:

1) For the log-utility maximization problem with initial endowment (ϕ0
0, ϕ

1
0) = (1, 0) and

under transaction costs λ ∈ (0, 1), the solution (ϕ̂0
t , ϕ̂

1
t )

3
t=0 to the primal problem

E[U(ϕ0
3)] = E[log(ϕ0

3)] → max!, (ϕ0, ϕ1) ∈ A(1), (A.1)

and the solution (Ŷ 0
t , Ŷ

1
t )

2
t=0 to the dual problem

E[V (Y 0
2 )] = E[− log(Y 0

2 )− 1] → min!, (Y 0, Y 1) ∈ B(1), (A.2)

for ŷ(x) = 1 exist and are unique.

2) The unique candidate (Ŝt)
2
t=0 := (Ŷ 1

t /Ŷ
0
t )

2
t=0 for a frictionless shadow price process Ŝ

is arbitrage-free, and takes values in the bid-ask-spread [(1− λ)S, S].

3) Despite 1) and 2), the frictionless log-utility optimization problem

E[log(ϕ0
3)] = E[log(1 + ϕ1

• Ŝ2)] → max!, (ϕ0, ϕ1) ∈ A(1; Ŝ), (A.3)

for Ŝ yields a different solution and a higher value than its counterpart for S under
transaction costs λ.

The remainder of Appendix A is devoted to the proving Theorem A.1 by means of the
explicit counter-example discussed on an informal level in Section 3. To make the latter
– illustrated in Figure 1 – precise, let P [{ω0,1, ω0,2}] = (1 − ε), P [{ω0,1}] = (1 − ε)p0,1,
P [{ωn,1, ωn,2}] = ε2−n =: pn and P [{ωn,1}] = pn(1− εn,1). Here, we take ε ∈ (0, 1

3
) and

p0,1 := (1− ε0,1) =
(1 + 2λ)(3 + q0 + λ+ q0λ)

2(1 + λ)(2 + λ)
,

pn,1 := (1− εn,1) =
(1 + n(2 + n)λ) ((2n− 1)q1(1 + λ) + n2(2 + λ))

n2(1 + nλ)(1 + 2λ+ n(2 + λ))

with q0 ∈ (0, 1−λ
1+3λ+2λ2

) and q1 ∈ (0, 1−λ
1+4λ+3λ2

). To determine the optimal strategy in this
example, apply dynamic programming to the two-dimensional optimization problem corre-
sponding to (A.1),

E[U(ϕ0
3, ϕ

1
3)] → max!, (ϕ0, ϕ1) ∈ A(1),

with the two-dimensional objective function

U(x, y) :=

{
log(x) : y ≥ 0 and x > 0,

−∞ : else.
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The corresponding value function is then given by

Ut(x, y) = ess sup
(ϕ̃0,ϕ̃1)∈A

E
[
U
(
x+ (ϕ̃0

3 − ϕ̃0
t ), y + (ϕ̃1

3 − ϕ̃1
t )
)∣∣Ft

]
,

for (x, y) ∈ R
2 and t = 0, 1, 2. Here we define Ut(x, y) = −∞, if there exists no (ϕ̃0, ϕ̃1) ∈ A

such that
(
x + (ϕ̃0

3 − ϕ̃0
t ), y + (ϕ̃1

3 − ϕ̃1
t )
)
∈ dom(U). Since the bid and ask prices can

go up or down in any period, this happens precisely if the liquidation value ℓt(x, y) :=
x+ y+(1− λ)St − y−St of the position (x, y) at time t is nonpositive.

By the definition of Ut and the structure ofA, we have the dynamic programming property

Ut(x, y) = ess sup
ℓt(−∆ϕ̃0

t+1
,−∆ϕ̃1

t+1
)≥0

E[Ut+1

(
x+∆ϕ̃0

t+1, y +∆ϕ̃1
t+1)|Ft], (A.4)

which allows us to compute the solution (ϕ̂0, ϕ̂1) to (A.4) by optimizing in (A.4) recursively.

