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Abstract

We discuss a new notion of risk measures that preserve the property of coherence called

Copula Conditional Tail Expectation (CCTE). This measure describes the expected

amount of risk that can be experienced given that a potential bivariate risk exceeds a

bivariate threshold value, and provides an important measure for right-tail risk. Our

goal is to propose an alternative risk measure which takes into account the fluctuations

of losses and possible correlations between random variables.

keywords: Conditional tail expectation; Copulas; Dependence concepts; Risk measure;

Capital requirement; Heavy-tailed distributions.

1 Introduction

Measuring risks is a very important element in the prescription of capital requirements.

The axiomatic approach chosen in [3] allows, even requires, us to search for similarities and

differences between the banking and insurance industries. From an internal viewpoint risk

measurement is also important for allocation of capital and performance evaluation. Several

risk measures have been proposed in actuarial science literature, namely: the Value-at-Risk

(VaR), the expected shortfall or the conditional tail expectation (CTE), the distorted risk
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measures (DRM), and recently the copula distorted risk measure (CDRM) as an alternative

risk measure which takes into account the fluctuations of losses and dependence between

random variables (rv). See [5].

The concept of VaR has become the standard risk measure used to evaluate risk exposure. In

general terms, VaR is the amount of capital required to ensure, with a high degree of certainty.

In practice, it can be a high number such as 99.95% for the entire enterprise, or it can be

much lower, such as 95%, for a single unit within the enterprise. That the enterprise doesn’t

become technically insolvent. This lower percentage may reflect the inter-unit diversification

that exists. This concept has prompted the study of risk measures by numerous authors

(e.g. [23], [24]). Specific desirable properties of risk measures were proposed as axioms in

connection with risk pricing by [25] and more generally in risk measure by [2] and [3].

The concept of coherent risk measures and the axiomatic that captures the characteristics

required for risk measurement was introduced by [3] in a finite probability space, and further

extended by [9] to the general probability space framework. A coherent risk measure is a real

functional ϑ defined on a space of rv’s satisfying the following axioms:

H1. Subadditivity: For all random losses X and Y, ϑ(X + Y ) ≤ ϑ(X) + ϑ(Y ).

H2. Monotonicity: If X ≤ Y for each outcome, then ϑ(X) ≤ ϑ(Y ).

H3. Positive Homogeneity: For positive constant λ, ϑ(λX) = λϑ(X).

H4. Translation Invariance: For constant c, ϑ(X + c) = ϑ(X) + c.

The CTE in risk analysis represents the conditional expected loss given that the loss exceeds

its VaR and provides an important measure for right-tail risk. In this paper we will always

consider random variables with finite mean. For a real number s in (0, 1) , the CTE of a risk

X is given by

CTE (s) := E [X|X > V aRX (s)] , (1.1)

where V aRX (s) := inf {x : F (x) ≥ s} is the quantile of order s pertaining to distribution

function (df) F.

One of the strategy of an Insurance companies is to set aside amounts of capital from which

it can draw from in the event that premium revenues become insufficient to pay out claims.

Of course, determining these amounts is not a simple calculation. It has to determine the

best risk measure that can be used to determine the amount of loss to cover with a high

degree of confidence.
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Suppose now that we deal with a couple of random losses (X, Y ). It’s clear that the CTE of

X is unrelated withe Y. If we had to control the overflow of the two risks X and Y at the

same time, CTE does not answer the problem, then we need another formulation of CTE

which takes into account the excess of the two risks X and Y. Then we deal with the amount

E [X|X > V aRX (s) , Y > V aRY (t)] . (1.2)

If the couple of random losses (X, Y ) are independents rv’s then the amount (1.2) defined

only the CTE of X. Therefore the case of independence is not important.

In the recent years dependence is beginning to play an important role in the world of risk.

