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Abstract. A trading strategy based on a natural learning process, which
asymptotically outperforms any trading strategy from RKHS (Repro-
duced Kernel Hilbert Space), is presented. In this process, the trader ra-
tionally chooses his gambles using predictions made by a randomized well
calibrated algorithm. Our strategy is based on Dawid’s notion of calibra-
tion with more general changing checking rules and on some modification
of Kakade and Foster’s randomized algorithm for computing calibrated
forecasts. We use also Vovk’s method of defensive forecasting in RKHS.

1 Introduction

Predicting sequences is the key problem of machine learning and statistics. The
learning process proceeds as follows: observing a finite-state sequence given on-
line a forecaster assigns a subjective estimate to future states. A minimal re-
quirement for testing any prediction algorithm is that it should be calibrated
(see Dawid [3]). Dawid gave an informal explanation of calibration for binary
outcomes as follows. Let a sequence ω1, ω2, . . . , ωn−1 of binary outcomes be ob-
served by a forecaster whose task is to give a probability pn of a future event
ωn = 1. In a typical example, pn is interpreted as a probability that it will rain.
Forecaster is said to be well calibrated if it rains as often as he leads us to expect.
It should rain about 80% of the days for which pn = 0.8, and so on.

A more precise definition is as follows. Let I(p) denote the characteristic
function of a subinterval I ⊆ [0, 1], i.e., I(p) = 1 if p ∈ I, and I(p) = 0,
otherwise. An infinite sequence of forecasts p1, p2, . . . is calibrated for an infinite
binary sequence of outcomes ω1ω2 . . . if for characteristic function I(p) of any
subinterval of [0, 1] the calibration error tends to zero, i.e.,

1

n

n
∑

i=1

I(pi)(ωi − pi) → 0

as n → ∞. The indicator function I(pi) determines some “checking rule” which
selects indices i where we compute the deviation between forecasts pi and out-
comes ωi.

http://arxiv.org/abs/1205.3767v1


If the weather acts adversatively, then, as shown by Oakes [9] and Dawid [4],
any deterministic forecasting algorithm will not always be calibrated.

Foster and Vohra [6] show that calibration is almost surely guaranteed with
a randomizing forecasting rule, i.e., where the forecasts pi are chosen using inter-
nal randomization and the forecasts are hidden from the weather until weather
makes its decision whether to rain or not.

The origin of the calibration algorithms is the Blackwell’s [1] approachabil-
ity theorem but, as its drawback, the forecaster has to use linear programming
to compute the forecasts. We modify and generalize a more computationally
efficient method from Kakade and Foster [8], where “an almost deterministic”
randomized rounding universal forecasting algorithm is presented. For any se-
quence of outcomes ω1ω2 . . . and for any precision of rounding∆ > 0, an observer
can simply randomly round the deterministic forecast pi up to ∆ to a random
forecast p̃i in order to calibrate for this sequence with probability one :

lim sup
n→∞

∣

∣

∣

∣

∣

1

n

n
∑

i=1

I(p̃i)(ωi − p̃i)

∣

∣

∣

∣

∣

≤ ∆, (1)

where I(p) is the characteristic function of any subinterval of [0, 1]. This algo-
rithm can be easily generalized such that the calibration error tends to zero as
n → ∞.

We consider real valued outcomes ωi (for example, prices of a stock). In this
case, predictions could be interpreted as mean values of future outcomes under
some unknown for us probability distributions. We need not the precise form of
such distributions – we should predict only future means.

The well known applications of the method of calibration are the following.
Kakade and Foster proved that empirical frequencies of play in any normal-
form game with finite strategy sets converges to a set of correlated equilibrium
if each player chooses his gamble as the best response to the well calibrated
forecasts of the gambles of other players. In series of papers: [13], [14], [15], [16],
[17], Vovk developed the method of calibration for the case of more general
RKHS (Reproduced Kernel Hilbert Space) and Banach spaces. Vovk called his
method defensive forecasting (DF). He also applied his method for recovering
unknown functional dependencies presented by arbitrary functions from RKHS
and Banach spaces. Chernov et al. [5] show that well calibrated forecasts can be
used to compute predictions for the Vovk’s [12] aggregating algorithm.