Lemma A.2. The solution (ϕ̂0, ϕ̂1) to problem (A.1) is given by (ϕ̂0
0, ϕ̂

1
0) = (1, 0),

∆ϕ̂1
1 =

1

1 + λ
, ∆ϕ̂1

2(ω0,i) = q0, ∆ϕ̂1
2(ωn,i) =

q1
n
, for i = 1, 2 and n ∈ N, ∆ϕ̂1

3 = −ϕ̂1
2,

where the cash position ϕ̂0 is determined by the self-financing condition (2.1) (with equality).
The superdifferential ∂U(ϕ̂0, ϕ̂1) of the value function along the optimal strategy (ϕ̂0, ϕ̂1) is
given by

∂U0(ϕ̂
0
0, ϕ̂

1
0) =

{
(1,S0)

ϕ̂0
0
+ϕ̂1

0
S0

}
, ∂U1(ϕ̂

0
1, ϕ̂

1
1) =

{
(1,S1)

ϕ̂0
1
+ϕ̂1

1
S1

}
, ∂U2(ϕ̂

0
2, ϕ̂

1
2) =

{
(1,(1−λ)S2)
ϕ̂0
2
+ϕ̂1

2
S2

}
.

Proof. Since the investor’s portfolio is liquidated at the terminal time T = 3,

U2(ϕ
0
2, ϕ

1
2) = log

(
ϕ0
2 + (ϕ1

2)
+(1− λ)S2 − (ϕ1

2)
−S2

)
(A.5)

for all (ϕ0, ϕ1) ∈ A(1). At time t = 1, we have

E[U2(ϕ
0
1 +∆ϕ̃0

2, ϕ
1
1 +∆ϕ̃1

2)|F1](ωn,i) = fn(∆ϕ̃
1
2;ϕ

0
1, ϕ

1
1)

for ∆ϕ̃1
2 ≥ 0 and ϕ1

1 +∆ϕ̃1
2 ≥ 0, where

fn(∆ϕ̃
1
2;ϕ

0
1, ϕ

1
1) := E

[
log
(
ϕ0
1 + ϕ1

1S1 + (ϕ1
1 +∆ϕ̃1

2)
(
(1− λ)S2 − S1

))∣∣∣F1

]
(ωn,i)

for i = 1, 2 and n ∈ N0. Therefore the maximizer as well as the optimal value in (A.4) agree
with their counterparts for

fn
(
∆ϕ̃1

2(ωn,i);ϕ
0
1, ϕ

1
1

)
→ max!, ∆ϕ̃1

2(ωn,i) ∈ R, (A.6)

for i = 1, 2 and n ∈ N0 as long as the maximizer of (A.6) falls into the domain where both
functions coincide. Since fn(∆ϕ̃

1
2(ωn,i);ϕ

0
1, ϕ

1
1) is differentiable with respect to ∆ϕ̃1

2(ωn,i),
the maximizer to (A.6) is determined by the first order condition f ′

n

(
∆ϕ̃1

2(ωn,i);ϕ
0
1, ϕ

1
1

)
= 0.

Solving the latter equation, we obtain that

∆ϕ̂1
2(ϕ

0
1, ϕ

1
1, 0) :=

(
ϕ0
1 + ϕ1

1S1(ω0,i)
)1 + λ

λ+ 2

(
1

1 + λ
+ q0

)
− ϕ1

1 (A.7)
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and

∆ϕ̂1
2(ϕ

0
1, ϕ

1
1, n) :=

(
ϕ0
1 + ϕ1

1S1(ωn,i)
) 1 + λ

λ+ 1
n

(
1

1 + λ
+
q1
n

)
− ϕ1

1, n ∈ N, (A.8)

maximize (A.6) due to our choice of pn,1. Since

(
ϕ0
1 + ϕ1

1S1(ω0,i)
)
≥
(
ϕ0
1 + ϕ1

1S1(ωn,i)
)
≥
λ+ 1

n

1 + λ

for all i = 1, 2, n ∈ N0, and (ϕ0, ϕ1) ∈ A(1) with ϕ1
1 > 0, we obtain that ∆ϕ̂1

2(ϕ
0
1, ϕ

1
1, n) ≥ 0

and ϕ1
1+∆ϕ̂1

2(ϕ
0
1, ϕ

1
1, n) ≥ 0 for all n ∈ N0 and (ϕ0, ϕ1) ∈ A(1) with ϕ1

1 > 0 and therefore for
all (ϕ0, ϕ1) ∈ A(1), as this is clearly also true for all (ϕ0, ϕ1) ∈ A(1) with ϕ1

1 ≤ 0. Plugging
∆ϕ̂1

2(ϕ
0
1, ϕ

1
1) into (A.4) gives

U1(ϕ
0
1, ϕ

1
1) = log(ϕ0

1 + ϕ1
1S1) + C1 (A.9)

for all (ϕ0, ϕ1) ∈ A(1), where C1 = E
[
log
(
1 +

(
1

1+λ
+ q

n

) (
(1− λ)S2 − S1

))
|F1

]
.

