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The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young’s
relation, since the solid is deformed elastically by the action of the capillary forces. The finite
elasticity of the solid also renders the contact angles different from that predicted by Neumann’s
law, which applies when the drop is floating on another liquid. Here we derive an elasto-capillary
model for contact angles on a soft solid, by coupling a mean-field model for the molecular interactions
to elasticity. We demonstrate that the limit of vanishing elastic modulus yields Neumann’s law or a
slight variation thereof, depending on the force transmission in the solid surface layer. The change
in contact angle from the rigid limit (Young) to the soft limit (Neumann) appears when the length
scale defined by the ratio of surface tension to elastic modulus γ/E reaches a few molecular sizes.

The wetting of liquid drops on deformable solids is im-
portant in many circumstances, with examples from bi-
ology to microfluidic devices [1–4]. When the solid is
soft or flexible, the shape of both the solid and the liq-
uid are determined by elasto-capillary interactions, i.e.
by the elastic response to the capillary forces [5, 6]. Till
date, however, the most basic characterization of wetting
has remained elusive for highly deformable solids [7–10]:
What is the contact angle that a liquid makes on a soft
solid?

The geometry of the interfaces near the three-phase
contact line is governed by two classical laws that de-
scribe the macroscopic boundary condition for the con-
tact angles [11]. Young’s law applies in the case where the
substrate is perfectly rigid, with elastic modulus E =∞,
while Neumann’s law holds for liquid lenses floating on
another liquid “substrate”. A question that naturally
arises is whether the contact angles vary from “Young”
to “Neumann” upon reducing the elastic modulus of the
substrate: in other words, does one recover Neumann’s
angles in the limit E → 0? Interestingly, the ratio of
liquid-vapor surface tension γ to elastic modulus E has
the dimension of a length. It has remained an object of
discussion whether, for the solid to become highly de-
formable, this elastic length γ/E should be comparable
to a molecular size [12, 13] or to a macroscopic length
such as the size of the drop [14, 15].

The difficulty of the problem results from its inherently
multi-scale nature. On one hand, the capillary forces are
localized in the vicinity of the contact-line. On the other
hand, the Green function giving the surface displacement
δh(x), induced by a Dirac force distribution of resultant
fz applied at the boundary of a two-dimensional elastic
medium, scales as [16]

δh(x) ∼ −fz
E

ln |x|, (1)

and is therefore singular at both small and large distance

x from the contact line. An outer cut-off is naturally
provided by the thickness h of the elastic film or the
size of the drop [12, 17, 18]. The inner regularization
is commonly assumed to originate from the finite range
of intermolecular capillary forces [7, 10, 13], or by the
breakdown of linear elasticity [19]. Hence, the transition
from Young’s to Neumann’s contact angles calls for an
unprecedented, fully self-consistent treatment of elastic
and capillary interactions.

In this Letter, we solve the elasto-capillary contact an-
gle selection within the framework of the Density Func-
tional Theory, using the sharp-kink approximation. The
evolution of the contact angles with stiffness is summa-
rized in Fig. 1. The central result is that the liquid con-
tact angle is selected at the molecular scale a and there-
fore exhibits a transition from “Young” to “Neumann”
around a dimensionless number γ/(Ea) of order unity.
We propose an analytical description of this transition,
which agrees quantitatively with the full numerical solu-
tion of the coupled DFT and elasticity models. Above
this transition, the elastic solid is deformed by the cap-
illary forces over the length γ/E. When the latter be-
comes larger than the system size (the layer thickness h
in Fig. 1c), the elastic deformation saturates.

Density Functional Theory – The multi-scale nature of
elasticity makes it convenient to treat the wetting inter-
actions in a continuum framework, such as the DFT. We
consider a simplified DFT model in which the solid and
the liquid are treated as homogeneous phases that mutu-
ally attract, while the interface is assumed to be infinitely
thin [20–22]. This model captures the microscopic prop-
erties such as the stress-anisotropy near the interface, the
disjoining pressure and the line tension and is consistent
with macroscopic thermodynamics in the form of Laplace
pressure and Young’s law [20–23].