In this paper we present a new application of the method of calibration.
We show that, using the well calibrated forecasts, it is possible to construct an
asymptotically optimal trading strategy in the Stock Market which outperforms
any trading strategy presented by a function from a given RKHS. The learning
process is the most traditional one. At each step Forecaster makes a prediction
of a future price of the stock and Speculator takes the best response to this
prediction. He chooses a strategy: dealing for a rise or for a fall, or passes the step.
Forecaster uses some randomized algorithm for computing calibrated forecasts.
Our main result, Theorem 1 (Section 3), says that this trading strategy is optimal
– it outperforms any trading strategy presented by a function from a given



RKHS. To achieve this goal we extend in Theorem 2 (Section 4) Kakade and
Foster’s forecasting algorithm to arbitrary real valued outcomes and to a more
general notion of calibration with changing parameterized checking rules. We
combine it with Vovk’s [13] defensive forecasting method in RKHS (see also [14]).
In Section 6 results of numerical experiments are presented.

2 Preliminaries

A Hilbert space F of real-valued functions on a compact set X is called RKHS
(Reproducing Kernel Hilbert Space) on X if the evaluation functional f → f(x)
is continuous for each x ∈ X . Let ‖ · ‖ be a norm on F and cF (x) = sup

‖f‖≤1

|f(x)|.

The embedding constant of F is defined: cF = sup
x

cF (x). We consider RKHS F
with cF < ∞.

Let X = [0, 1]m for m ≥ 1. An example of RKHS is the Sobolev space
F = H1([0, 1]), which consists of absolutely continuous functions f : [0, 1] → R
with ‖f‖ ≤ 1, where ‖f‖ =

√

∫ 1

0
(f(t))2dt+

∫ 1

0
(f ′(t))2dt. For this space, cF =√

coth 1 (see [14]). Other examples and details of the kernel theory see in Smola
and Scholkopf [10].

Let F be an RKHS on X with the dot product (f · g) for f, g ∈ F . By Riesz–
Fisher theorem, for each x ∈ X there exists kx ∈ F such that f(x) = (kx · f).
The reproduced kernel is defined K(x, y) = (kx · ky). Main properties of the
kernel: 1) K(x, y) ≥ 0 for all x, y ∈ X ; 2) K(x, y) = K(y, x) ≥ 0 for all x, y ∈ X ;

3)
k
∑

i,j=1

αiαjK(xi, xj) ≥ 0 for all k, for all xi ∈ X , and for all real numbers

αi, where i = 1, . . . , k. Mercer theorem says that 1)–3) define a kernel K(x, y)
and a mapping Φ to some RKHS F such that K(x, y) = (Φ(x) · Φ(y)). Also,
cF (x) = ‖kx‖ = ‖Φ(x)‖. For Sobolev space H1([0, 1]), the reproducing kernel is
K(t, t′) = (coshmin(t, t′) coshmin(1− t, 1− t′))/ sinh 1 (see [14]).

Some special kernel corresponds to the method of randomization defined
below. A random variable ỹ is called randomization of a real number y ∈ [0, 1]
if E(ỹ) = y, where E is the symbol of mathematical expectation with respect to
the corresponding to ỹ probability distribution.

We use a specific method of randomization of real numbers from unit interval
proposed by Kakade and Foster [8]. Given positive integer number K divide
the interval [0, 1] on subintervals of length ∆ = 1/K with rational endpoints
vi = i∆, where i = 0, 1, . . . ,K. Let V denotes the set of these points. Any
number p ∈ [0, 1] can be represented as a linear combination of two neighboring
endpoints of V defining subinterval containing p :

p =
∑

v∈V

wv(p)v = wvi−1
(p)vi−1 + wvi(p)vi, (2)



where p ∈ [vi−1, vi], i = ⌊p1/∆+ 1⌋, wvi−1
(p) = 1− (p− vi−1)/∆, and wvi(p) =

1− (vi − p)/∆. Define wv(p) = 0 for all other v ∈ V . Define a random variable

p̃ =

{

vi−1 with probability wvi−1
(p)

vi with probability wvi(p)

Let w̄(p) = (wv(p) : v ∈ V ) be a vector of probabilities of rounding.
For any k-dimensional vector x̄ = (x1, . . . , xm) ∈ [0, 1]m and k ≤ m, we

round each coordinate xs, s = 1, . . . k to vjs−1 with probability wvjs−1
(xs) and

to vjs with probability wvjs (xs), where xs ∈ [vjs−1, vjs ].

Let v = (v1, . . . , vk) ∈ V k andWv(x̄) =
∏k

s=1
wvs(xs). For any x̄, let W̄ (x̄) =

(Wv(x̄) : v ∈ V k) be a vector of probability distribution in V k :
∑

v∈V k

Wv(x̄) = 1.

For x̄, ȳ ∈ [0, 1]k, the dot product K(x̄, x̄′) = (W̄ (x̄) · W̄ (x̄′)) satisfies properties
1)–3) of Mercer theorem. Hence it is a kernel function.

3 Main result: an optimal trading strategy

Consider a game with players: Speculator and Stock Market. We suppose that
the prices S1, S2, . . . of a stock are bounded and rescaled such that 0 ≤ Si ≤ 1
for all t.