At time t = 0, we observe similarly as at time t = 1 that

E[U1(ϕ
0
0 +∆ϕ̃0

1, ϕ
1
0 +∆ϕ̃1

1)] = h(∆ϕ̃1
1;ϕ

0
0, ϕ

1
0)

for ∆ϕ̃1
1 ≥ 0 and ϕ1

0 +∆ϕ̃1
1 ≥ 0, where

h(∆ϕ1
1;ϕ

0
0, ϕ

1
0) := E[log(ϕ0

0 + ϕ1
0S0 + (ϕ1

0 +∆ϕ1
1)(S1 − S0)) + C1].

Then as before the maximizer as well as the optimal value in (A.4) agree with their coun-
terparts for

h(∆ϕ̃1
1;ϕ

0
0, ϕ

1
0) → max!, ∆ϕ̃1

1 ∈

(
−

1

1 + λ
,

1

1 + λ

]
, (A.10)

as long as the maximizer of (A.10) falls into the domain where both functions coincide. The
function h is differentiable with respect to ∆ϕ̃1

1 and its derivative is

h′(∆ϕ̃1
1;ϕ

0
0, ϕ

1
0) = (1− ε)

1

ϕ0
0 + ϕ1

02 + ∆ϕ̃1
1

+ ε

∞∑

n=1

2−n
1
n
− 1

ϕ0
0 + ϕ1

02 + ∆ϕ̃1
1(

1
n
− 1)

.

For ϕ0
0 = 1, ϕ1

0 = 0 and ∆ϕ̃1
1 =

1
1+λ

we obtain that

h′
( 1

1 + λ
; 1, 0

)
= (1− ε)

2

1 + 1
1+λ

+ ε
∞∑

n=1

2−n
1
n
− 1

1 + 1
1+λ

( 1
n
− 1)

≥ (1 + λ)

(
(1− ε)

1

2
+ ε

∞∑

n=1

2−n(1− n)

)

= (1 + λ)

(
(1− ε)

1

2
+ ε

(
1−

1
2

(1
2
− 1)2

))
= (1 + λ)

(
1

2
− ε

3

2

)
> 0
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for ε ∈ (0, 1
3
), which implies that the concave function h( · ; 1, 0) attains its maximum over

∆ϕ̃1
1 ∈ (− 1

1+λ
, 1
1+λ

] at ∆ϕ̃1
1 =

1
1+λ

. Insertion into (A.4) gives

U0(ϕ
0
0, ϕ

1
0) = log(ϕ0

0 + ϕ1
0S0) + c0 (A.11)

with c0 = E
[
log
(
1 + 1

1+λ
(S1 − S0)

)
+ C1

]
for all (ϕ0, ϕ1) ∈ A(1).

To verify the optimality of the strategy defined in the assertion, we observe that

E[U(ϕ̂0
3, ϕ̂

1
3)] = U0(1, 0) = sup

(ϕ0,ϕ1)∈A(1)

E[U(ϕ0
3, ϕ

1
3)]

by the above considerations, which already implies that (ϕ̂0, ϕ̂1) is the solution to (A.4).

As ϕ̂1
2 > 0, it immediately follows from (A.5) that ∂U2(ϕ̂

0
2, ϕ̂

1
2) =

{
(1,S2)

ϕ̂0
2
+ϕ̂1

2
S2

}
. To compute

∂U1(ϕ̂
0
1, ϕ̂

1
1), we observe that (A.7) and (A.8) are continuous with respect to (ϕ0, ϕ1) and

that ∆ϕ̂1
2(ϕ̂

0
1, ϕ̂

1
1, n) > 0 and ϕ̂1

1 + ∆ϕ̂1
2(ϕ̂

0
1, ϕ̂

1
1, n) > 0 for all n ∈ N0. Therefore (A.9)

is also valid in some sufficiently small open neighborhood of (ϕ̂0
1, ϕ̂

1
1) and we obtain that

∂U1(ϕ̂
0
1, ϕ̂

1
1) =

{
(1,S1)

ϕ̂0
1
+ϕ̂1

1
S1

}
by differentiating (A.9). For ϕ = (ϕ0, ϕ1) ∈ A such that (ϕ0

0, ϕ
1
0)

lies in some sufficiently small open neighborhood of (ϕ̂0
0, ϕ̂

1
0) = (1, 0), we have that ϕ is

solvent at time t = 1 if ∆ϕ1
1 ∈

(
−
ϕ0
0
+ϕ1

0
S0

1+λ
,
ϕ0
0
+ϕ1

0
S0

1+λ

]
, and therefore that (A.11) also holds in

this case. Differentiating (A.11) then implies that ∂U0(ϕ̂
0
0, ϕ̂

1
0) =

{
(1,S0)

ϕ̂0
0
+ϕ̂1

0
S0

}
, which completes

the proof.