The increasing complexity of insurance and financial activities products has led to increased

actuarial and financial interest in the modeling of dependent risks. While independence can

be defined in only one way, but dependence can be formulated in an infinite ways. Therefore,

the assumption of independence it makes the treatment easy. Nevertheless, in applications

dependence is the rule and independence is the exception.

The copulas is a function that completely describes the dependence structure, it contains all

the information to link the marginal distributions to their joint distribution. To obtain a

valid multivariate distribution function, we combines several marginal distribution functions,

or a different distributional families, with any copula function. Using Sklar’s theorem, we

can construct bivariate distributions with arbitrary marginal distributions. Thus, for the

purposes of statistical modeling, it is desirable to have a large collection of copulas at one’s

disposal. A great many examples of copulas can be found in the literature, most are members

of families with one or more real parameters. For a formal treatment of copulas and their

properties, see the monographs by [14], [8], [15], the conference proceedings edited by [4], [7],

[10], and [20].

The main idea of this paper is to use the information of dependence between risks to quan-

tifying insurance losses and measuring financial risk assessments, we propose a risk measure

defined by:

CCTEX (s; t) := E [X|X > V aRX (s) , Y > V aRY (t)] .

We will call this new risk measure the Copula Conditional Tail Expectation (CCTE), like a

risk measure which measure the conditional expectation give the two dependents loss exceeds

V aRX (s) and V aRY (t) for 0 < s, t < 1 and usually with s, t > 0.9. Again, CCTE satisfies

all the desirable properties of a coherent risk measure ([3]). The notion of copula in risk
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measure filed has recently been considered by several authors, see for instance [11], [1], [17]

and [5].

This risk measures can give a good quantifying of losses when we have a combined dependents

risks, this dependence can influence in the losses of interested risks. Therefore, quantify the

riskiness of our position is useful to decide if it acceptable or not. For this reason we use the

all information a bout this interest risk and the dependence of our risk with other risks is

one of important information that we must take it in consideration.

This paper is organized as follows. In Section 2, we give an explicit formulations of the new

notion copula conditional tail expectation risk measure in bivariate case. In Section 3 we

presents an illustration examples to explain how to use the new CCTE. Concluding notes are

given in Section 4. Proofs are relegated to the Appendix.

2 Copula conditional tail expectation

A risk measure quantifies the risk exposure in a way that is meaningful for the problem at

hand. The most commonly used risk measure in finance and insurance are a VaR and CTE

(also known as Tail-VaR or expected shortfall). The risk measure is simply loss size for which

there is a small (e.g. 1%) probability of exceeding. For some time, it has been recognized

that this measure suffers from serious deficiencies if losses are not normally distributed.

According to [3] and [26], the conditional tail expectation of a random variable X at its

V aRX (s) is defined by:

CTEX (s) =
1

1− F (V aRX (s))

∫ ∞

V aRX (s)

(1− F (x)) dx.

where

V aRX (s) := inf {x : F (x) ≥ s} , 0 < s < 1

Since X is continuous, then F (V aRX (s)) = s, it follows that for all 0 < s < 1

CTEX (s) =
1

1− s

∫ 1

s

V aRX (s) ds. (2.3)

The CTE can be larger that the VaR measure for the same value of level s described above

since it can be thought of as the sum of the quantile V aRX (s) and the expected excess loss.

TailVaR is a coherent measure in the sense of Artzner [3]. For the application of this kind of

coherent risk measures we refer to the papers [3] and [26].
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Application of the CTE in a multivariate context to elliptical distributions was considered

by [16] and [13], under the notion of the iterated CTE. In univariate context [18] present

an empirical estimator of the CTE as well as an estimator of its variance, [6] construct an

estimators for the CTE functions withe the confidence intervals and bands for the functions

in both of parametric and non-parametric approaches and [19] propose a new CTE estimator,

which is applicable when losses have finite means and infinite variances.

Thus the CTE is nothing, see [21], but the mathematical transcription of the concept of

‘average loss in the worst 100(1−s)% case’, defining by τ = V aRX(s) a critical loss threshold

corresponding to some confidence level s, CTEX(s) provides a cushion against the mean value

of losses exceeding the critical threshold τ.