We present the process of trading in Stock Market in form of a game regulated
by the following protocol.
FOR i = 1, 2 . . .
Stock Market announces a signal x̄i = (xi,1 . . . , xi,m) ∈ [0, 1]m,where m ≥ 1. In
what follows we suppose that xi,1 = Si−1.
Speculator bets by buying or selling a number Mi of shares of the stock by Si−1

each. 1

Stock Market reveals a price Si of the stock.
Speculator receives his total gain (or suffer loss) at the end of step i :
Ki = Ki−1 +Mi(Si − Si−1). We get K0 = 0.
ENDFOR

We will define an optimal trading strategy as a random variable M̃i. To
construct such a strategy, at each step i we will compute a forecast pi of a future
price Si and randomize it to p̃i. We also randomize the past price Si−1 of the
stock to S̃i−1. Details of this computation and randomization will be given in
Section 4. Define

M̃i =

{

cF l, if p̃i > S̃i−1,
0, otherwise,

where l is a parameter. We suppose that some RKHS F on [0, 1]m with a kernel
M(x̄, x̄′) and a finite embedding constant cF is given. We emphasize that we
consider only playing for a rise: M̃i ≥ 0 for all i. 2

1 We call Mi a trading strategy. In case Mi > 0 Speculator playing for a rise, in case
Mi < 0 Speculator playing for a fall, Speculator passes the step ifMi = 0. We suppose
that Speculator can borrow money for buying Mi shares and can incur debt.

2 The case of playing for a fall is considered analogously.



We will prove that if the forecasts p̃i are well calibrated on the sequence of
prices Si, i = 1, 2, . . ., this strategy outperforms any trading strategy D(x̄i) ∈ F
with bounded norm: ‖D‖ ≤ l. The main result of this paper is presented in the
following theorem.

Let S1, S2, . . . ∈ [0, 1] and x̄1, x̄2, . . . ∈ [0, 1]m be given online according to
the protocol of our game.

Theorem 1. An algorithm for computing forecasts and a sequential method of
randomization can be constructed such that given l > 0 for any nonegative trading
strategy D(x̄i) ∈ F such that ‖D‖ ≤ l

lim inf
n→∞

(

1

n

n
∑

i=1

M̃i(Si − Si−1)−
1

n

n
∑

i=1

D(x̄i)(Si − Si−1)

)

≥ 0 (3)

holds almost surely with respect to a probability distribution generated by the
corresponding sequential randomization.

Moreover, for any ǫ > 0 this trading strategy M̃i can be tuned such that for
any δ > 0, with probability at least 1− δ, for all n

n
∑

i=1

M̃i(Si − Si−1) ≥
n
∑

i=1

D(x̄i)(Si − Si−1)−

−cF l

(

4

9
(7e− 3)(c2F + 1)

1
4n

3
4
+ǫ +

√

(c2F + 1)n+ 3

√

n

2
ln

6

δ

)

, (4)

where e is the base of the natural logarithm.

The proof of this theorem is given in Section 5, where we construct the corre-
sponding optimal trading strategy based on the well calibrated forecasts defined
in Section 4.

4 Computing the well calibrated forecasts

We consider checking rules of general type. Let x̄ ∈ [0, 1]m be a signal and k ≤ m.
For any measurable subset S ⊆ [0, 1]k+1 define

IS(p, x̄) =

{

1, (p, x̄) ∈ S,
0, otherwise,

In Section 5 we get k = 1. In what follows, given a sequence ∆1 ≥ ∆2 ≥
. . . → 0 of rational numbers we will define the corresponding randomization
p̃1, p̃2, . . . of any sequence p1, p2, . . . of reals from [0, 1] such that Ei(p̃i) = pi and
V ar(p̃i) = Ei(p̃i−pi)

2 ≤ ∆i for all i, where Ei is the symbol of the mathematical
expectation with respect to the random rounding corresponding to ∆i.

Analogously, a sequence of of k-dimensional random variables x̃1, x̃2, . . . will
be defined which are randomization of of the first k coordinates of a sequence of



m-dimensional signals x̄1, x̄2, . . .. We call this the sequential method of random-
ization.

Let Pr be an overall probability distribution generated by a sequential method
of randomization.

The following theorem is the main tool for analysis presented in Section 5.
Let S1, S2, . . . ∈ [0, 1] be a sequence of real numbers and x̄1, x̄2, . . . ∈ [0, 1]m

be a sequence of m-dimensional signals given online according to the protocol of
our game. Let also, F be RKHS on [0, 1]m with a kernel M(x̄, x̄′) and a finite
embedding constant cF .