The idea underlying this DFT model is to separate
the molecular interactions into a long-range attractive
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FIG. 1: Geometry near the three-phase contact line obtained by coupling elasticity to a DFT model. Contact angles continuously
vary from Young’s law to Neumann’s law by reducing the stiffness of the solid. (a) Rigid solid, γ/(Ea) � 1. The surface is
undeformed and the liquid contact angle follows Young’s law down to molecular scale a. (b) Soft solid, γ/(Ea) � 1. Surface
elasticity is negligible on the scale of molecular interactions, and the contact angles obey Neumann’s law. The solid is deformed
over a distance ∼ γ/E from the contact line. (c) Very soft solid, γ/(Eh) ∼ 1. The change of the contact angles saturates when
γ/E becomes comparable to the thickness of the elastic film. The solid angle measured at scale h becomes identical to the
microscopic solid angle at scale a.

potential ϕ(r), which takes into account the pair corre-
lation function, and a hard core repulsion that acts as
a contact force. For van der Waals interactions this po-
tential decays as 1/r6, which is cut-off at a microscopic
distance r = a that corresponds to the repulsive core. In
the model, it turns out that all the capillary forces can
be expressed in terms of the integrated potential [13],

Φαβ (r) = ραρβ

∫

α

dr′ ϕαβ (|r− r′|) . (2)

This represents the potential energy in phase β due
to phase α, where the phases can be liquid (L), solid
(S) or vapor (V ). ρα and ρβ are the corresponding ho-
mogeneous densities. The repulsive core at r = a en-
sures that the integrals over the entire domain α con-
verge, and is modeled by an isotropic internal pressure
that ensures incompressibility. As detailed in [13, 24],
the model distinguishes three types of attractive inter-
actions: liquid-liquid, solid-solid and solid-liquid inter-
actions, which can be expressed directly in terms of the
surface tensions γ, γSV and γSL [13, 21, 25]. The liquid-
vapor surface tension γ characterises the liquid-liquid in-
teractions. The strength of the solid-liquid interactions
is characterized by Young’s contact angle θY , defined by
cos θY = (γSV − γSL)/γ. The interaction with vapor can
be neglected in the limit of a low vapor density. In the
full DFT numerical calculation, the equilibrium shape of
the liquid-vapor interface is determined iteratively using
the procedure described in previous papers [22, 23].

Selection of the liquid angle – An important feature is
that the strength of the capillary interactions depends
on the geometry of the deformable solid. We consider
the reference case of a solid shaped like a wedge of angle
θS (upper inset of Fig. 2). Similar to the case of a flat
surface, the force acting on a corner of liquid depends
only on its angle θL at a large distance from the contact
line, and can be determined exactly by integrating over

all the interactions in the DFT model [21, 22]. This force
on the liquid corner consists of three contributions that
are sketched in the lower inset of Fig. 2: (i) the force ex-
erted by the solid (solid-liquid interactions, black arrow),
(ii) the attractive force exerted by the rest of the liquid
(liquid-liquid interactions, white arrows), and (iii) the re-
pulsive force exerted by the rest of the liquid, induced by
the presence of the solid [26] (liquid-liquid interactions,
red arrow). This last force arises because the presence
of the solid leads to an increase of the liquid internal
pressure near the solid-liquid interface.

The balance of forces in Fig. 2 provides the equilib-
rium θL for arbitrary θS (details are worked out in the
Supplementary [24]):

cos θL =
1

2
[cos θY [1− cos θS ]

− sin θS

√
2

1− cos θS
− cos2 θY

]
. (3)

This result is independent of the microscopic length a
and the functional form of ϕ(r). For a flat surface
(θS = π), the solid-on-liquid force is oriented vertically,
with fSL = γ sin θL. In this case the force balance re-
duces to Young’s law, and the liquid angle θL = θY .
However, (3) predicts that θL increases when θS is re-
duced (Fig. 2, solid line). Physically, this is due to the
reduction of the solid volume for smaller θS : this lowers
the total solid-liquid interaction, making the solid wedge
more “hydrophobic”.
Selection of the solid angle – If the phase S behaves as

a perfect liquid, its mechanical equilibrium gives a sec-
ond equation for the angles. This can be deduced from
(3) by exchanging the roles of L and S, which indeed
result into θS and θL according to Neumann’s law [24].
In the elasto-capillary problem, by contrast, the solid S
can resist shear. One therefore needs to express how the
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FIG. 2: (Color online) Main graph: Relation between θL and
θS predicted by the DFT model. The solid line is the analytic
formula (3) for θY = 0.96. Symbols are the angles obtained
numerically for the normal force transmission model (�) and
the vectorial force transmission model (•), as defined in the
text. Upper inset: definition of θL and θS . Lower inset: forces
acting on a corner of liquid (bright region, light blue). Black:
force exerted by the solid. Red: repulsive liquid-liquid force
induced by the presence of the solid. White: attractive force
exerted by the liquid, due to the missing half domain of liquid.