Now, assume that X and Y are dependent with joint df H and continuous margins F and

G, respectively. Through this paper we calls X the target risk and Y the associated risk.

In this case, the problem becomes different and its resolution requires more than the usual

background. Several authors discussed the risks measures, when applied to univariate and

independent rv’s.

Our contribution is to introduce the copula notion to provide more flexibility to the CTE of

risk of rv’s in terms of loss and dependence structure. For comprehensive details on copulas

one may consult the textbook of [20].

According to Sklar’s Theorem ([22]), there exists a unique copula C : [0, 1]d → [0, 1] such

that

H (x, y) = C (F (x) , G (y)) (2.4)

The CTE only focuses on the average of loss. Therefore one must take into account the

dependence structure and the behavior of margin tails. These two aspects have an important

influence when quantifying risks. If the correlation factor is neglected, the calculation of the

CTE follows formula (2.3) , which only focuses on the target risk X.

Now taking into account the dependence structure between the target and the associated

risks, we define a new notion of CTE called Copula Conditional Tail Expectation (CCTE)

given in (1.2), this notion led to give a risk measurement focused in the target risk and the

link between target and associated risk.

Let’s denote the survival functions by F (x) = P(X > x), G(y) = P(Y > y), and the joint

survival function by H(x) = P(X > x, Y > y). The function C which couples H to F and
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G via H(x, y) = C(F (x), G(y)) is called the survival copula of (X, Y ) . Furthermore, C is a

copula, and

C(u, v) = u+ v − 1 + C(1− u, 1− v), (2.5)

where C is the (ordinary) copula of X and Y. For more details on the survival copula function

see, Section 2.6 in [20, page 32].

Corollary 2.1 Let C be a copula absolutely continuous with density c, denote for all s and

t in (0, 1)

Jt (u) :=

∫ 1

t

c (u, v)dv, (2.6)

then
∫ 1

s

Jt (u) du = C(1− s, 1− t).

where C is the survival copula.

The CCTE of the target X with respect to the associated risk Y is given in the following

proposition.

Proposition 2.1 Let (X, Y ) a bivariate r.v. with joints df represented by the copula C. As-

sume that X have a finite mean and df F. Then for all s and t in (0, 1) the copula conditional

tail expectation of X with respect to the bivariate thresholds (s, t) is given by

CCTEX (s; t) =

∫ 1

s
Jt (u)F

−1 (u) du
∫ 1

s
Jt (u) du

, (2.7)

where Jt (u) is given in (2.6), and F−1 is the quantile function of F.

By this Proposition, we got a new risk measure that consists using the link between a couple

of risks in the calculation of risk measurement. This notion does not depend on the df of the

associated risk, but it depend only by the copula function and the df of target risk.

In the next theorem we will proved that the risk when we take into account the link between

risks is greater than in the case of a single one.

Theorem 2.1 Let (X, Y ) be a bivariate non-negative r.v. with finite mean and joints df

represented by the copula C. For all s and t in (0, 1) then

CCTEX (s; t) ≥ CTEX (s) .
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In Figure 3.1 and 3.2 we can see that the graph of CCTE is above the graph of CTE.

Corollary 2.2 The CCTE and CTE measures coincide in the non-dependence case.

The case of non-dependent or independent risks means that the copula C is the product

copula, denoted by Π (u, v) := uv, so the CCTE measure will be CTE one.

3 Illustration examples

3.1 CCTE via Farlie-Gumbel-Morgenstern Copulas

Consider three loss bivariate dependent random variables, (Xi, T ) , i = 1, 2, 3 with joint df H

represented by Farlie-Gumbel-Morgenstern (FGM) copula of parameters θ = 0, θ = 0.5 and

θ = 0.9 respectively.