Theorem 2. Given ǫ > 0 and k an algorithm for computing forecasts p1, p2, . . .
and a sequential method of randomization of the forecasts and signals can be
constructed such that two conditions hold:

– (i) for the characteristic function IS of any subset S ⊆ [0.1]k+1 and for any
δ > 0, with probability at least 1− δ,

∣

∣

∣

∣

∣

n
∑

i=1

IS(p̃i, x̃i)(Si − p̃i)

∣

∣

∣

∣

∣

≤ 8e

(

k + 1

2

)
2

k+3

(c2F + 1)
1

k+3n1− 1
k+3

+ǫ +

+
√

(c2F + 1)n+

√

n

2
ln

2

δ
(5)

for all n, where p̃1, p̃2, . . . are corresponding randomization of p1, p2, . . . and
x̃1, x̃2, . . . are corresponding randomization of k-dimensional initial fragments
of the signals x̄1, x̄2, . . .;

– (ii) for any D ∈ F
n
∑

i=1

D(x̃i)(Si − pi) ≤ ‖D‖
√

(c2F + 1)n (6)

for all n.

Proof. At first, in Proposition 1, given ∆ > 0, we modify a randomized rounding
algorithm of Kakade and Foster [8] to construct some ∆-calibrated forecasting
algorithm, and combine it with Vovk’s [14] defensive forecasting algorithm. After
that, we revise it by applying some doubling trick argument such that (5) will
hold.

Proposition 1. Under the conditions of Theorem 2, an algorithm for comput-
ing forecasts and a method of randomization can be constructed such that the
inequality (6) holds for all D from RKHS F and for all n. Also, for any δ > 0
with probability at least 1− δ

∣

∣

∣

∣

∣

n
∑

i=1

I(p̃i, x̃i)(Si − p̃i)

∣

∣

∣

∣

∣

≤ ∆n+

√

n

∆k
+
√

(c2F + 1)n+

√

n

2
ln

2

δ

holds for all n, where I is the characteristic function of any measurable subset
of [0, 1]k+1.



Proof. We define a deterministic forecast and after that we randomize it.
The partition V = {v0, . . . , vK} and probabilities of rounding were defined

above by (2). In what follows we round some deterministic forecast pn to vi−1

with probability wvi−1
(pn) and to vi with probability wvi(pn). We also round

the each coordinate xn,s, s = 1, . . . k, of a signal x̄n to vjs−1 with probability
wvjs−1

(xn,s) and to vjs with probability wvjs (xn,s), where xn,s ∈ [vjs−1, vjs ].
Let Wv(pn, x̄n) = wv1(pn)wv2(x̄n), where v = (v1, v2) and v1 ∈ V , v2 =

(v21 , . . . v
2
k) ∈ V k, wv2(x̄n) =

∏k
s=1

wv2
s
(xn,s), and W̄ (pn, x̄n) = (Wv(pn, x̄n) : v ∈

V k+1) be a vector of probability distribution in V k+1. Define the corresponding
kernel K(p, x̄, p′, x̄′) = (W (p, x̄) ·W (p′, x̄′)).

Let the deterministic forecasts p1, . . . , pn−1 be already defined (put p1 = 1/2).
We want to define a deterministic forecast pn.

By Mercer theorem the kernel M(x̄, x̄′) can be represented as a dot product
in some feature space: M(x̄, x̄′) = (Φ(x̄) · Φ(x̄′)). Consider

Un(p, x̄n) =

n−1
∑

i=1

(K(p, x̄n, pi, x̄i) +M(x̄n, x̄i))(Si − pi).

The following lemma presents a general method for computing deterministic
forecasts.

Lemma 1. (Takemura, Vovk [13]) A sequence of forecasts p1, p2, . . . can be com-
puted such that Mn ≤ Mn−1 for all n, where M0 = 1 and Mn = Mn−1 +
Un(pn, x̄n)(Sn − pn) for all n.

Proof. Indeed, if Un(p, x̄n) > 0 for all p ∈ [0, 1] then define pn = 1; if Un(p, x̄n) <
0 for all p ∈ [0, 1] then define pn = 0. Otherwise, define pn to be some root of the
equation Un(p, x̄n) = 0 (some root exists by the intermediate value theorem).
Evidently, Mn ≤ Mn−1 for all n. △