capillary stress σ applied at the free surface deforms the
solid. We treat the substrate as an incompressible elastic
body (Poisson ratio ν = 1/2) with Young’s modulus E,
as is typical for soft elastomers. Introducing the Green’s
function R, which depends on the elastic properties and
the geometry of the substrate, we get the surface dis-
placement:

δh(x) =
1

E

∫ ∞

−∞
R(x− x′;h) · σ(x′)dx′.

The contact line is considered to be invariant in one
direction, so that R and σ have two components cor-
responding to the normal and the tangential directions
to the substrate. The elastic kernel requires a cut-off
length at large scale, which for our numerical calcula-
tions arises due to the finite elastic film thickness h [14].
The capillarity-induced σ can be expressed in terms of
the Φαβ [24], and the integrals of (2) can be evaluated
numerically for arbitrary shape of the liquid and solid do-
mains. This closes the elasto-capillary problem and the
resulting numerical profiles are provided in Fig. 1.

At intermediate distances from the contact line, a �
x � h, the Green’s function for the elastic response is
given by Eq. (1). The slope of the solid-liquid interface
thus scales as δh′ ∼ fz/(Ex). Importantly, the angle θL
of the liquid is selected at the micro-scale a. Therefore,

FIG. 3: (Color online) Forces acting on the corner of solid near
the contact line (indicated by the bright (light orange) region
near the contact line). (a) Normal force transmission model.
Black: force exerted by the liquid. Red: force exerted by
the solid due to pressure-build induced by the liquid. White:
force exerted by the solid, due to the missing half domain of
solid. (b) Vectorial force transmission model. The difference
with respect to (a) is the absence of pressure build-up in the
surface layer (red).

the relevant solid angle θS induced by elastic deforma-
tions must be defined at that scale. This is confirmed
by the agreement between the prediction of (3) and the
numerical solution of the fully coupled elasticity-DFT
model: the symbols in Fig. 2 are obtained by measur-
ing θS in the numerics at a distance a from the contact
line. With this information, one can obtain an approx-
imate equation for the selection of θS by evaluating (1)
at x = a:

δh′ ∼ tan

(
π − θS

2

)
∼ fz
Ea

. (4)

The force acting on the solid corner. – The final step
is to express the vertical force fz exerted on the solid
corner in the vicinity of the contact line (bright, light
orange region in Fig. 3). Using the approximation that
the solid domain is a perfect wedge and assuming that the
liquid is at equilibrium, we can derive the tangential and
normal components of this force due to the liquid-solid
interaction [24],

f tLS
γ

= (1 + cos θY )
cos θL2 sin θS

2

sin θL+θS
2

, (5)

fnLS
γ

=
(1 + cos θY )

2

(
sin θS +

cos θS

tan θL+θS
2

)

+
(1− cos θY )

2
cotan

θL
2
. (6)

As emphasized in recent papers, this force is oriented
towards the interior of the liquid and therefore presents
a large tangential component, even in the limit of a flat
surface [13, 27].

To express the solid-solid interactions, we need to
model the mechanical behavior of the surface layer of
the substrate. We consider two extreme cases of how the
liquid-on-solid force can be transmitted to the bulk of the
elastic solid. First, one can assume that only the normal
stress is transmitted, as would be the case for a liquid.
In terms of forces on the solid corner (bright region in
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FIG. 4: Transition of the contact angles θL (white), θS (gray)
upon increasing the “softness” parameter γ/(Ea) for θY =
0.96 and γSV = γ. Symbols correspond to DFT numerical
solutions for h/a = 1000 for the normal transmission force
(�) and for the vectorial transmission force (◦).

Fig. 3), the tangential component of fLS is balanced by
a pressure build-up in the surface layer. This is repre-
sented by the red arrow in Fig. 3a (in perfect analogy
to the red arrow in the liquid in Fig. 2). In this case of
normal force transmission, the total vertical force reads

fz = fnLS cos θSL+(−f tLS+γ−γSL) sin θSL−γSV sin θSV .
(7)

The angles θSL and θSV are defined with respect to the
undisturbed solid surface (Fig. 2).