Lemma A.3. The solution (Ŷ 0, Ŷ 1) ∈ B(1) to the dual problem (A.2) is given by

(Ŷ 0
0 , Ŷ

1
0 ) =

(1, S0)

ϕ̂0
0 + ϕ̂1

0S0
, (Ŷ 0

1 , Ŷ
1
1 ) =

(1, S1)

ϕ̂0
1 + ϕ̂1

1S1
, (Ŷ 0

2 , Ŷ
1
2 ) =

(1, (1− λ)S2)

ϕ̂0
2 + ϕ̂1

2S2
. (A.12)

Both Ŷ 0 and Ŷ 1 are strict supermartingales, i.e., fail to be true martingales. Nevertheless,
(Ŝt)

2
t=0 := (Ŷ 1

t /Ŷ
0
t )

2
t=0 evolves in the bid-ask spread and the corresponding frictionless market

is arbitrage-free.

Proof. By Proposition 4.6 the solution to the dual problem is always valued in the Ft-
conditional superdifferential of the Ft-conditional value function along the optimal strategy
(ϕ̂0, ϕ̂1). As this Ft-conditional superdifferential coincides in the present Markovian set-up
with the superdifferential of the value function, which is by Lemma A.2 single-valued, the
process (Ŷ 0, Ŷ 1) given in (A.12) is the unique solution to the dual problem (A.2).

To see that Ŷ 0 and Ŷ 1 are only supermartingales but no martingales, we note that
E[Ŷ 0

1 (S1 − S0)|F0] = h′( 1
1+λ

; 1, 0) ∈
(
0, 1+λ

2

)
and hence

E

[
Ŷ 0
1

Ŷ 0
0

∣∣∣∣F0

]
= 1− ϕ̂1

0E[Ŷ
0
1 (S1 − S0)|F0] < 1,

which also implies that

E[Ŷ 1
1 − Ŷ 1

0 |F0] = E[Ŷ 0
1 (S1 − S0) + (Ŷ 0

1 − Ŷ 0
0 )S0|F0] = E[Ŷ 0

1 (S1 − S0)|F0](1− ϕ̂1
0S0Ŷ

0
0 ) < 0.

Since (Ŝt)
2
t=0 = (Ŷ 1

t /Ŷ
0
t )

2
t=0 can go up and down with a positive probability in each period,

Ŝ is an arbitrage-free price process. As Ŝ takes values in the bid-ask-spread [(1− λ)S, S] by
definition, this completes the proof.
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The solution to the frictionless log-utility maximization problem for the price process
(Ŝt)

2
t=0 := (Ŷ 1

t /Ŷ
0
t )

2
t=0 can again be computed recursively. The corresponding maximal

expected utility turns out to be strictly higher than in the original market with transaction
costs; hence Ŝ cannot be a shadow price for the latter. Since it is the only candidate, this
shows that a shadow price does not exist.

Lemma A.4. The solution (ψ̂0, ψ̂1) to the frictionless log-utility maximization problem (A.3)

with risky asset Ŝ is given by (ψ̂0
0, ψ̂

1
0) = (1, 0),

∆ψ̂1
1 = 1, ∆ψ̂1

2(ω0,i) = 2
1 + λ

2 + λ

(
1

1 + λ
+ q0

)
−1, ∆ψ̂1

2(ωn,i) =
1

n

1 + λ

λ+ 1
n

(
1

1 + λ
+
q1
n

)
−1,

and ∆ψ̂1
3 = −ψ̂1

2 for i = 1, 2 and n ∈ N, where the cash positions ψ̂0
t , t = 1, 2, 3 are

determined by the self-financing condition (2.1) (with equality). The maximal expected utility
in this frictionless market is strictly higher than in the original market with transaction costs,

sup
(ϕ0,ϕ1)∈A(1;Ŝ)

E[log(ϕ0
3)] > sup

(ϕ0,ϕ1)∈A(1)

E[log(ϕ0
3)].

Moreover, the frictionless dual minimizer Ŷ = 1/(ψ̂0 + ψ̂1Ŝ) does not coincide with its
frictional counterpart.

