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A SEMILINEAR HYPERBOLIC SYSTEM VIOLATING THE

NULL CONDITION

SOICHIRO KATAYAMA, TOSHIAKI MATOBA, AND HIDEAKI SUNAGAWA

Dedicated to the memory of Professor Rentaro Agemi

Abstract. We consider a two-component system of semilinear wave equa-
tions in three space dimensions with quadratic nonlinear terms not satisfy-
ing the null condition. We prove small data global existence of the classical
solution if some quantity defined from the nonlinearities is positive. It is
also shown that only one component is dissipated and the other one behaves
like a free solution in the large time.

1. Introduction and the main results

This paper is concerned with large time behavior of classical solutions to
the Cauchy problem for

{
✷v1 = −c2(∂tv1)(∂tv2),
✷v2 = c1(∂tv1)

2 for (t, x) ∈ R× R3, (1.1)

where v = (v1, v2) : R × R
3 → R

2 is an unknown function, ✷ = ∂2t − ∆x =
∂2t − (∂2x1

+ ∂2x2
+ ∂2x3

), and c1, c2 are non-zero real constants. In what follows
we will use the notation ∂0 = ∂t and ∂j = ∂xj

for j = 1, 2, 3.
The system (1.1) has the following feature: It has a conserved quantity, that

is to say,

I :=

2∑

j=1

cj
2

∫

R3

(
|∂tvj(t, x)|2 + |∇xvj(t, x)|2

)
dx

is independent of t if v = (v1, v2) satisfies (1.1). Based on this fact, it may
not be surprising that (1.1) admits a global solution in a suitable weak sense if
c1c2 > 0. However, it is not trivial at all whether (1.1) admits a global solution
in the classical sense (even when c1c2 > 0) since the nonlinear terms appearing
in (1.1) do not satisfy the null condition in the sense of Christodoulou [2] and
Klainerman [13]. Moreover, in view of recent works on the global existence
and the asymptotic behavior of solutions under some structural conditions
related to the weak null condition (see [17], [1], [10], [8], etc.), it is quite
natural to expect some long-range effects should appear because quadratic
interaction is critical for the wave equations in the three space dimensions and
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the null condition is violated. So we are lead to the following questions: Is

there a unique global classical solution for (1.1) if the initial data are smooth?

Moreover, what can we say about the asymptotic behavior of the solution as

t→ ±∞? The aim of this paper is to address these questions in the case where
the Cauchy data are sufficiently small, smooth and compactly-supported.

In what follows, we suppose that the initial data are of the form

vj(0, x) = εfj(x), ∂tvj(0, x) = εgj(x) for x ∈ R
3, j = 1, 2, (1.2)

where ε is a small positive parameter and fj , gj belong to C∞
0 (R3). We intro-

duce the energy norm ‖ · ‖E by

‖φ(t)‖E =

(
1

2

∫

R3

(
|∂tφ(t, x)|2 + |∇xφ(t, x)|2

)
dx

)1/2

.

Note that the conservation law mentioned above is rewritten as

c1‖v1(t)‖2E + c2‖v2(t)‖2E = I. (1.3)

Our main results are as follows:

Theorem 1.1 (Global existence). Suppose c1c2 > 0. Then, for any fj , gj ∈
C∞

0 (R3), there exists ε0 > 0 such that (1.1)–(1.2) admits a unique global C∞

solution v for (t, x) ∈ R×R3 if ε ∈ (0, ε0]. On the other hand, if c1c2 < 0, we
can choose fj , gj ∈ C∞

0 (R3) such that the corresponding classical solution for

(1.1)–(1.2) blows up in finite time, both in the future and the past, no matter

how small ε is.

Theorem 1.2 (Asymptotic behavior). Suppose c1c2 > 0. Let ε be sufficiently

small and v = (v1, v2) be the global solution for (1.1)–(1.2) whose existence is

guaranteed by Theorem 1.1. Then we have

lim
t→±∞

‖v1(t)‖E = 0, (1.4)

and there exist two pairs of functions (f±
2 , g

±
2 ) ∈ Ḣ1(R3)× L2(R3) such that

lim
t→±∞

‖v2(t)− v±2 (t)‖E = 0, (1.5)

where two functions v±2 = v±2 (t, x) solve ✷v
±
2 = 0 with (v±, ∂tv

±
2 )(0) = (f±

2 , g
±
2 ).

Here Ḣ1(R3) denotes the completion of C∞
0 (R3) with respect to the norm

given by ‖φ‖Ḣ1 = ‖∇xφ‖L2 .