Alternatively, one can hypothesize a perfect vectorial
force transmission, for which there is no such pressure
build-up in the surface layer (Fig. 3b). We recently pro-
posed an experimental test aiming to discriminate be-
tween the two force transmission models: it turned out
that the vectorial transmission model is the correct de-
scription for an elastomer [27]. Then, the tangential force
exerted by the liquid is transmitted to the bulk of the
elastic body, and the total force on the solid corner be-
comes (Fig. 3b)

fz = fnLS cos θSL + (−f tLS − γSV ) sin θSL − γSV sin θSV .
(8)

Discussion – The system of equations (3–6), closed by
Eq. (7) or Eq. (8), gives a prediction for θL and θS , and
forms the central result of our paper. It involves three
dimensionless parameters: the elasto-capillary number
γ/(Ea) and the surface tension ratios γSV /γ, γSL/γ. The
resulting contact angles are shown as solid lines in Fig. 4.
The symbols provide a direct comparison with numerical

solution of the full elasticity-DFT model.

In the limit of strong elasticity, γ/(Ea) � 1, one re-
covers Young’s angle θL = θY and an undeformed solid
θS = π, regardless of the model of force transmission. In
the opposite limit of a soft solid, γ/(Ea) � 1, the elas-
ticity is too weak to resist any force near the contact line.
In this limit one thus finds that fz = 0, corresponding
to a perfect balance of capillary forces. Elementary alge-
bra shows that for the normal force transmission model
(Eq. 7), the angles θL, θS perfectly correspond to Neu-
mann’s triangle in the soft limit. Treating the capillary
force as perfectly localized [15], i.e. a = 0, corresponds
to this limiting case. However, a continuous transition
between “Young” and “Neumann” is observed in Fig. 4,
with a crossover around γ/(Ea) ∼ 1. A similar transition
of the contact angles is observed for the vectorial force
transmission model (Eq. 8), but with angles in the soft
limit different from Neumann’s law.

Capillarity induced surface deformations are known to
have major consequences for condensation of drops on
soft solids [28], as used for micropatterning of polymeric
surfaces [29], mechanical stability of gels [30], or wetting
on very soft coatings. The presented generalization of
the classical laws for the contact angle will provide the
essential boundary condition for such problems.
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In this Supplementary Online Material, we describe the technical details of the results provided
in the main paper. First, we discuss how to compute capillary forces in the vicinity of the contact
line within the Density Functional Theory, in case the solid and the liquid phases can be considered
as perfect wedges. In this framework, we determine the equilibrium of a liquid when the solid is
not a flat substrate, but a wedge. We show how Young’s law and Neumann’s law are recovered in
particular limits. Second, we present a macroscopic linear model for the elastic response of the solid
to capillary forces. This is the basis for the analytical and numerical results presented in the main
paper.

CALCULATION OF CAPILLARY FORCES IN WEDGES

The DFT framework in which we perform our analysis separates the molecular interactions into a long-range
attractive potential and a short-range hard core repulsion [1, 2]. The short-range repulsion is described by an internal
repulsive pressure pr that ensures incompressibility of both the liquid and the solid – this is a reasonable approximation
for elastomers. This pressure acts as a purely normal contact force, and is continuous across the interfaces. Using
Eq. 2 of the main text to define ΦSL and ΦLL, the mechanical equilibrium allows one to express pr in the liquid as
(see [2] for the derivation):

pr + ΦSL + ΦLL = cst . (1)

The force ~FLS exerted by a wedge of liquid on a subsystem of the solid of volume VS , can be expressed as the
resultant of the volumetric attraction and the repulsion at the liquid-solid interface SLS . Within the same framework,
one can compute the force ~FSL exerted by a wedge of solid on a subsystem of the liquid of volume VL. One writes:

~FLS = −
∫

VS
~∇ΦLS(r) d3r −

∫

SLS

pr~n d
2r , (2)

~FSL = −
∫

VL
~∇ΦSL(r) d3r −

∫

SLS

pr~n d
2r . (3)

When the liquid and the solid domains are perfect wedges, these integrals can be evaluated explicitly, and expressed
in terms of the surface tensions γ, γSL, γSV . This will be derived below and lead to the equations of the main paper,
in particular Eqs. 3, 5 and 6.