Proof. The solution to the frictionless primal problem can be calculated recursively by dy-
namic programming as in Lemma A.2. At time t = 1, one has to solve

E
[
log(1 + ϕ1

1∆Ŝ1 + ϕ1
2∆Ŝ2)

∣∣F1

]
(ωn,i) = fn(ϕ

1
2; 1 + ϕ1

1∆Ŝ1, 0) → max!, ϕ1
2 ∈ R,

which, by (A.8), has the solution ψ̂1
2(ω0,i) = (1 + ϕ1

1∆Ŝ1)
1+λ
λ+2

(
1

1+λ
+ q0

)
and ψ̂1

2(ωn,i) =

(1 + ϕ1
1∆Ŝ1)

1+λ
λ+ 1

n

(
1

1+λ
+ q1

n

)
for i = 1, 2 and n ∈ N. At time t = 0, the frictionless Ŝ-agent

can buy more stocks than the agent with transaction costs and therefore has the different
admissibility constraint ϕ1

1 ∈ (−1, 1]. Hence, her optimal strategy is determined by solving
the problem

E[log(1 + ϕ1
1∆Ŝ1) + C1] = h(ϕ1

1; 1, 0) → max!, ϕ1
1 ∈ (−1, 1].

Similarly as in the proof of Lemma A.2 we have h′(1; 1, 0) = (1
2
− ε3

2
) > 0. Therefore the

concave function h( · ; 1, 0) attains its maximum over (−1, 1] at ψ̂1 = 1 and

sup
(ϕ0,ϕ1)∈A(Ŝ)

E[log(1 + ϕ1
• Ŝ2)] = h(ψ̂1; 1, 0) > h(∆ϕ̂1

0; 1, 0) = sup
(ϕ0,ϕ1)∈A(1)

E[U(ϕ0
3, ϕ

1
3)].

Since E[log(1 + ψ̂1
• Ŝ2)] = sup(ϕ0,ϕ1)∈A(Ŝ)E[log(1 + ϕ1

• Ŝ2)], (1 + ψ̂1
• Ŝ1)(ω0,i) = 2 and

(1 + ψ̂1
• Ŝ1)(ωn,i) = 1

n
for i = 1, 2 and n ∈ N, the solution to (A.3) is given by (ψ̂0, ψ1)

as above. The solution to the frictionless dual problem is then given by Ŷ = 1

1+ψ̂1•S
, since

Ŷ2 =
1

1+ψ̂1•S2

and (1 + ψ̂1
• S)Ŷ is a martingale by Theorem 2.2 in [16]. This completes the

proof.

A similar – but even more tedious – analysis of this example shows that a shadow price
need not exist even if one fixes the ask price S for some λ ∈ (0, 1), but considers all arbitrary
small spreads λ′ ∈ (0, λ).
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B Proofs for Section 4

The proof of parts 1)–3) of Theorem 4.2 follow from the abstract versions of the main results
in [16, Theorems 3.1 and 3.2] once we have shown in the lemma below that the relations
in [16, Proposition 3.1] hold true. We call a set G ⊆ L0

+(P ) solid, if 0 ≤ f ≤ g and g ∈ G
imply that f ∈ G, and use that C(x) = xC(1) =: xC and D(y) = yD(1) =: yD. For part 5) of
Theorem 4.2 we show in assertion 4) below that D := {Z0

T | (Z0, Z1) ∈ Z} is closed under
countable convex combinations. Its proof then follows from [16, Proposition 3.2].

Lemma B.1. Suppose that S satisfies (CPSλ
′

) for some λ′ ∈ (0, λ). Then:

1) C and D are convex, solid and closed in the topology of convergence in measure.

2) g ∈ C iff E[gh] ≤ 1, for all h ∈ D, and h ∈ D iff E[gh] ≤ 1, for all g ∈ C.

3) C is a bounded subset of L0
+(P ) and contains the constant function 1.

4) D := {Z0
T | (Z0, Z1) ∈ Z} is closed under countable convex combinations.

Proof. 1) The sets C and D are convex and solid by definition. The assumption that S
satisfies (CPSλ

′

) for some λ′ ∈ (0, λ) implies the existence of a strictly consistent price

system (see Definition 1.5 in [19]). Therefore ÂT := {(ϕ0
T , ϕ

1
T ) | (ϕ0, ϕ1) ∈ A} and hence

C =
(
(1, 0) + ÂT

)
∩ L0

+(P )× {0} are closed with respect to convergence in measure by The-
orems 1.7 and 2.1 in [19], where we identify L0(Ω,F , P ;R× {0}) with L0(Ω,F , P ;R). The
closedness of D follows by similar arguments as in Lemma 4.1 in [16]. Indeed, let (hn) be a
sequence in D converging to some h in measure. Then there exists a sequence

(
(Y 0,n, Y 1,n)

)

in B(1) such that Y 0,n
T ≥ hn for each n ∈ N. Since Y 0,n and Y 1,n are non-negative super-

martingales, there exist by (the arguments in the proof of) Lemma 5.2.1 in [8] a sequence

(Ỹ n,0, Ỹ n,1) ∈ conv
(
(Y 0,n, Y 1,n), (Y 0,n+1, Y 1,n+1), . . .