Remark 1.1. From (1.3), (1.4), (1.5) and the energy conservation for the free
wave equation, it follows that

‖∇xf
±
2 ‖2L2 + ‖g±2 ‖2L2 =

2I

c2
,

which implies (f±
2 , g

±
2 ) 6= (0, 0) unless the Cauchy data for the original problem

vanish identically. Therefore Theorem 1.2 tells us that only v1 is dissipated
and v2 behaves like a (non-trivial) free solution in the large time. As far as the
authors know, there are no previous results on such decoupling in the context
of nonlinear wave equations.
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Remark 1.2. Our proof does not rely on (1.3) at all. In fact our approach can
be applied to a bit more general system which does not have the (explicit)
conservation law. For example, let us consider the system

{
✷v1 = −c2(∂tv1)(∂tv2) +N1(∂v),

✷v2 = c1(∂tv1)
2 +N2(∂v),

(1.6)

where

Nj(∂v) =
2∑

k,l=1

Akl
j Q0(vk, vl) +

3∑

a,b=0

Bab
j Qab(v1, v2)

with real constants Akl
j and Bab

j . Here Q0 and Qab are the null forms

Q0(φ, ψ) := (∂tφ)(∂tψ)− (∇xφ) · (∇xψ),

Qab(φ, ψ) := (∂aφ)(∂bψ)− (∂bφ)(∂aψ), a, b ∈ {0, 1, 2, 3}.
If c1c2 > 0 then the global existence part of Theorem 1.1 and the conclusion
of Theorem 1.2 remain true (see also Section 8 below). The null condition
is satisfied if and only if c1 = c2 = 0. If the initial date are small, the null
condition ensures the global existence of a unique solution v, whose components
v1 and v2 in the large time behave like free solutions, which are non-trivial in
general, differently from (1.4). On the other hand, in the case of c1 = 0 and
c2 6= 0, or the case of c1 6= 0 and c2 = 0, (1.6) admits a global solution for
small data, whose energy grows up to ∞ as t → ∞ (at different growth rates
for two cases; see [8] for the details).

For closely related works on the nonlinear Klein-Gordon systems in two
space dimensions, see Kawahara-Sunagawa [12] (see also [3], [11], [19], etc.).

2. Reduction of the problem

In this section, we make some reduction of the problem and give a proof of
the blow-up part of Theorem 1.1.

First we observe that the system (1.1) is invariant under the time-reversing
(t, x) 7→ (−t, x). So we have only to consider the forward Cauchy problem
(i.e., the problem for t > 0).

Proof of the blow-up part of Theorem 1.1. Let us remember the famous result
by John [7]: For every f0, g0 ∈ C∞

0 (R3) with (f0, g0) 6≡ (0, 0), the classical
solution w(t, x) for ✷w = (∂tw)

2 with (w, ∂tw)(0) = (εf0, εg0) blows up in
finite time no matter how small ε is. Now we assume c1c2 < 0 and set

v1(t, x) =
1√−c1c2

w(t, x), v2(t, x) =
−1

c2
w(t, x)

with the above w(t, x). Then (v1, v2) is a blow-up solution for (1.1), which
yields the desired conclusion. �

Now we make further reduction for the proof of the global existence part.
We assume c1c2 > 0 from now on. Then we see that it is sufficient to consider
the case of c1 = c2 = 1 through the scaling: If we put u1 =

√
c1c2v1 and
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u2 = c2v2, then we see that (u1, u2) satisfies (1.1) with c1 = c2 = 1. Moreover,
if we put u = u1 + iu2, then u satisfies

✷u = F (∂tu), (2.1)

where

F (z) = i(Re z)z.

Here and hereafter, the symbol i always stands for the imaginary unit
√
−1.

Remark that

Re(zF (z)) = 0 (2.2)

for all z ∈ C. Eventually our problem is reduced to (2.1) for t > 0, x ∈ R3

with the initial data

u(0, x) = εf(x), ∂tu(0, x) = εg(x), (2.3)

where f , g ∈ C∞
0 (R3;C). Since the local existence of the solution is well

known, what we have to do for the proof of the global existence is to get a
suitable a priori estimate for the solution to (2.1)–(2.3). This will be carried
out in Section 5 after some preliminaries in Sections 3 and 4. The proof of
Theorem 1.2 will be given in Sections 6 and 7.