The choices of parameters θi, i = 1, 2, 3 corresponding respectively to the independence, the

medium dependence and the high dependence. The FGM copula is defined as

CFGM
θ (u, v) = uv + θuv(1− u)(1− v), u, v ∈ [0, 1],

where θ ∈ [−1, 1], and the density function of FGM copulas is for any u, v ∈ [0, 1]

cθ(u, v) =
∂2

∂u∂v
CFGM

θ (u, v)

= θ − 2θu− 2θv + 4θuv + 1.

Assume now that Xi, i = 1, 2, 3 and T with marginal Pareto df F and G of parameter α,

such that

1−G (x) = 1− F (x) = x−α, α > 1, x > 1. (3.8)

In this example, the target risks are Xi and the associated risk is T. The CTE’s of Xi are

the same and are given by

CTEXi
(s) =

α (1− s)−1/α

α− 1
, i = 1, 2, 3. (3.9)

For i = 1, 2, 3, the CCTE of Xi is given in the following proposition.
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Proposition 3.1 Let (Xi, T ) be a Pareto distributed bivariate random variables with joint

df defined by a bivariate FGM copula as follows

HXi,T (x, y) = CFGM
θi

(F (x) , G (y)), i = 1, 2, ...

with θi ∈ [−1, 1]. Then, the CCTE’s of Xi at levels 0 < s, t < 1, are

CCTEXi
(s; t) =

α (2α + tθi − 2stθi + 2stαθi − 1)

(2α2 − 3α + 1) (stθi + 1)
(1− s)−1/α

.

We have in Table 3.1 and Figure 3.1 the comparison of the riskiness of X1, X2 and X3. Recall

that, the CTE’s risk measure of Xi at level s are the same in all cases. But the CCTE of

the loss X3 is clearly considerably riskier than X2 and X1, and it’s coincide with CTE in the

independence case θ1 = 0.

s 0.90 0.95 0.95 0.95 0.99 0.99 0.990

t 0 0 0.95 0.99 0 0.99 0.995

E [Xi] , 3 3 3 3 3 3 3

V aRXi
(s) , 4.641 7.368 7.368 7.368 21.544 21.544 21.544

CTEXi
(s) , 13.925 22.104 22.104 22.104 64.633 64.633 64.633

CCTEX1
(s, t) θ1 = 0 13.925 22.104 22.104 22.104 64.633 64.633 64.633

CCTEX2
(s, t) θ2 = 0.5 13.925 22.104 22.285 22.290 64.633 64.740 64.741

CCTEX3
(s, t) θ3 = 0.95 13.925 22.104 22.373 22.379 64.633 64.790 64.791

Table 3.1: Risk measures of dependent Pareto (1.5) rv’s with FGM copula.

3.2 CCTE via Archimedean Copulas

A copula is said to be Archimedean (see, [12]) if it can be expressed by

C(u) = ψ[−1]

(

d
∑

i=1

ψ(ui)

)

,

where ψ, called the generator of C, is a continuous strictly decreasing convex function from

[0, 1] to [0,∞] such that ψ(1) = 0 with ψ[−1] denotes the pseudo-inverse of ψ, that is

ψ[−1] (t) =







ψ−1 (t) for t ∈ [0, ψ (0)]

0 for t ≥ ψ (0) .
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Figure 3.1: CCTE , CTE , and V aR risks measures of dependent Pareto (1.5) rv’s with FGM

copula for s = t.

When ψ(0) = ∞, the generator ψ and C are said to be strict and therefore ψ[−1] = ψ−1.

Archimedean copulas are widely used in applications due to their simple form, a variety

of dependence structures, and other “nice” properties. For example, most but not all ex-

tend to higher dimensions via the associativity property [C is associative if C(C(u, v), w) =

C(u, C(v, w))].

For an Archimedean copula, the Kendall’s tau can be evaluated directly from the generator

of the copula, as shown by Corollary 5.1.4 in ([20])

τ = 1 + 4

∫ 1

0

ψ (t)

ψ′ (t)
dt. (3.10)

A collection of twenty-two one-parameter families of Archimedean copulas can be found in

Table 4.1 of [20].