)
for n ≥ 1 and supermartingales Ỹ 0 and

Ỹ 1 such that (Ỹ n,0
t ) is almost surely convergent to Ỹ 0

t and (Ỹ n,1
t ) to Ỹ 1

t for each t = 0, . . . , T .

This almost sure convergence is then sufficient to deduce that (Ỹ 0, Ỹ 1) is R
2
+-valued with

Ỹ 0
0 = 1, and that Ỹ 0ϕ0+ Ỹ 1ϕ1 is a non-negative supermartingale for all (ϕ0, ϕ1) ∈ A(1) and

Ỹ 0
T ≥ h, which implies that (Ỹ 0, Ỹ 1) ∈ B(1) and hence that h ∈ D.

2) Since D̃ ⊆ D, we obtain the first assertion by the superreplication theorem under
transaction costs [19, Theorem 4.1]. The second assertion then follows by the same arguments
as the proof of Proposition 3.1 in [16].

3) The fact that C contains the constant function 1 follows by definition; the L0
+(P )-

boundedness is implied by the existence of a strictly positive element in D.
4) By martingale convergence, D is closed in the norm of L1(P ) and hence under countable

convex combinations.

Proof of part 4) of Theorem 4.2. By the proof of part 1) of Lemma B.1 above and part 5)
of Theorem 4.2 there exists a sequence

(
(Z0,n, Z1,n)

)
in Z such that ŷ(x)Z0,n

t and ŷ(x)Z1,n
t

converge almost surely to Ŷ 0
t

(
ŷ(x)

)
and Ŷ 1

t

(
ŷ(x)

)
for each t = 0, . . . , T . As Z1,n

Z0,n is valued in

the bid-ask-spread [(1 − λ)S, S], any (ϕ0, ϕ1) ∈ A(x) is also self-financing for Z1,n

Z0,n without
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frictions (λ = 0) and Z0,n
(
x + ϕ1

•
Z1,n

Z0,n

)
is a local martingale that is bounded from below

and hence a supermartingale. Therefore we obtain that

E[Z0,n
T ϕ̂0

T+1(x)] = E

[
Z0,n
T

(∑T+1
k=1

(
∆ϕ̂0

k(x) +
Z

1,n

k−1

Z
0,n

k−1

∆ϕ̂1
k(x)

)
+ x+ ϕ̂1(x) •

Z1,n

Z0,n T

)]

≤ E

[
Z0,n
T

(∑T+1
k=1

(
∆ϕ̂0

k(x) +
Z

1,n

k−1

Z
0,n

k−1

∆ϕ̂1
k(x)

))]
+ x.

Applying Fatou’s Lemma twice the latter implies that

xŷ(x) = E
[
Ŷ 0
T

(
ŷ(x)

)(
ŷ(x)

)
ϕ̂0
T+1(x)

]
≤ lim inf

n→∞
E[ŷ(x)Z0,n

T ϕ̂0
T+1(x)]

= lim inf
n→∞

E

[
ŷ(x)Z0,n

T

(∑T+1
k=1

(
∆ϕ̂0

k(x) +
Z

1,n

k−1

Z
0,n

k−1

∆ϕ̂1
k(x)

))]
+ xŷ(x)

≤ lim sup
n→∞

E

[
ŷ(x)Z0,n

T

(∑T+1
k=1

(
∆ϕ̂0

k(x) +
Z

1,n

k−1

Z
0,n

k−1

∆ϕ̂1
k(x)

))]
+ xŷ(x)

≤ E

[
Ŷ 0
T

(
ŷ(x)

)(∑T+1
k=1

(
∆ϕ̂0

k(x) +
Ŷ 1
k−1

(ŷ(x))

Ŷ 0
k−1

(ŷ(x))
∆ϕ̂1

k(x)

))]
+ xŷ(x)

and therefore that ∆ϕ̂0
k(x) +

Ŷ 1
k−1

(ŷ(x))

Ŷ 0
k−1

(ŷ(x))
∆ϕ̂1

k(x) = 0 for k = 1, . . . , T + 1, which yields the

assertion.