3. Commuting vector fields

In this section, we recall basic properties of some vector fields associated with
the wave equation. In what follows, we denote several positive constants by C
which may vary from one line to another. For y ∈ RN with a positive integer
N , the notation 〈y〉 = (1 + |y|2)1/2 will be often used. Also we will use the
following convention on implicit constants: The expression f =

∑′
λ∈Λ gλ means

that there exists a family {Aλ}λ∈Λ of constants such that f =
∑

λ∈ΛAλgλ.
Let us introduce

S = t∂t +

3∑

j=1

xj∂j ,

Lj = t∂j + xj∂t, j ∈ {1, 2, 3},
Ωjk = xj∂k − xk∂j , j, k ∈ {1, 2, 3},
∂ = (∂a)a=0,1,2,3 = (∂t, ∂x1

, ∂x2
, ∂x3

),

and we set

Γ = (Γ0,Γ1, . . . ,Γ10) = (S, L1, L2, L3,Ω23,Ω31,Ω12, ∂0, ∂1, ∂2, ∂3).

For a multi-index α = (α0, α1, . . . , α10), we write Γα = Γα0

0 Γα1

1 · · ·Γα10

10 and
|α| = α0 + α1 + · · ·+ α10. We define

|φ(t, x)|k =


∑

|α|≤k

|Γαφ(t, x)|2



1/2

, ‖φ(t, ·)‖k =


∑

|α|≤k

‖Γαφ(t, ·)‖2L2




1/2
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for a non-negative integer k and a smooth function φ = φ(t, x). As is well
known, these vector fields satisfy [✷, S] = 2✷ and [✷, Lj ] = [✷,Ωjk] = [✷, ∂a] =
0, where [A,B] = AB−BA for linear operators A and B. From them it follows
that

✷Γαφ = Γ̃α
✷φ, (3.1)

where Γ̃α = (Γ0 + 2)α0Γα1

1 · · ·Γα10

10 . We also note that

[Γj,Γk] =

10∑′

l=0

Γl, [Γj , ∂a] =

3∑′

b=0

∂b.

Hence we can check that the estimates

|ΓαΓβφ| ≤ C|φ||α|+|β|,

C−1|∂φ|s ≤
∑

|α|≤s

|∂Γαφ| ≤ C|∂φ|s (3.2)

are valid for any multi-indices α, β and any non-negative integer s.
Next we set r = |x|, ωj = xj/r, ∂r =

∑3
j=1 ωj∂j , and ∂± = ∂t±∂r. We write

ω = (ωj)j=1,2,3. For simplicity of exposition, we also introduce

D± = ±1

2
∂± =

1

2
(∂r ± ∂t).

We summarize several useful inequalities related to Γ.

Lemma 3.1. For a smooth function φ of (t, x) ∈ [0,∞)× R3, we have

|D+(rφ(t, x))| ≤ C|φ(t, x)|1, (3.3)

|r∂tφ(t, x) +D−(rφ(t, x))| ≤ C|φ(t, x)|1, (3.4)

and

|r∂jφ(t, x)− ωjD−(rφ(t, x))| ≤ C|φ(t, x)|1 (3.5)

for j = 1, 2, 3.

Proof. (3.3) and (3.4) are direct consequences of the following relations:

D+(rφ) =
r

2(r + t)
(Sφ+ Lrφ) +

φ

2
,

r∂tφ = −D−(rφ) +D+(rφ),

where Lr = r∂t + t∂r =
∑3

j=1 ωjLj . (3.5) follows just from

r(∂j − ωj∂r)φ =
3∑

k=1

ωkΩkjφ (3.6)

and

r∂rφ = D−(rφ) +D+(rφ)− φ,

if we use (3.3) to estimate D+φ. �
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Lemma 3.2. For a smooth function φ of (t, x) ∈ [0,∞) × R3 and a non-

negative integer s, we have

|∂φ(t, x)|s ≤ C〈t− |x|〉−1|φ(t, x)|s+1.

This lemma is due to Lindblad [16], which comes from the identities

(t− r)∂tφ =
1

t + r
(tS − rLr)φ,

(t− r)∂rφ =
1

t+ r
(tLr − rS)φ,

and tΩkjφ = xkLjφ − xjLkφ, as well as (3.6) (see [16] for the detail of the
proof).

We close this section with the following decay estimate for solutions to in-
homogeneous wave equations.

Lemma 3.3 (Hörmander’s L1–L∞ estimate). Let φ be a smooth solution to

✷φ = G, (t, x) ∈ (0, T )× R
3

with φ(0, x) = ∂tφ(0, x) = 0. It holds that

〈t+ |x|〉|φ(t, x)| ≤ C
∑

|α|≤2

∫ t

0

‖ΓαG(τ, ·)‖L1(R3)

dτ

〈τ〉

for 0 ≤ t < T . Here the constant C is independent of T .