FIG. 1: Definition of the attractive potential ΦW
12(z, α), created by a wedge (of angle α) of phase 1 on a point of phase 2. The

expression is given in (4).

First, we determine the equilibrium shape of a liquid wedge on a given solid wedge, and the force exerted by
the liquid on the solid in the vicinity of the contact line. This calculation can be reduced entirely in terms of the
interactions between wedges, as in Fig. 1. The attractive potential ΦW

12(z, α) created by a wedge of a phase 1, and
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characterized by an angle 0 < α < π/2, on a point of phase 2, at a distance z from the corner, and aligned with one
of the two edges (see Fig. 1) can be analytically expressed as:

ΦW
12(z, α) =

∫ ∞

z

r
[
α− arcsin

(z
r

sinα
)]
ϕ̃12(r)dr . (4)

where ϕ̃12(r) = ρ1ρ2
∫∞
−∞ ϕ12(

√
r2 + y2)dy is the potential created by an infinite line at a distance r from it. Note

that by construction, this function must be even with respect to the angle. The more general case when a point is not
aligned with an edge of the wedge can be easily deduced from the above case by adding (or subtracting) two different
wedges. Furthermore, as the surface tensions are calculated from the interactions between a column and half a space,
we can obtain certain important relations governing ϕ̃12(r) [3]:

∫ ∞

0

r2ϕ̃LL(r)dr = − γ , (5)

∫ ∞

0

r2ϕ̃LS(r)dr =

∫ ∞

0

r2ϕ̃SL(r)dr = − γ + γSV − γSL
2

= −γ 1 + cos θY
2

. (6)

Here θY is the Young’ angle. These two integrals can now be used in (4) to obtain:
∫ ∞

0

ΦW
LL(z, α)dz = − γ 1− cosα

sinα
, (7)

∫ ∞

0

ΦW
LS(z, α)dz =

∫ ∞

0

ΦW
SL(z, α)dz = − γ 1 + cos θY

2

1− cosα

sinα
. (8)

The attractive potential ΦH
12(z) created by a half-space of a phase 1, on a point at a distance z from its flat boundary

can be expressed independently or by using two wedges of 90◦ :

ΦH
12(z) = 2

∫ ∞

z

r arccos
z

r
ϕ̃12(r) dr = 2 ΦW

12

(
z,
π

2

)
. (9)

This quantity (noted Π12(z) in [2]) can be interpreted as a disjoining pressure. Furthermore, we have some useful
symmetry properties that we can easily interpret from geometrical arguments (here we dropped the subscripts to
clarify the notations):

ΦH(z < 0) = 2ΦH(0)− ΦH(−z) , (10)

ΦW (z, α > π/2) = ΦH(z sinα)− ΦW (z, π − α) , (11)

ΦW (z < 0, α) = ΦH(0)− ΦW (−z, π − α) . (12)

Force exerted by the solid on the liquid near the contact line

We denote by SLV , SSV and SSL the liquid-vapor, solid-vapor and solid-liquid interfaces, respectively. The subsys-
tem of liquid subject to forces is bounded on the liquid side by a surface perpendicular to the liquid-solid interface,
denoted SLL (see Fig. 2). The angle of the liquid wedge is 0 < θL < π/2 and the angle of the solid wedge is 0 < θS < π.
The force exerted by the solid wedge on the liquid subsystem in the vicinity of the corner is given by (3). Using Os-
trogradsky’s theorem, the volume integral in (3) reduces to a surface integral, in terms of the surfaces bounding the
volume of the liquid subsystem:

~FSL = −
∫

SLV

Φ
(1)
SL (− sin θL~ux + cos θL~uz) dS −

∫

SLL

Φ
(2)
SL ~ux dS +

∫

SSL

(
Φ

(3)
SL + p(3)r

)
~uz dS , (13)

where ~ux and ~uz are the tangential and the normal unit vectors to the solid-liquid interface, both directed toward

the interior of the liquid. We thus have to calculate the three different attractive potentials Φ
(i)
SL created by the

solid wedge on different locations of the liquid wedge, and the repulsive pressure p
(3)
r in the liquid at the liquid-solid

interface. Let us first concentrate on the liquid at the liquid-solid interface. The liquid is at equilibrium, so we can
use Eq. (1) to obtain (in the entire liquid) pr + ΦSL + ΦLL = ΦH

LL(0), which can be simplified to obtain:

p(3)r + Φ
(3)
SL = ΦW

LL(x, π − θL) . (14)
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FIG. 2: Distribution of capillary forces induced in a subsystem of the liquid wedge near the contact line.