Let forecasts p1, p2, . . . be computed by the method of Lemma 1. Then for
any N

0 ≥ MN −M0 =

N
∑

n=1

Un(pn, x̄n)(Sn − pn) =

=

N
∑

n=1

n−1
∑

i=1

(K(pn, x̄n, pi, x̄i) +M(x̄n, x̄i))(Si − pi)(Sn − pn) =

=
1

2

N
∑

n=1

N
∑

i=1

K(pn, x̄n, pi, x̄i)(Si − pi)(Sn − pn)−

−1

2

N
∑

n=1

(K(pn, x̄n, pn, x̄n)(Sn − pn))
2 +

+
1

2

N
∑

n=1

N
∑

i=1

M(x̄n, x̄i)(Si − pi)(Sn − pn)−



−1

2

N
∑

n=1

(M(x̄n, x̄n)(Sn − pn))
2 = (7)

=
1

2

∥

∥

∥

∥

∥

N
∑

n=1

W̄ (pn, x̄n)(Sn − pn)

∥

∥

∥

∥

∥

2

− 1

2

N
∑

n=1

‖W̄ (pn, x̄n)‖2(Sn − pn)
2 + (8)

+
1

2

∥

∥

∥

∥

∥

N
∑

n=1

Φ(x̄n)(Sn − pn)

∥

∥

∥

∥

∥

2

− 1

2

N
∑

n=1

‖Φ(x̄n)‖2(Sn − pn)
2. (9)

In (8), ‖ · ‖ is Euclidian norm, and in (9), ‖ · ‖ is a norm in RKHS F .
Since (Sn − pn)

2 ≤ 1 for all n and

‖(W̄ (pn, x̄n)‖2 =
∑

v∈V k+1

(Wv(pn, x̄n))
2 ≤

∑

v∈V k+1

Wv(pn, x̄n) = 1,

the subtracted sum of (8) is upper bounded by N .
Since ‖Φ(x̄n)‖ = cF (x̄n) and cF(x̄) ≤ cF for all x̄, the subtracted sum of (9)

is upper bounded by c2FN . As a result we obtain

∥

∥

∥

∥

∥

N
∑

n=1

W̄ (pn, x̄n)(Sn − pn)

∥

∥

∥

∥

∥

≤
√

(c2F + 1)N (10)

∥

∥

∥

∥

∥

N
∑

n=1

Φ(x̄n)(Sn − pn)

∥

∥

∥

∥

∥

≤
√

(c2F + 1)N (11)

for all N . Let us denote µ̄n =
n
∑

i=1

W̄ (pi, x̄i)(Si−pi). By (10), ‖µ̄n‖ ≤
√

(c2F + 1)n

for all n.
Let µn = (µn(v) : v ∈ V k+1). By definition for any v

µn(v) =

n
∑

i=1

Wv(pi, x̄i)(Si − pi). (12)

Insert the term I(v) in the sum (12), where I is the characteristic function
of an arbitrary set S ⊆ [0, 1]k+1, sum by v ∈ V k+1, and exchange the order
of summation. Using Cauchy–Schwartz inequality for vectors Ī = (I(v) : v ∈
V k+1), µ̄n = (µn(v) : v ∈ V k+1) and Euclidian norm, we obtain

∣

∣

∣

∣

∣

∣

n
∑

i=1

∑

v∈V k+1

Wv(pi, x̄i)I(v)(Si − pi)

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∑

v∈V k+1

I(v)

n
∑

i=1

Wv(pi, x̄i)(Si − pi)

∣

∣

∣

∣

∣

∣

=

= (Ī · µ̄n) ≤ ‖Ī‖ · ‖µ̄n‖ ≤
√

|V k+1|(c2F + 1)n (13)



for all n, where |V k+1| = 1/∆k+1 – is the cardinality of the partition.
Let p̃i be a random variable taking values v ∈ V with probabilities wv(pi)

(only two of them are nonzero). Recall that x̃i is a random variable taking values
v ∈ V k with probabilities wv(x̄i).

Let S ⊆ [0, 1]k and I be its indicator function. For any i the mathematical
expectation of a random variable I(p̃i, x̃i)(Si − p̃i) is equal to

E(I(p̃i, x̃i)(Si − p̃i)) =
∑

v∈V k+1

Wv(pi, x̄i)I(v)(Si − v1), (14)

where v = (v1, v2). By Azuma–Hoeffding inequality (see (26) below), for any
δ > 0, with Pr-probability 1− δ

∣

∣

∣

∣

∣

n
∑

i=1

I(p̃i, x̃i)(Si − p̃i)−
n
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤
√

n

2
ln

2

δ
. (15)

By definition of the deterministic forecast

∣

∣

∣

∣

∣

∣

∑

v∈V k+1

Wv(pi, x̄i)I(v)(Si − pi)−
∑

v∈V k+1

Wv(pi, x̄i)I(v)(Si − v1)

∣

∣

∣

∣

∣

∣

< ∆

for all i, where v = (v1, v2). Summing (14) by i = 1, . . . , n and using the in-
equality (13), we obtain