See [5] for the proof (see also Lemma 6.6.8 of [6], or Section 2.1 of [18]).

4. The profile equation

Let 0 < T ≤ ∞, and let u be the solution to (2.1) on [0, T ) × R3. We
suppose that

supp f ∪ supp g ⊂ BR (4.1)

for some R > 0, where BM = {x ∈ R3; |x| ≤ M} for M > 0. Then, from the
finite propagation property, we have

supp u(t, ·) ⊂ Bt+R, 0 ≤ t < T. (4.2)

Now we put r = |x|, ω = (ω1, ω2, ω3) = x/|x| and set

∆S2 =
∑

1≤j<k≤3

Ω2
jk

so that

r✷φ = ∂+∂−(rφ)−
1

r
∆S2φ. (4.3)

We define

U(t, x) := D−
(
ru(t, x)

)
, (t, x) ∈ [0, T )× (R3 \ {0}) (4.4)



A SEMILINEAR HYPERBOLIC SYSTEM VIOLATING THE NULL CONDITION 7

for the solution u of (2.1). In view of (3.4) and (3.5), the asymptotic profiles
as t → ∞ of ∂tu and ∇xu should be given by −U/r and ωU/r, respectively,
because we can expect |u(t, x)|1 → 0 as t→ ∞. Also it follows from (4.3) that

∂+U(t, x) = − 1

2t
F
(
−U(t, x)

)
+H(t, x), (4.5)

where H = H(t, x) is given by

H =− 1

2

(
rF (∂tu)−

1

t
F (−U)

)
− 1

2r
∆S2u.

As we will see in Lemma 4.1 below, H can be regarded as a remainder. For
these reasons, we call (4.5) the profile equation associated with (2.1), which
plays an important role in our analysis. We also need an analogous equation
for Γαu with a multi-index α. For this purpose, we put

U (α)(t, x) := D−
(
rΓαu(t, x)

)
.

Since ✷(Γαu) = Γ̃α (F (∂tu)), we deduce from (4.3) that

∂+U
(α) = − 1

2t
Gα +Hα (4.6)

for |α| ≥ 1, where

Gα(t, x) = i
{
(ReU (α))U + (ReU)U (α)

}

and

Hα(t, x) = −1

2

(
rΓ̃αF (∂tu)−

1

t
Gα

)
− 1

2r
∆S2Γ

αu.

In the rest part of this section, we focus on preliminary estimates for H and
Hα in terms of the solution u near the light cone. To be more specific, we put

ΛT,R := {(t, x) ∈ [0, T )× R
3; 1 ≤ t/2 ≤ |x| ≤ t +R}.

Note that we have

(1 + t+ |x|)−1 ≤ |x|−1 ≤ 2t−1 ≤ 3(1 + t)−1 ≤ 3(R + 2)(1 + t+ |x|)−1

for (t, x) ∈ ΛT,R. In other words, the weights 〈t+ |x|〉−1, (1 + t)−1, |x|−1, and
t−1 are equivalent to each other in ΛT,R. For a non-negative integer s, we also
introduce an auxiliary notation | · |♯,s by

|φ(t, x)|♯,s := |∂φ(t, x)|s + 〈t+ |x|〉−1|φ(t, x)|s+1.

Lemma 4.1. We have

|H(t, x)| ≤C
(
|u|♯,0|u|1 + t−1|u|2

)
,

for (t, x) ∈ ΛT,R. Here the constant C is independent of T . Also, in the case

of s ≥ 1, we have
∑

|α|=s

|Hα(t, x)| ≤Cs(|u|♯,s|u|s+1 + t|∂u|2s−1 + t−1|u|s+2)

for (t, x) ∈ ΛT,R, where Cs is a positive constant which does not depend on T .
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Proof. Let (t, x) = (t, rω) ∈ ΛT,R and s = |α| ≥ 0. First we note that

|U (α)(t, x)| ≤ r|D−Γ
αu|+ 1

2
|Γαu|

≤ Cr(|∂u|s + r−1|u|s) ≤ Ct|u(t, x)|♯,s (4.7)

by the definition of | · |♯,s, and that

〈t− r〉|U (α)(t, x)| ≤ Ct

(
〈t− r〉|∂u(t, x)|s +

〈t− r〉
〈t+ r〉 |u(t, x)|s

)

≤ Ct|u(t, x)|s+1 (4.8)

by Lemma 3.2. Also (3.3) implies

|D+(rΓ
αu)| ≤ C|u|s+1. (4.9)

Now we consider the estimate for H . We decompose it as follows:

H = − 1

2r

(
r2F (∂tu)− F (−U)

)
− t− r

2rt
F (−U)− 1

2r
∆S2u.