Notice that in the case of Archimedean copula the copula conditional tail expectation has

not an explicit formula, so we give by the following Corollary the expression of Jt (·) in term

of generator.
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Corollary 3.1 Let C be an Archimedean copula absolutely continuous with generator ψ, then

for all s and t in (0, 1)

Jt (u) = 1−
ψ′(u)

ψ′ (C (u, t))
. (3.11)

Then the CCTE of the target risk in term of generator of Archimedean copula with respect

to the bivariate thresholds (s, t), 0 < s, t < 1, is given by

CCTEX (s; t) =
1

C (1− s, 1− t)

(

(1− s)CTEX (s)−

∫ 1

s

ψ′(u)

ψ′ (C (u, t))
F−1 (u) du

)

.

Not that in practice we can easily fit copula-based models with the maximum likelihood

method or with estimate the dependence parameter by the relationship between Kendall’s

tau of the data and the generator of the Archimedean copula given in (3.10) under the

specified copula model.

In the following section we give same examples to explain how to calculate and compare the

copula conditional tail expectation with other risk measure such Value-at-Risk and condi-

tional tail expectation.

3.2.1 Clayton CCTE

In the following example, we consider the bivariate Clayton copula which is a member of

the class of Archimedean copula, with the dependence parameter θ restricted on the region

(0,∞). The margins become independent as θ approaches to zero, the copula attains the

Fréchet upper bound as θ approaches to infinity. The Clayton copula has been used to

study correlated risks, it cannot account for negative dependence. It exhibits strong left tail

dependence and relatively weak right tail dependence. It has the form

C
Clayton
θi

(u, v) =
[

max
(

u−θi + v−θi − 1, 0
)]−1/θi

. (3.12)

Let (Xi, T ) , i = 1, 2, 3 three bivariate dependent loss random variables, withe marginal

Pareto df F and G, respectively, of parameter α and joint df H represented by the Clayton

copula of parameters θ1 = 2, θ2 = 5 and θ3 = 10 respectively. The Clayton copula CClayton
θi

is defined in (3.12) as where θi ≥ 0, i = 1, 2, 3.
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The CTE’s of Xi is same and it’s given by (3.9), for i = 1, 2, 3. The CCTE of Xi with respect

to the bivariate thresholds (s, t) is given by

CCTEX (s; t) =
1

Cθi (1− s, 1− t)

(

α (1− s)−1/α+1

(α− 1)

−

∫ 1

s

(

t−θi + u−θi − 1
)−1−1/θi

(1− u)1/α uθi+1
du

)

.

where

Cθi (1− s, 1− t) = 1− s− t + C
Clayton
θi

(s, t) .

The choices of θi, i = 1, 2, 3 corresponding respectively to the Kendall’s tau 0.50, 0.71 and

0.83.

In Table 3.2 and Figure 3.2 we shows that the loss X3 is clearly considerably riskier than X2

and X1.

s 0.90 0.95 0.95 0.95 0.99 0.99 0.990

t 0 0 0.95 0.99 0 0.99 0.995

E [Xi] , 3 3 3 3 3 3 3

V aRXi
(s) , 4.641 7.368 7.368 7.368 21.544 21.544 21.544

CTEXi
(s) , 13.925 22.104 22.104 22.104 64.633 64.633 64.633

CCTEX1
(s, t) θ1= 2 13.925 22.104 22.607 22.660 64.633 64.950 64.954

CCTEX2
(s, t) θ2= 5 13.925 22.104 23.214 23.480 64.633 65.405 65.427

CCTEX3
(s, t) θ3= 10 13.925 22.104 23.937 24.817 64.633 66.113 66.192

Table 3.2: Risk measures of dependent Pareto (1.5) rv’s with Clayton copula.