Then, we can express the solid-liquid attractive potentials Φ
(2)
SL and Φ

(1)
SL respectively far from the contact line at a

distance z from the solid-liquid interface, and along the liquid-vapor interface at a distance s from the contact line:

Φ
(2)
SL = ΦH

SL(z) , (15)

Φ
(1)
SL = ΦW

SL(s, π − θL) + ΦW
SL(s, θL + θS − π) . (16)

Using the different expressions of the potentials above (14-16) and the integrals (7,8), we can finally explicitly express
the force (13) per unit L of contact line along the two directions normal and tangential to the solid-liquid interface:

f tSL =
~FSL · ~ux
L

= γ (1 + cos θY )
sin θL

2

[
1− cos θL

sin θL
+

1 + cos(θL + θS)

sin(θL + θS)

]
, (17)

fnSL =
~FSL · ~uz
L

= γ

[
(1 + cos θY )

cos θL
2

(
1 + cos θL

sin θL
− 1 + cos(θL + θS)

sin(θL + θS)

)
− 1 + cos θL

sin θL

]
. (18)

Liquid equilibrium

As explained in the main text, the equilibrium condition for the liquid is obtained by balancing the solid-on-liquid
force with the forces due to liquid-liquid interactions. The system on which the forces act is taken as the liquid corner
depicted in Fig. 2). The liquid-liquid interactions can be separated in two contributions. First, there are attractive
liquid on liquid forces, which act at the liquid-liquid and the solid-liquid interfaces, far from the contact line. Each
of these two forces are equal to γ per unit contact line, and are pulling on these two corners along the liquid-vapor
and liquid-solid interfaces. The second is due to repulsive liquid-liquid interactions, acting near the boundary normal
to the solid-liquid interface far from the contact line. It originates from the presence of the attractive solid. The
resulting tangential force (per length unit of contact line) is γ + γSV − γSL = γ(1 + cos θY ) and is directed toward the
interior of the subsystem [4]. The balance of these forces, tangential and normal to the interface, read:

γ(1 + cos θL)− γ (1 + cos θY ) + f tSL = 0 , (19)

γ sin θL + fnSL = 0 . (20)

These two equations come from the projections of the gradient of a scalar: it implies that they represent a single
independent equation that reduces to [using for instance (17) and (19)]:

1 + cos θY = (1 + cos θL)

(
1 +

tan(θL/2)

tan(θS/2)

)
. (21)



4

The unique physical solution of this equation is given by:

cos θL =
1

2

[
cos θY [1− cos θS ]− sin θS

√
2

1− cos θS
− cos2 θY

]
, (22)

which is Eq. (3) in the main paper.

Young’s law and Neumann’s law

One easily shows that in the case of a flat substrate, θS = π, the tangential force f tSL vanishes due to symmetry
reasons: the solid spans an infinite half-space in the tangential direction. We then recover θL = θY , [either from (19)
or (22)], which is Young’s law. In addition we note that fnSL = γ sin θY , ensuring that we have a force balance in the
liquid subsystem in both directions.

By assuming the substrate is a perfect liquid, we will now show that the above formulation is equivalent to Neu-
mann’s law [5]. Denoting this liquid substrate as phase 2, and the liquid wedge on top of it as phase 1, Neumann’s
law is given by the two following equations:

γ1 sin θ1 − γ2 sin θ2 = 0 , (23)

γ1 cos θ1 + γ2 cos θ2 + γ12 = 0 , (24)

where γ1 and γ2 are the surface tensions of liquids 1 and 2, γ12 is the interfacial tension, and (θ1, θ2) are the positive
angles made by the liquid wedges 1 and 2. Neumann’s law is in fact ruled by two independent parameters, which we
denote according to Young’s law by:

cos θY 1 =
γ2 − γ12
γ1

, (25)

cos θY 2 =
γ1 − γ12
γ2

. (26)