It is easy to see that the third term can be dominated by Ct−1|u|2. As for the
second term, we have

|t− r|
rt

|F (−U)| ≤ Ct−1〈t− r〉|U | · t−1|U | ≤ C|u|1|u|♯,0,

because of (4.7) and (4.8) with s = 0. To estimate the first term, we use the
relation

r2F (∂tu)− F (−U) = F
(
∂t(ru)

)
− F (−U)

= F
(
−U +D+(ru)

)
− F (−U)

= ir(∂tu) ReD+(ru)− i(ReU)D+(ru)

to obtain

1

2r
|r2F (∂tu)− F (−U)| ≤ C(|∂u|+ r−1|U |)|D+(ru)| ≤ C|u|♯,0|u|1

with the help of (4.7) and (4.9).
Next we turn to the estimate for Hα with s = |α| ≥ 1. For this purpose, we

set

F̃α = i
{
(Re ∂tΓ

αu)∂tu+ (Re ∂tu)∂tΓ
αu

}

to split Hα into the following form:

Hα = −r
2

(
Γ̃αF (∂tu)− F̃α

)
− 1

2r

(
r2F̃α −Gα

)
− t− r

2rt
Gα − 1

2r
∆S2Γ

αu.

Since the first term consists of a linear combination of the terms in the form
r(Γβ∂au)(Γ

γ∂bu) with |β|, |γ| ≤ s−1 and a, b ∈ {0, 1, 2, 3}, it can be estimated
by Ct|∂u|2s−1. Other terms can be treated in the same way as in the previous
case. �
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5. Proof of the global existence part of Theorem 1.1

Let u(t, x) be a smooth solution to (2.1)–(2.3) on [0, T0) × R3 with some
T0 ∈ (0,∞]. For 0 < T ≤ T0, we put

e[u](T ) = sup
(t,x)∈[0,T )×R3

(
〈t+ |x|〉〈t− |x|〉1−µ|∂u(t, x)|

+ 〈t+ |x|〉1−ν〈t− |x|〉1−µ|∂u(t, x)|k
)

with some µ, ν > 0 and a positive integer k. We also put

e[u](0) = lim
T→+0

e[u](T ).

Observe that there is a positive constant ε1 such that 0 < ε ≤ ε1 implies
e[u](0) ≤ √

ε/2, because we have e[u](0) = O(ε).
The main step toward global existence is to show the following.

Lemma 5.1 (A priori estimate). Let k ≥ 3, 0 < µ < 1/2, and 0 < 4(k+1)ν ≤
µ. There exist positive constants ε2 and m, which depend only on k, µ and ν,
such that

e[u](T ) ≤
√
ε (5.1)

implies

e[u](T ) ≤ mε, (5.2)

provided that 0 < ε ≤ ε2 and 0 < T ≤ T0.

Once the above lemma is obtained, we can show the small data global ex-
istence for (2.1)–(2.3) by the so-called continuity argument: Let T ∗ be the
lifespan of the classical solution for (2.1)–(2.3) and assume T ∗ < ∞. Then, it
follows from the standard blow-up criterion (see e.g., [18]) that

lim
t→T ∗−0

|∂u(t, x)| = ∞. (5.3)

On the other hand, by setting

T∗ = sup
{
T ∈ [0, T ∗) ; e[u](T ) ≤

√
ε
}
,

we can see that Lemma 5.1 yields T∗ = T ∗, provided that ε is small enough.
Indeed, if T∗ < T ∗, then we have e[u](T∗) ≤

√
ε, and Lemma 5.1 implies that

e[u](T∗) ≤ mε ≤
√
ε/2

for 0 < ε ≤ min{ε1, ε2, 1/4m2} (note that we have T∗ > 0 for ε ≤ ε1). Then,
by the continuity of [0, T ∗) ∋ T 7→ e[u](T ), we can take δ > 0 such that

e[u](T∗ + δ) ≤
√
ε,

which contradicts the definition of T∗, and we conclude that T∗ = T ∗.
In particular, we have

e[u](T ∗) ≤
√
ε.
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This implies that (5.3) never occurs for small ε. In other words, we must have
T ∗ = ∞, that is, the solution u exists globally for small data. We also note
that

e[u](∞) ≤
√
ε (5.4)

holds for this global solution u, and Lemma 5.1 again yields

e[u](∞) ≤ mε. (5.5)

Now we turn to the proof of Lemma 5.1. It will be divided into several steps.