Clayton copula is the best suited for applications in which two outcomes are likely to experi-

ence low values together, since the dependence is strong in the left tail and weak in the right

tail.

3.2.2 Gumbel CCTE

The Gumbel copula is an asymmetric Archimedean copula. This copula is given by

CGumbel
θ (u, v) = exp

{

−
[

(− ln u)θ + (− ln v)θ
]1/θ
}

,
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Figure 3.2: CCTE, CTE, and V aR risks measures of dependent pareto (1.5) rv’s with Clayton

copula for s = t.

and its generator is

ϕθ (t) = (− ln t)θ .

The dependence parameter is restricted to the interval [1,∞). Values of 1 and ∞ correspond,

respectively, to independence and the Fréchet upper bound. This copula does not attain the

Fréchet lower bound for any value of θ. Similar to the Clayton copula, Gumbel does not allow

negative dependence. Gumbel exhibits greater dependence in the positive tail than in the

negative.

We can now give the CCTE in term of Gumbel generator by

CCTEX (s; t) =
1

Cθi (1− s, 1− t)

(

α (1− s)−1/α+1

(α− 1)

−

∫ 1

s

(− ln u)θi−1 exp

(

−
(

(− ln u)θi + (− ln t)θi
)1/θi

)

u (1− u)1/α
(

(− ln u)θi + (− ln t)θi
)1−1/θi

du









,
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where

Cθ (1− s, 1− t) = 1− s− t+ CGumbel
θi

(s, t) .

The Gumbel copula be the appropriate choice in modelisation of dependency if the outcomes

are known to be strongly correlated at high values but less correlated at low values.

4 Conclusion notes

One of the most important strategy in investment is to divide the capital of investment in

more then one market, but the most important question that if this markets are linked and

if one of them is collapsed. Do the rest of the market interrelated collapse as well?

Therefore, to reduce the risk, in preference for this markets to be independent, or preferably

for the investors to choose the independent markets or the less dependent one to invests their

money.

In this paper we give a new risk measure called copula conditional tail expectation which

preserve the property of coherence. This measure aid to understanding the relationships

among multivariate assets and to help us greatly about how best to position our investments

and enhance our financial risk protection.
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A Appendix

Throughout all this Proofs, we suppose that C is absolutely continuous with density c, and

X and Y are continuous random variables with df’s F and G, respectively.

A.1 Proof of Corollary 2.1

From (2.5) we have

C(1− s, 1− t) = 1− s− t + C (s, t) ,
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and we can write

C(1− s, 1− t) = 1−

∫ 1

0

∫ s

0

c (u, v)dudv (1.13)

−

∫ t

0

∫ 1

0

c (u, v)dudv +

∫ t

0

∫ s

0

c (u, v)dudv.

Observe that

1 =

∫ 1

0

∫ 1

0

c (u, v)dudv =

∫ 1

0

∫ s

0

c (u, v)dudv +

∫ 1

0

∫ 1

s

c (u, v)dudv. (1.14)

Substituting the expression (1.14) in (1.13) leads to the following expression of

C(1− s, 1− t) =

∫ 1

0

∫ 1

s

c (u, v) dudv −

∫ t

0

∫ 1

0

c (u, v) dudv +

∫ t

0

∫ s

0

c (u, v)dudv

=

∫ 1

0

∫ 1

s

c (u, v) dudv −

∫ t

0

∫ s

0

c (u, v)dudv −

∫ t

0

∫ 1

s

c (u, v) dudv

+

∫ t

0

∫ s

0

c (u, v)dudv

=

∫ 1

t

∫ 1

s

c (u, v) dudv

=

∫ 1

s

Jt (u) du.