With these notations, we get γ1/γ2 = (1 + cos θY 2)/(1 + cos θY 1) and γ12/γ2 = (1− cos θY 1 cos θY 2)/(1 + cos θY 1), and
Neumann’s law (23,24) can be rewritten as:

sin θ1(1 + cos θY 2)− sin θ2(1 + cos θY 1) = 0 , (27)

cos θ1(1 + cos θY 2) + cos θ2(1 + cos θY 1) = cos θY 1 cos θY 2 − 1 , (28)

The unique physical solution can then be explicitly expressed as:

cos θ1 =

[
2 + (1− cos θY 2) cos θY 1

]
cos θY 1 − (1 + cos θY 2)

2(1− cos θY 1 cos θY 2)
. (29)

or equivalently by a function of the form θ1 = N(θY 1, θY 2). The second angle is given by symmetry, i.e., θ2 =
N(θY 2, θY 1).

Let us now show that the DFT formulation indeed reduces to Neumann’s law when both the phases are liquid. For
a given substrate wedge of angle θ2, we can see from (22) that the liquid 1 is at equilibrium when it forms a wedge of
angle θ1 = f(θY , θ2). If the phase 2 is a liquid as well, then we can use the same equation (22) with exchanged roles
of phase 1 and 2. This gives two equations for the contact angles:

θ1 = f(θY 1, θ2) , (30)

θ2 = f(θY 2, θ1) , (31)

where θY 2 is defined in (26). Therefore, θ1 obeys the following implicit equation:

θ1 = f
(
θY 1, f(θY 2, θ1)

)
. (32)

We can easily verify that this equation has a unique solution in the interval [0, π], which is given explicitly by (29).
By analogy, we also recover the second angle θ2 with the symmetry θY 1|θY 2.
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Force exerted by the liquid on the solid near the contact line

Contrarily to the liquid, the capillary forces on the solid need not be at equilibrium for the solid: a resultant force
can be balance by the elasticity. By analogy with the determination of the solid on liquid force, we compute the
capillary force (2) exerted by the entire wedge of liquid to a subsystem of solid bounded by a surface perpendicular
to the liquid-solid interface, noted SSS :

~FLS = −
∫

SSV

Φ
(1)
LS (− sin θS~ux − cos θS~uz) dS −

∫

SSS

Φ
(2)
LS ~ux dS −

∫

SSL

(
Φ

(3)
LS + p(3)r

)
~uz dS . (33)

The attractive potentials Φ
(1)
LS = ΦW

LS(s, π − θS) + ΦW
LS(s, θL + θS − π) and Φ

(2)
LS = ΦH

LS(z) are analogous to what we
obtained in (16) and (15). The only fundamental difference is that for this case the pressure is determine by the liquid
(and not the solid) equilibrium (14), so that:

p(3)r + Φ
(3)
LS = ΦW

LL(x, π − θL) + ΦW
SL(x, π − θS)− ΦW

LS(x, π − θL) . (34)

Therefore, after some simplifications, we can determine [from (33)] the normal and the tangential components of the
liquid on solid force (per unit length of the contact line):

f tLS =
~FLS · ~ux
L

= γ
1 + cos θY

2

[
1− cos θS + sin θS

1 + cos(θL + θS)

sin(θL + θS)

]
, (35)

fnLS =
~FLS · ~uz
L

= γ

[
1 + cos θY

2

(
sin θS + cos θS

1 + cos(θL + θS)

sin(θL + θS)

)
+

1− cos θY
2

1 + cos θL
sin θL

]
. (36)

These expressions can be rewritten in a more compact form as Eqs. (5) and (6) of the main paper. When θS = π, then
θL = θY [using (22)] and fnLS = γ sin θY [using (36)], as we would expect from the vertical action-reaction interaction
of two full wedges, and f tLS = γ(1 + cos θY ) [using (35)], as was shown in [2, 6].

MACROSCOPIC ELASTO-CAPILLARY MODEL

The description of the solid is more subtle than that of the liquid. The bulk of the elastic substrate is described as
a homogeneous incompressible elastic medium. However, one needs to define the effective boundary conditions to be
applied to the bulk elasticity equations to compute the deformations. As discussed in the main text, one can consider
two models that will be referred to as normal force transmission and vectorial force transmission respectively. Below
we present the expressions for the surface stress σs used for our numerical results.