∣

∣

∣

∣

∣

n
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

n
∑

i=1

∑

v∈V k+1

Wv(pi, x̄i)I(v)(Si − v1)

∣

∣

∣

∣

∣

∣

< ∆n+
√

(c2F + 1)n/∆k+1 (16)

for all n.
By (15) and (16), with Pr-probability 1− δ

∣

∣

∣

∣

∣

n
∑

i=1

I(p̃i, x̃i)(Si − p̃i)

∣

∣

∣

∣

∣

≤ ∆n+
√
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n

2
ln

2

δ
. (17)

By Caushi–Schwartz inequality
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N
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)
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≤
∥
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N
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(Sn − pn)Φ(x̄n)

∥

∥

∥

∥
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· ‖D‖ ≤

≤ ‖D‖
√

(c2F + 1)N.



Proposition is proved.△
Now we turn to the proof of Theorem 2.
The expression ∆n+

√

(c2F + 1)n/∆k+1 from (16) and (17) takes its minimal

value for ∆ = (k+1

2
)

2
k+3 (c2F + 1)

1
k+3n− 1

k+3 . In this case, the right-hand side of
the inequality (16) is equal to

∆n+
√

n(c2F + 1)/∆k+1 ≤ 2∆n = 2

(

k + 1

2

)
2

k+3

(c2F + 1)
1

k+3n1− 1
k+3 . (18)

In what follows we use the upper bound 2∆n in (16).
To prove the bound (5) choose a monotonic sequence of rational numbers

∆1 > ∆2 > . . . such that ∆s → 0 as s → ∞. We also define an increasing
sequence of natural numbers n1 < n2 < . . . For any s, we use for randomization
on steps ns ≤ n < ns+1 the partition of [0, 1] on subintervals of length ∆s.

We start our sequences from n1 = 1 and ∆1 = 1. Also, define the numbers
n2, n3, . . . such that the inequality
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∣

∣

∣

n
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤ 4(s+ 1)∆sn (19)

holds for all ns ≤ n ≤ ns+1 and for all s ≥ 1.
We define this sequence by mathematical induction on s. Suppose that ns

(s ≥ 1) is defined such that the inequality
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∣

∣

∣

n
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤ 4s∆s−1n (20)

holds for all ns−1 ≤ n ≤ ns, and the inequality
∣

∣

∣

∣

∣

ns
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤ 4s∆sns (21)

also holds. Let us define ns+1. Consider all forecasts p̃i defined by the algorithm
given above for discretization∆ = ∆s+1. We do not use first ns of these forecasts
(more correctly we will use them only in bounds (22) and (23); denote these
forecasts p̂1, . . . , p̂ns

). We add the forecasts p̃i for i > ns to the forecasts defined
before this step of induction (for ns). Let ns+1 be such that the inequality

∣

∣

∣

∣

∣

ns+1
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ns
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

ns+1
∑

i=ns+1
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E(I(p̂i, x̃i)(Si − p̂i))
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≤ 4(s+ 1)∆s+1ns+1 (22)



holds. Here the first sum of the right-hand side of the inequality (22) is bounded
by 4s∆sns – by the induction hypothesis (21). The second and third sums are
bounded by 2∆s+1ns+1 and by 2∆s+1ns, respectively, where∆ = ∆s+1 is defined
such that (18) holds. This follows from (16) and by choice of ns.

The induction hypothesis (21) is valid for

ns+1 ≥ 2s∆s +∆s+1

∆s+1(2s+ 1)
ns.

Analogously,
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E(I(p̂i, x̃i)(Si − p̂i))

∣

∣

∣

∣

∣

≤ 4(s+ 1)∆sn (23)

for ns < n ≤ ns+1. Here the first sum of the right-hand inequality (22) is
also bounded by 4s∆sns ≤ 4s∆sn – by the induction hypothesis (21). The
second and the third sums are bounded by 2∆s+1n ≤ 2∆sn and by 2∆s+1ns ≤
2∆sn, respectively. This follows from (16) and from choice of ∆s. The induction
hypothesis (20) is valid.

By (19) for any s
∣

∣

∣

∣

∣

n
∑

i=1

E(I(p̃i, x̃i)(Si − p̃i))

∣

∣

∣

∣

∣

≤ 4(s+ 1)∆sn (24)

for all n ≥ ns if ∆s satisfies the condition ∆s+1 ≤ ∆s(1− 1

s+2
) for all s.

We show now that a sequences ns and ∆s satisfying all the conditions above
exist.

Let ǫ > 0 and M = ⌈2/ǫ⌉, where ⌈r⌉ is the least integer number m ≥ r.