Proof of Proposition 4.4. Suppose that (Ŷ 0, Ŷ 1) ∈ B
(
ŷ(x)

)
is a martingale. Then, the pro-

cess Ŷ 0ϕ0 + Ŷ 1ϕ1 = Ŷ 0
(
x + ϕ1

•
Ŷ 1

Ŷ 0

)
is a non-negative local martingale and hence a

supermartingale for all (ϕ0, ϕ1) ∈ A
(
x; Ŷ

1

Ŷ 0

)
,6 which implies that Ŷ 0 ∈ Y

(
ŷ(x); Ŷ

1

Ŷ 0

)
. As

ϕ̂0
T+1 = (U ′)−1(Ŷ 0

T ), we have Ŷ 0
T = U ′(ϕ̂0

T+1), and Ŷ 0ϕ̂0 + Ŷ 1ϕ̂1 = Ŷ 0
(
x + ϕ̂1

•
Ŷ 1

Ŷ 0

)
is a

martingale by Theorem 4.2, we obtain by the duality for the frictionless utility maximiza-

tion problem, i.e., Theorem 2.2 in [16], that (ϕ̂0, ϕ̂1) ∈ A
(
x; Ŷ

1

Ŷ 0

)
and Ŷ 0 ∈ Y

(
ŷ(x); Ŷ

1

Ŷ 0

)

are the solutions to the frictionless primal and dual problem for Ŷ 1

Ŷ 0
, if ŷ(x; Ŷ

1

Ŷ 0
) = ŷ(x).

To see the latter, we observe that u(x) = v
(
ŷ(x)

)
+ xŷ(x) by Theorem 4.2 and therefore

v
(
ŷ(x)

)
+ xŷ(x) = u(x) ≤ u

(
x; Ŷ

1

Ŷ 0

)
≤ v

(
ŷ(x); Ŷ

1

Ŷ 0

)
+ xŷ(x) by (2.3). Since v

(
ŷ(x)

)
=

E
[
V (Ŷ 0

T )
]
, E[ϕ̂0

T+1Ŷ
0
T ] = xŷ(x) and Ŷ 0 ∈ Y

(
ŷ(x); Ŷ

1

Ŷ 0

)
, we obtain that ŷ(x; Ŷ

1

Ŷ 0
) = ŷ(x),

which completes the proof.

Proof of Proposition 4.5. As the solution (ϕ0, ϕ1) ∈ A(x; Ŝ) to (2.4) exists by the definition

of a shadow price, we obtain that Ŝ = (Ŝ)Tt=0 is arbitrage-free. To see this, suppose that
there exists an arbitrage opportunity. Since we are in finite discrete time, the existence of
an arbitrage opportunity is equivalent to the existence of an arbitrage opportunity (ξ0, ξ1)
in one period. Adding this (as in the proof of Theorem 3.3 in [9]) to the solution (ϕ0, ϕ1) ∈

A(x; Ŝ) to (2.4) yields a strategy with a strictly higher expected utility, i.e., E[U(ϕ0
T+1)] <

E
[
U
(
(ϕ0 + ξ0)T+1

)]
. As (ϕ0 + ξ0, ϕ1 + ξ1) ∈ A(x; Ŝ), this contradicts the assumption that

6Note that this argument fails in general if the dual minimizer is a strict supermartingale, unless negative
risky positions are ruled out by short selling constraints as in [17, 1]
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(ϕ0, ϕ1) is the solution to (2.4) and hence proves that Ŝ is arbitrage-free. By the fundamental
theorem of asset pricing [6] this implies the existence of an equivalent martingale measure

Q for Ŝ and therefore that Y(y; Ŝ) 6= ∅ for all y > 0. As Ŝ is valued in the bid-ask-spread

[(1 − λ)S, S], any (ϕ0, ϕ1) ∈ A(x) is also self-financing for Ŝ without frictions (λ = 0) and

hence A(x) ⊆ A(x; Ŝ). Since A(x) ⊆ A(x; Ŝ), we obtain that (Y 0, Y 1) := (Y, Y Ŝ) ∈ B(y)

for all Y ∈ Y(y; Ŝ) and therefore similarly to (2.3):

v(y) = inf
(Y 0,Y 1)∈B(y)

E[V (Y 0
T )] ≤ inf

Y ∈Y(y;Ŝ)
E[V (YT )] =: v(y; Ŝ). (B.1)

Moreover, as

u(x) = v
(
ŷ(x)

)
+xŷ(x) ≤ v

(
ŷ(x; Ŝ)

)
+xŷ(x; Ŝ) ≤ v

(
ŷ(x; Ŝ), Ŝ

)
+xŷ(x; Ŝ) = u(x; Ŝ) = u(x),

it follows that ŷ(x) = ŷ(x; Ŝ) and therefore that (Ŷ 0, Ŷ 1) := (Ŷ , Ŷ Ŝ) ∈ B
(
ŷ(x)

)
is the

solution to the frictional dual problem (4.2), where Ŷ ∈ Y
(
ŷ(x; Ŝ)

)
is the solution to its

frictionless counterpart (4.1) for Ŝ.