Proof of Lemma 5.1. In what follows, we always suppose 0 ≤ t < T .
Step 1: Rough bounds for |u(t, x)|k+2 and |∂u(t, x)|k+1.

First of all, we will establish the following energy estimates:

‖∂u(t)‖l ≤ Cε(1 + t)C∗

√
ε+lν (5.6)

for l ∈ {0, 1, . . . , 2k + 1}, where C∗ is a positive constant to be fixed later.
In preparation for the proof of (5.6), we make some observations: Let 1 ≤

l ≤ 2k + 1. From (3.1), (3.2), and the standard energy inequality, we get

‖∂u(t)‖l ≤ C1,l

(
‖∂u(0)‖l +

∫ t

0

∥∥F
(
∂u(τ

)∥∥
l
dτ

)
, (5.7)

where C1,l is a positive constant depending only on l. From (5.1) we have

|∂u(t, x)| ≤
√
2ε(1 + t)−1 and |∂u(t, x)|k ≤

√
2ε(1 + t)ν−1, since 〈t + |x|〉−1 ≤√

2(1 + t)−1. Hence we get

|F (∂tu)|l ≤C2,l

(
|∂u| |∂u|l + |∂u|[l/2]|∂u|l−1

)

≤C2,l

√
2ε

(
(1 + t)−1|∂u|l + (1 + t)ν−1|∂u|l−1

)

with a positive constant C2,l depending only on l, which leads to
∥∥F

(
∂tu(t)

)∥∥
l
≤

√
2C2,l

√
ε
(
(1 + t)−1‖∂u(t)‖l + (1 + t)ν−1‖∂u(t)‖l−1

)
. (5.8)

Now we put C∗ =
√
2 + max1≤l≤2k+1

√
2C1,lC2,l, and we shall prove (5.6)

by induction on l. In the case of l = 0, it follows from the standard energy
inequality and (5.1) that

‖∂u(t)‖0 ≤ Cε+

∫ t

0

‖F (∂tu(τ))‖0dτ

≤ Cε+

∫ t

0

‖∂u(τ, ·)‖L∞(R3)‖∂u(τ)‖0dτ

≤ Cε+
√
2ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖0dτ,

whence the Gronwall lemma implies

‖∂u(t)‖0 ≤ Cε(1 + t)
√
2ε ≤ Cε(1 + t)C∗

√
ε.
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Next we assume that (5.6) holds for some l ∈ {0, 1, . . . , 2k}. Then it follows
from (5.7) and (5.8) that

‖∂u(t)‖l+1 ≤Cε+ C∗
√
ε

∫ t

0

(
(1 + τ)−1‖∂u(τ)‖l+1 + (1 + τ)−1+ν‖∂u(τ)‖l

)
dτ

≤Cε+ C∗
√
ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖l+1dτ

+ Cε3/2
∫ t

0

(1 + τ)−1+C∗

√
ε+(l+1)νdτ

≤Cε+ C∗
√
ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖l+1dτ + Cε3/2(1 + τ)C∗

√
ε+(l+1)ν ,

which yields

‖∂u(t)‖l+1 ≤ Cε(1 + t)C∗

√
ε + Cε3/2(1 + t)C∗

√
ε+(l+1)ν ≤ Cε(1 + t)C∗

√
ε+(l+1)ν .

This means that (5.6) remains true when l is replaced by l + 1, and (5.6) has
been proved for all l ∈ {0, 1, . . . , 2k + 1}.

From now on, we assume that ε ≤ ν2/C2
∗ . Then, since k ≥ 3 and 2(k+1)ν ≤

µ/2, it follows from (5.6) with l = 2k + 1 that

‖∂u(t)‖k+4 ≤ ‖∂u(t)‖2k+1 ≤ Cε〈t〉2(k+1)ν ≤ Cε〈t〉µ/2

and ∥∥|F (∂tu(t, ·))|k+4

∥∥
L1(R3)

≤ C‖∂u(t)‖2k+4 ≤ Cε2〈t〉µ.
Hence Lemma 3.3 yields

〈t+ |x|〉|u(t, x)|k+2 ≤ Cε+ Cε2
∫ t

0

〈τ〉µ−1dτ ≤ Cε〈t+ |x|〉µ,

that is,

|u(t, x)|k+2 ≤ Cε〈t+ |x|〉−1+µ (5.9)

for (t, x) ∈ [0, T )× R3. By Lemma 3.2, we also have

|∂u(t, x)|k+1 ≤ Cε〈t+ |x|〉−1+µ〈t− |x|〉−1 (5.10)

for (t, x) ∈ [0, T )× R3.