Define ns = (s + M)M and ∆s =
(

k+1

2

)
2

k+3 (c2F + 1)
1

k+3n
− 1

k+3

s . Easy to verify
that all requirements for ns and ∆s given above are satisfied.

We have in (24) for all ns ≤ n < ns+1

4(s+ 1)∆sn ≤ 8s∆sns+1 =

= 8

(

k + 1

2

)
2

k+3

(c2F + 1)
1

k+3 s(s+M + 1)M (s+M)−
M

k+3 ≤

≤ 8e

(

k + 1

2

)
2

k+3

(c2F + 1)
1

k+3n
1− 1

k+3
+2/M

s ≤

≤ 8e

(

k + 1

2

)
2

k+3

(c2F + 1)
1

k+3n1− 1
k+3

+ǫ,



where e is the base of the natural logarithm. Therefore, we obtain
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1
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for all n. Azuma–Hoeffding inequality says that for any γ > 0

Pr

{
∣

∣

∣
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∣

1

n

n
∑

i=1

Vi

∣

∣

∣

∣

∣

> γ

}

≤ 2e−2nγ2

(26)

for all n, where Vi are martingale–differences.

We get Vi = I(p̃i, x̃i)(Si− p̃i)−E(I(p̃i, x̃i)(Si− p̃i)) and γ =
√

1

2n ln 2

δ , where

δ > 0. Denote ν(n) = 8e
(

k+1

2

)
2

k+3 (c2F + 1)
1

k+3n1− 1
k+3

+ǫ.
Combining (25) with (26), we obtain that for any δ > 0 with probability 1−δ
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I(p̃i, x̃i)(Si − p̃i)

∣
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∣

∣

∣

≤ ν(n) +

√

n

2
ln

2

δ

for all n. Theorem 2 is proved. △

5 Proof of Theorem 1

Recall that ǫ > 0 and M = ⌈2/ǫ⌉. At any step i we compute the deterministic
forecast pi defined in Section 4 and its randomization to p̃i using parameters
∆ = ∆s = (s+M)−

M
4 and ns = (s+M)M , where ns ≤ i < ns+1. Let also, S̃i−1

be a randomization of the past price Si−1. At first, we bound

∣
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∣

∣

n
∑
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I(p̃i > S̃i−1)(S̃i−1 − Si−1)

∣

∣

∣

∣

∣

≤
s
∑

t=0

(nt+1 − nt)∆t ≤

≤ 4

3
(e − 1)(c2F + 1)

1
4n

3
4
+ǫ

s ≤ 4

3
(e− 1)(c2F + 1)

1
4n

3
4
+ǫ. (27)

Let D(x̄) be an arbitrary nonnegative traiding strategy from RKHS F such
that ‖D‖ ≤ l. At any step n we use the randomized trading strategy M̃n defined
in Section 3. We use abbreviations:

ν0(n) = lcF(c
2
F + 1)

1
4 (e − 1)

4

3
n

3
4
+ǫ, (28)

ν1(n) = lcF

√

n

2
ln

6

δ
, (29)

ν2(n) = lcF

(

8en
3
4
+ǫ(c2F + 1)

1
4 +

√

n

2
ln

8

δ

)

, (30)

ν3(n) = lcF

√

(c2F + 1)n (31)



All sums below are for i = 1, . . . n. By definition 0 ≤ D(x̄i) ≤ cF l. We use below
the Azuma–Hoeffding inequality (26).

For any δ > 0, with probability 1 − δ the following chain of equalities and
inequalities is valid:

∑

p̃i>S̃i−1

cF l(Si − Si−1) = cF l
∑

p̃i>S̃i−1

(Si − p̃i) +

+cF l
∑

p̃i>S̃i−1

(p̃i − S̃i−1) + cF l
∑

p̃i>S̃i−1

(S̃i−1 − Si−1) ≥ (32)

≥ cF l
∑

p̃i>S̃i−1

(p̃i − S̃i−1)− ν0(n)− ν2(n) ≥ (33)

≥
n
∑

i=1

D(x̄i)(p̃i − S̃i−1)− ν0(n)− ν2(n) =

=

n
∑

i=1

D(x̄i)(pi − Si−1) +

n
∑

i=1

D(x̄i)(p̃i − pi)−

−
n
∑

i=1

D(x̄i)(S̃i−1 − Si−1)− ν0(n)− ν2(n) ≥ (34)

≥
n
∑

i=1

D(x̄i)(pi − Si−1)− ν0(n)− 2ν1(n)− ν2(n) ≥ (35)

≥
n
∑

i=1

D(x̄i)(pi − Si−1) +

n
∑

i=1

D(x̄i)(Si − pi)−

−ν0(n)− 2ν1(n)− ν2(n)− ν3(n) = (36)

=
n
∑

i=1

D(x̄i)(Si − Si−1)− ν0(n)− 2ν1(n)− ν2(n)− ν3(n).