Proof of Proposition 4.6. In analogy to the primal problem, we introduce a two-dimensional
objective function

V(x, y) :=

{
V (x) : y ≥ 0 and x > 0,

+∞ : else

for the dual problem (4.2) that is then given by

E[V(Y 0
T , Y

1
T )] → max!, (Y 0, Y 1) ∈ B(y). (B.2)

For a dynamic formulation of (B.2) we set B(Y 0, Y 1; t) = {(Ỹ 0, Ỹ 1) ∈ B(y) | (Ỹ 0
s , Ỹ

1
s ) =

(Y 0
s , Y

1
s ) for s = 0, . . . , t} for (Y 0, Y 1) ∈ B(y) and

Vt(Y
0, Y 1) := ess inf

(Ỹ 0,Ỹ 1)∈B(Y 0,Y 1;t)
E
[
V(Ỹ 0

T , Ỹ
1
T )
∣∣Ft

]
.7

By the martingale optimality principle we then have Ut(ϕ̂
0
t , ϕ̂

1
t ) = E

[
U(ϕ̂0

T+1, ϕ̂
1
T+1

)∣∣Ft

]
for

the solution (ϕ̂0, ϕ̂1) to (4.4) and Vt(Ŷ
0, Ŷ 1) = E

[
V(Ŷ 0

T , Ŷ
1
T

)∣∣Ft

]
for the solution (Ŷ 0, Ŷ 1) to

(B.2). Now, by Fenchel’s inequality, we have

U
(
ψ0+(ϕ̃0

T+1−ϕ̃
0
t ), ψ

1+(ϕ̃1
T+1−ϕ̃

1
t )
)
≤ V(Ŷ 0

T , Ŷ
1
T )+

(
ψ0+(ϕ̃0

T+1−ϕ̃
0
t )
)
Ŷ 0
T+
(
ψ1+(ϕ̃1

T+1−ϕ̃
1
t )
)
Ŷ 1
T

for all (ϕ̃0, ϕ̃1) ∈ A and U(ϕ̂0
T+1) = U(ϕ̂0

T+1, ϕ̂
1
T+1) = V(Ŷ 0

T , Ŷ
1
T ) + ϕ̂0

T+1Ŷ
0
T + ϕ̂1

T+1Ŷ
1
T for

(ϕ̂0, ϕ̂1) by part 3) of Theorem 4.2. Taking conditional expectations and optimizing in the
above equation gives

Ut(ψ
0, ψ1) ≤ Vt(Ŷ

0
t , Ŷ

1
t ) + ψ0Ŷ 0

t + ψ1Ŷ 1
t (B.3)

and
Ut(ϕ̂

0
t , ϕ̂

1
t ) = Vt(Ŷ

0
t , Ŷ

1
t ) + ϕ̂0

t Ŷ
0
t + ϕ̂1

t Ŷ
1
t (B.4)

7Note that the definition of Ut and Vt is slightly asymmetric, as the set A is – in contrast to the set B(y)
– stable under concatenation.
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by the martingale optimality principle. In (B.3) we exploit that there either exists (ϕ0, ϕ1) ∈
A(x̃) for some x̃ > 0 such that (ϕ0

T+1, ϕ
1
T+1) =

(
ψ0+(ϕ̃0

T+1− ϕ̃
0
t ), ψ

1+(ϕ̃1
T+1− ϕ̃

1
t )
)
and that

(Ŷ 0
t ϕ

0
t+1 + Ŷ 1

t ϕ
1
t+1)

T
t=0 is a supermartingale with E[Ŷ 0

T ϕ
0
T+1 + Ŷ 1

Tϕ
1
T+1|Ft] ≤ Ŷ 0

t ψ
0 + Ŷ 1

t ψ
1

or the inequality is trivially satisfied with Ut(ψ
0, ψ1) = −∞, if no such (ϕ0, ϕ1) exists.

Combining (B.3) and (B.4) then implies (4.5), i.e., that

Ut(ψ
0, ψ1) ≤ Ut(ϕ̂

0
t , ϕ̂

1
t ) + (ϕ0 − ϕ̂0

t )Ŷ
0
t + (ψ1 − ϕ̂1

t )Ŷ
1
t ,

a.s. for all (ψ0, ψ1) ∈ L0(Ω,Ft, P ;R
2).
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