Step 2: Estimates for |∂u(t, x)|k away from the light cone.

Now we put Λc
T,R :=

(
[0, T )×R3

)
\ΛT,R, where R is the constant appearing

in (4.1). In the case of t/2 < 1 or |x| < t/2, we see that

〈t− |x|〉−1 ≤ C〈t+ |x|〉−1.

On the other hand, it follows from (4.2) that u(t, x) = 0 if |x| > t+R. Hence
(5.10) implies

sup
(t,x)∈Λc

T,R

〈t+ |x|〉〈t− |x|〉1−µ|∂u(t, x)|k ≤ Cε. (5.11)

Step 3: Estimates for |∂u(t, x)| near the light cone.
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Let (t, x) ∈ ΛT,R throughout this step. Remember that t−1, |x|−1, 〈t〉−1, and
〈t+ |x|〉−1 are equivalent to each other in ΛT,R. We define U , U (α), H , Hα and
| · |♯,s as in Section 4. We see from (5.9) and (5.10) that

|u(t, x)|♯,k ≤ Cεtµ−1〈t− |x|〉−1. (5.12)

By (3.2), (3.4), (3.5), and (5.9), we have

t|∂u(t, x)|l ≤C
∑

|α|≤l

∣∣ |x|∂Γαu(t, x)
∣∣

≤C
∑

|α|≤l

|U (α)(t, x)| + Cεtµ−1 (5.13)

for l ≤ k. Also, it follows from (5.9), (5.12), and Lemma 4.1 that

|H(t, x)| ≤ C
(
ε2t2µ−2〈t− |x|〉−1 + εtµ−2

)
≤ Cεt2µ−2〈t− |x|〉−µ. (5.14)

Next we put

Σ = {(t, x) ∈ ΛT,R ; t/2 = 1 or t/2 = |x|}
and we define t0,σ = max{2,−2σ} for σ ≤ R. What is important here
is that the line segment {(t, (t + σ)ω); 0 ≤ t < T} meets Σ at the point
(t0,σ, (t0,σ + σ)ω) for each fixed (σ, ω) ∈ (−∞, R]× S2. We also remark that

C−1〈σ〉 ≤ t0,σ ≤ C〈σ〉, σ ≤ R. (5.15)

When (t, x) ∈ Σ, we have tµ ≤ C〈t− |x|〉µ. So it follows from (4.7) and (5.12)
that

∑

|α|≤k

|U (α)(t, x)| ≤ Cεtµ〈t− |x|〉−1 ≤ Cε〈t− |x|〉µ−1, (t, x) ∈ Σ. (5.16)

Now we define

Vσ,ω(t) = U
(
t, (t+ σ)ω

)
(5.17)

for 0 ≤ t < T , with (σ, ω) ∈ (−∞, R]× S2 being fixed. Then, since the profile
equation (4.5) is rewritten as

V ′
σ,ω(t) = − 1

2t
F (−Vσ,ω(t)) +H(t, (t+ σ)ω) (5.18)

for t0,σ < t < T , it follows from (2.2) that

d

dt
(|Vσ,ω(t)|2) = 2Re

(
Vσ,ω(t)

dVσ,ω
dt

(t)

)

= 2Re
(
Vσ,ω(t)H(t, (t+ σ)ω)

)

≤ 2|Vσ,ω(t)||H(t, (t+ σ)ω)| (5.19)

for t0,σ < t < T . We also note that (5.16) for k = 0 can be interpreted as

|Vσ,ω(t0,σ)| ≤ Cε〈σ〉µ−1. (5.20)
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From (5.14), (5.15), (5.19), and (5.20) we get

|Vσ,ω(t)| ≤ |Vσ,ω(t0,σ)|+
∫ t

t0,σ

|H(τ, (τ + σ)ω)|dτ

≤ Cε〈σ〉µ−1 + Cε〈σ〉−µ

∫ t

t0,σ

τ 2µ−2dτ

≤ Cε
(
〈σ〉µ−1 + 〈σ〉−µt2µ−1

0,σ

)

≤ Cε〈σ〉µ−1 (5.21)

for t ≥ t0,σ, where C is independent of ε, σ, and ω. (5.21) implies

|U(t, x)| = |V|x|−t,x/|x|(t)| ≤ Cε〈t− |x|〉µ−1, (t, x) ∈ ΛT,R.