In change from (32) to (33) the inequality (5) of Theorem 2 and the bound (27)
were used, and so, terms (28) and (30) were subtracted. In change from (34)
to (35) Azuma–Hoeffding inequality (26) (where γ = δ/3) was applied twice
to intermediate terms, and so, term (29) was subtracted twice. In change from
(35) to (36) the inequality (6) of Theorem 2 was used, and so, term (31) was
subtracted. Therefore, we have (4).

The inequality (3) follows from (4). Theorem 1 is proved. △

6 Numerical experiments

In the numerical experiments, we have used historical data in form of per minute
time series of prices of “randomly” chosen ten stocks (four of them are from Rus-
sian Stock Market). Data has been downloaded from FINAM site: www .finam.ru .
Number of trading points in each game is 88000–116000 min. (From March 26



2010 to March 25 2011) In our experiments, we dealing only for a rise starting
with the same initial capital K0.

We implement the trading strategy defined in Section 3. In this strategy we
used two forecasting algorithms: calibration algorithm constructed in Section 4
(DF–model) and Autoregressive Moving Average algorithm (ARMA–model) of
Jyh-Ying Peng and Aston [7].

Results of numerical experiments are shown in Table 1. In the first column,
stocks ticker symbols are shown. The second column contains the gain of Buy-
and-Hold trading strategy. By this strategy, we buy a holdings of shares using
capital K0 and sell them at the end of the trading period. In the next pair of
columns marked DF the relative returns (in percentage wise on initial capital)
are presented for the case where no transaction cost is subtracted and for the case
where transaction cost at the rate 0.01% is subtracted. The method of calibration
(defensive forecasting – DF) for computing forecasts of future stock price was
used for these columns. We buy a holdings of shares using the cumulative capital
but no more than K0 at steps where the forecast show a rise and sell it at steps
where the forecast show a fall. Thereby, we set aside the extra capital. The next
two columns marked by ARMA are analogous but ARMA forecasting model was
used for computing forecasts. The frequencies of market entry steps are given in
the next two columns marked In (for DF and ARMA). The average duration of
a gamble is shown in the rest two columns marked Delay (for DF and ARMA).

These results show that trading based on DF model of forecasting essentially
outperforms trading based on ARMA model.

Table 1.
Buy& DF DF ARMA ARMA DF ARMA DF ARMA

Ticker hold -0.01% -0.01%
Gain % Gain % Gain % Gain % Gain % In In Delay Delay

AT-T 7.73 42.53 -60.20 0.45 -7.06 0.0913 0.0050 1.97 2.13
CTGR 14.87 302.79 202.38 38.08 31.10 0.0638 0.0045 2.16 1.89
KOCO 16.55 27.32 -64.83 -1.04 -9.06 0.0942 0.0050 1.93 1.30
GOOG 10.27 35.06 -61.47 -0.19 -1.62 0.0906 0.0010 1.79 1.77
InBM 24.25 52.05 -54.71 5.53 -12.20 0.0895 0.0118 1.84 1.89
INTL 4.29 20.96 -45.56 3.09 2.74 0.0879 0.0004 2.00 1.45
MTSI -1.51 273.05 130.65 29.58 21.47 0.0669 0.0038 2.54 2.10
SBER 14.70 36.20 -76.34 1.11 0.91 0.0955 0.0001 1.92 1.82
SIBN -6.35 409.31 263.76 55.17 48.03 0.0684 0.0034 2.82 2.65
GAZP 22.97 38.72 -77.28 0.55 0.15 0.1000 0.0002 1.88 1.50

7 Conclusion

Calibration is an area of intensive research where several algorithms for comput-
ing calibrated forecasts have been developed. Several applications of well cali-
brated forecasting have been proposed (convergence to correlated equilibrium,



recovering unknown functional dependencies, predictions with expert advice).
We present a new application of the calibration method.

We show that an asymptotically optimal trading strategy can be constructed
using the well calibrated forecasts. We prove that this strategy outperforms any
trading strategy presented by a rule from any RKHS. To construct optimal
trading strategy, we generalize Kakade and Foster’s algorithm and combine it
with Vovk’s DF–model for arbitrary RKHS. Using Vovk’s [15] theory of defensive
forecasting in Banach spaces, these results can be generalized to these spaces.

Numerical experiments show a positive return for all chosen stocks, and for
three of them we receive a gain even when transaction costs are subtracted.
Results of this type can be useful for technical analysis in finance.
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