�

A.2 Proof of Proposition 2.1

By calculating we have

P (X|X ≥ V aRX (s) , Y ≥ V aRY (t))

=
P (X ≤ x,X > V aRX (s) , Y > V aRY (t))

P (X > V aRX (t) , Y > V aRY (s))

=
P (V aRX (s) < X ≤ x, Y ≥ V aRY (t))

P (X > V aRX (s) , Y > V aRY (t))

=
P (V aRX (s) < X ≤ x, Y ≥ V aRY (t))

1− P{X ≤ F−1(s)} − P{Y ≤ G−1(t)}+ P{X ≤ F−1(s), Y ≤ G−1(t)}

=
P (V aRX (s) < X ≤ x, Y ≥ V aRY (t))

1− P{F (X) ≤ s} − P{G (Y ) ≤ t}+ P{F (X) ≤ s,G (Y ) ≤ t}
.

On the other hand, we have

P (V aRX (s) < X ≤ x, Y ≥ V aRY (t)) =

∫ ∞

V aRX (t)

∫ x

V aRY (s)

∂2C (F (u) , G (v))

∂u∂v
dudv,
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and

1− P{F (X) ≤ s} − P{G (Y ) ≤ t}+ P{F (X) ≤ s,G (Y ) ≤ t} = 1− s− t + C (s, t)

= C (1− s, 1− t) .

Then

P (X|X ≥ V aRX (s) , Y ≥ V aRY (t))

=
1

C (1− s, 1− t)

∫ ∞

V aRX(t)

∫ x

V aRY (s)

∂2C (F (u) , G (v))

∂u∂v
dudv,

Then the CCTE is given by

CCTEX (s, t) =
1

C (1− s, 1− t)

∫ ∞

V aRX(t)

∫ ∞

V aRY (s)

x
∂2C (F (x) , G (y))

∂x∂y
dxdy.

We suppose that the densities of F and G are f and g, respectively, then

CCTEX (s, t) =
1

C (1− s, 1− t)

∫ ∞

V aRX (t)

∫ ∞

V aRY (s)

xc (F (x) , G (y)) f (x) g (y) dxdy.

Transforming by F (x) = u and G (y) = v, then

CCTEX (s, t) =
1

C(1− s, 1− t)

∫ 1

t

∫ 1

s

F−1 (u) c (u, v) dudv.

=
1

C(1− s, 1− t)

∫ 1

s

F−1 (u)

(
∫ 1

t

c (u, v)dv

)

du.

By Corollary 2.1 it follow that

∫ 1

s

Jt (u) du = C(1− s, 1− t),

where Jt (u) is given in (2.6). Then

CCTEX (s, t) =

∫ 1

s
Jt (u)F

−1 (u) du
∫ 1

s
Jt (u) du

.

This close the proof of proposition 2.1. �

A.3 Proof of Theorem 2.1

Let H be the joint df of bivariate random vector (X, Y ) such that

H (x, y) = C (F (x) , G (y)) ,
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The conditional probability density of X and Y occurring given that B1 := {X > V aR(s)}

and B2 := {Y > V aR (t)} occurs, and compute it using the formula

fB1
(x) =

∫ +∞

−∞

h (x, y) 1lB1
dy

where

h (x, y) = c (F (x) , G (y)) f (x) g (y) ,

and

f (x) =

∫ +∞

−∞

h (x, y) dy and g (y) =

∫ +∞

−∞

h (x, y) dx.

Then

CTEX (s) =
1

1− s

∫ +∞

−∞

xfB1
(x) dx

=
1

1− s

∫ +∞

V aR(s)

x

(
∫ +∞

−∞

h (x, y) dy

)

dx

=
1

1− s

∫ +∞

V aR(s)