Curved interfaces interactions

For later reference, we first determine the attractive potential at an interface between two phases 1 and 2 which
presents a curvature κ. For κa� 1, this potential (Eq. 2 in the main text) reduces to:

Φ12 = ΦH
12(0)− κ

∫ ∞

0

r2ϕ̃12(r)dr , (37)

where, κ is defined as positive when phase 1 is smaller than phase 2. In (37), the integral term is always negative, and
depending on whether one considers liquid-liquid, solid-solid or liquid-solid interaction, becomes equal to −γ, −γSV
or −γ(1 + cos θY )/2 [see (7,8)]. The Laplace pressure originates from this potential.

Normal force transmission model

An elastomer can be described as an incompressible soft solid within which the elastic stress can be written as:

σij = −prδij +
E

3
(∂iuj + ∂jui) , (38)
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FIG. 3: (a) Distribution of capillary induced forces inside the solid. (b) Equivalent representation allowing a distinction between
the forces at the contact line, and the forces that could be compensated by a Laplace pressure when the interfaces are curved.

where ui is the displacement vector, and E the Young’s modulus. This solid is assumed to be submitted to the
long-range attractive potential. Then it can be rigorously shown (see the proof below) that the the external solution
must have an effective boundary condition:

~σs =
(
ΦLS + ΦSS − ΦSL − ΦLL + ΦH

LL(0)− ΦH
SS(0)

)
~n . (39)

Note that this is the opposite of the surface force. When the liquid phase is expressed by a vapor phase, this expression
reduces to:

~σs =
(
ΦSS − ΦH

SS(0)
)
~n . (40)

The numerical solution presented in the main paper are based on numerical evaluations of the surface stress (39,40).
The surface stress σs acts as a generalized capillary pressure. At distances from the contact line much greater than

the molecular cut-off a, the curvature is small so that [using (37,40)] the capillary pressure on the dry part reduces
to the standard Laplace pressure:

~σs = γSV κ ~n . (41)

On the other hand, the Laplace pressure on the wet part is

~σs = γSL κ ~n . (42)

Proof – The incompressibility condition reads ∂lul = 0 or in vector notations:

~∇ · ~u = 0.
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We first assume that the constitutive equation holds in the interfacial zone where the elastomer is subjected to two
long range volumetric interactions which derive from the potentials ΦLS and ΦSS that are associated to liquid-solid
and solid-solid interactions respectively. The equilibrium condition reads:

− ~∇(pr + ΦLS + ΦSS) + E~∇2~u = 0. (43)

ΦLS and ΦSS result from an integration over the volume of the liquid and the solid. They vary over a scale of few
molecular sizes along the normal to the solid interface and attain their bulk values at distances away from the interface.
Therefore, ΦLS and ΦSS are only important in a thin boundary layer across the interface. We pose p̃ = pr+ΦLS +ΦSS

and σ̃ij = σij − (ΦLS + ΦSS)δij . Then the equation reduces to:

− ~∇p̃+ E~∇2~u = 0 (44)

in the whole domain. This is the standard elasticity problem. However the effective boundary conditions are modified.
More precisely, there is no excess quantity in the strain tensor, but the effective stress applied to the bulk is modified.
As the real stress σij is continuous, the pseudo-stress σ̃ij is not.

Vectorial force transmission model

We can alternatively propose a model of elastomeric surface that allows for a fully vectorial transmission of the
liquid-on-solid force. The polymeric chains are attracted in the direction of the liquid and thus transfer the total
force exerted by the liquid on the solid. There is no force gradient building up in the surface layer. Integrating the
equilibrium equation from the surface to the bulk, we see that the effective stress perfectly balances the excess forces
due to the long range interactions:

~σs = ~t · ~∇
[∫ ∞

0

ΦLSdh ~t

]
(45)

+
(
ΦLS + ΦSS − ΦSL − ΦLL + ΦH

LL(0)− ΦH
SS(0)

)
~n

This is the expression for σs used in the numerical solution of the vectorial force transmission model.
Again, looking at a distance from the contact line large compared to a and using

~t · ~∇~t = −κ~n,

we get in the dry region a surface stress:

~σs = (γSV + γ) κ ~n (46)

Beside, the Laplace pressure in the dry part is still

~σs = γSV κ ~n. (47)
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