∫ +∞

−∞

xc (F (x) , G (y)) f (x) g (y)dxdy,

by variables change, we have

CTEX (s) =
1

1− s

∫ 1

s

F−1 (u) du

∫ 1

0

c (u, v) dv,

=
1

1− s

∫ 1

s

F−1 (u) du

∫ t

0

c (u, v) dv

+
1

1− s

∫ 1

s

F−1 (u) du

∫ 1

t

c (u, v)dv

:=
1

1− s
(A0 + At)

we have that B2 occur, then

A0 =
1

1− s

∫ 1

s

F−1 (u) du

∫ t

0

c (u, v)dv

=
1

1− s

∫ +∞

V aR(s)

x

(
∫ +∞

−∞

h (x, y) 1l{Y≤V aR(t)}dy

)

dx

= 0

then

CTEX (s) =
1

1− s

∫ 1

s

F−1 (u) du

∫ 1

t

c (u, v) dv,

=
1

1− s

∫ 1

s

Jt (u)F
−1 (u) du.
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Thus

C (1− s, 1− t) = 1− s− t+ C (s, t)

≤ 1− s− t + st

≤ 1− s− t (1− s)

≤ 1− s.

Then
1

1− s
≤

1

C (1− s, 1− t)
.

Therefore

CTEX (s) =
1

1− s

∫ 1

s

Jt (u)F
−1 (u) du

≤
1

C (1− s, 1− t)

∫ 1

s

Jt (u)F
−1 (u) du

=

∫ 1

s
Jt (u)F

−1 (u) du
∫ 1

s
Jt (u) du

= CCTEX (s; t)

�

A.4 Proof of Corollary 2.2

In the non-dependency case the events B1 and B2 are independent, so

P (X|X ≥ V aRX (s) , Y ≥ V aRY (t))

=
P (V aRX (s) < X ≤ x)P (Y ≥ V aRY (t))

1− P (F (X) ≤ s)− P (G (Y ) ≤ t) + P (F (X) ≤ s)P (G (Y ) ≤ t)

=
P (V aRX (s) < X ≤ x)P (Y ≥ V aRY (t))

(1− P (F (X) ≤ s)) (1− P (G (Y ) ≤ t))

=
P (V aRX (s) < X ≤ x)

P (X ≥ V aRX (s))

= CTEX (s)

�
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A.5 Proof of Proposition 3.1

Let (Xi, T ) , i = 1, 2, 3 be a bivariate r.v. with FGM copula df of parameter θi, i = 1, 2, 3

respectively, then by Theorem (2.1) we have that

∫ 1

s

Jt (u) du = C (1− s, 1− t)

= 1− s− t + st+ θist(1− s)(1− t). (1.15)

Now we calculate for i = 1, 2, 3

∫ 1

s

Jt (u)F
−1 (u) du =

∫ 1

s

(1− u)−1/α (θi − 2uθi − 2vθi + 4uvθi + 1) dudv

=

∫ 1

t

(θi − 2θiv + 1) dv

∫ 1

s

(1− u)−1/α
du

+ 2θi

∫ 1

t

(2v − 1) dv

∫ 1

s

u (1− u)−1/α
du,

then

∫ 1

s

Jt (u)F
−1 (u) du =

α (1− t) (2α+ tθi − 2stθi + 2stαθi − 1)

2α2 − 3α + 1
(1− s)1−

1

α . (1.16)

Finely, by substitution (1.15) and (1.16) in (2.7) we get:

CCTEX (s; t) =

α (1− t) (2α + tθi − 2stθi + 2stαθi − 1)

(2α2 − 3α+ 1)
(1− s)1−

1

α

(1− s− t+ st+ θist(1− s)(1− t))

=
α (2α+ tθi − 2stθi + 2stαθi − 1)

(stθi + 1) (2α2 − 3α+ 1)
(1− s)−1/α

.

This completes the proof of Proposition 3.1. �

A.6 Proof of Corollary 3.1

Let denote by

Cu (u, v) :=
∂

∂u
C (u, v) ,

then by Corollary 2.1, we have

Jt (u) =

∫ 1

t

c (u, v) dv = Cu (u, v)]
1
t

= Cu (u, 1)− Cu (u, t) .
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So, C is Archimedean copula, then

Cu (u, v) =
ψ′(u)

ψ′ (C (u, v))
.

Finely, we get (3.11) by the propriety of copula that C (u, 1) = u. �
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