Finally, in view of (5.13) with l = 0, we obtain

sup
(t,x)∈ΛT,R

〈t + |x|〉〈t− |x|〉1−µ|∂u(t, x)| ≤ Cε. (5.22)

We remark that the derivation of (5.19) is the only point where we make use
of the structure (2.2) (see also Section 8 below).

Step 4: Estimates for |∂u(t, x)|k near the light cone.

We assume (t, x) ∈ ΛT,R also in this step. Let 1 ≤ |α| ≤ k. For a non-
negative integer s, we set

U (s)(t, x) :=
∑

|β|≤s

|U (β)(t, x)|.

By (5.13) we get

|∂u(t, x)||α|−1 ≤ C
(
t−1U (|α|−1)(t, x) + εtµ−2

)
. (5.23)

It follows from (5.9), (5.12), (5.23), and Lemma 4.1 that

|Hα(t, x)| ≤C
(
ε2t2µ−2〈t− |x|〉−1 + εtµ−2 + ε2t2µ−3 + t−1

(
U (|α|−1)(t, x)

)2)

≤Cεt2µ−2〈t− |x|〉−µ + Ct−1
(
U (|α|−1)(t, x)

)2
. (5.24)

We put

V (α)
σ,ω (t) = U (α)

(
t, (t+ σ)ω

)

for 0 ≤ t < T and (σ, ω) ∈ (−∞, R]× S2. Then (4.6) is rewritten as

(
V (α)
σ,ω

)′
(t) = − i

2t

{
(ReV (α)

σ,ω (t))Vσ,ω(t) + (ReVσ,ω(t))V
(α)
σ,ω (t)

}
+Hα(t, (t+ σ)ω)

for t0,σ < t < T . Hence by (5.21) and (5.24) we obtain

d

dt
|V (α)

σ,ω (t)|2 ≤
2

t
|Vσ,ω(t)| |V (α)

σ,ω (t)|2 + 2|Hα(t, (t+ σ)ω)| |V (α)
σ,ω (t)|

≤2C∗ε

t
|V (α)

σ,ω (t)|2 + C
(
εt2µ−2〈σ〉−µ + t−1

(
V(|α|−1)
σ,ω (t)

)2) |V (α)
σ,ω (t)|,
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where

V(s)
σ,ω(t) :=

∑

|β|≤s

|V (β)
σ,ω (t)|,

and C∗ is a positive constant independent of α. Therefore it follows from (5.15)
and (5.16) that

t−C∗ε|V (α)
σ,ω (t)| ≤t−C∗ε

0,σ |V (α)
σ,ω (t0,σ)|+ Cε〈σ〉−µ

∫ t

t0,σ

τ−C∗ε+2µ−2dτ

+ C

∫ t

t0,σ

τ−C∗ε−1
(
V(|α|−1)
σ,ω (τ)

)2
dτ

≤Cε〈σ〉µ−1 + C

∫ t

2

τ−C∗ε−1
(
V(|α|−1)
σ,ω (τ)

)2
dτ.

To sum up with respect to |α| ≤ l, we have

t−C∗εV(l)
σ,ω(t) ≤ Cε〈σ〉µ−1 + C

∫ t

2

τ−C∗ε−1
(
V(l−1)
σ,ω (τ)

)2
dτ

for l ∈ {1, . . . , k}. Using this inequality, we can show inductively that

V(l)
σ,ω(t) ≤ Cε〈σ〉µ−1t2

l−1C∗ε (5.25)

for t0,σ ≤ t < T and l ∈ {1, . . . , k}. Indeed, we already know that

V(0)
σ,ω(t) = |Vσ,ω(t)| ≤ Cε〈σ〉µ−1

by (5.21). Hence we have

t−C∗εV(1)
σ,ω(t) ≤ Cε〈σ〉µ−1 + Cε2〈σ〉2µ−2

∫ ∞

2

τ−C∗ε−1dτ ≤ Cε〈σ〉µ−1,

which implies (5.25) for l = 1. Next we suppose that (5.25) is true for some
l ∈ {1, . . . , k − 1}. Then we have

t−C∗εV(l+1)
σ,ω (t) ≤Cε〈σ〉µ−1 + Cε2〈σ〉2µ−2

∫ t

2

τ (2
l−1)C∗ε−1dτ

≤Cε〈σ〉µ−1t(2
l−1)C∗ε,

which yields (5.25) with l replaced by l + 1. Hence (5.25) for l ∈ {1, . . . , k}
has been proved.

By (5.13) and (5.25) with l = k, we have

|∂u(t, x)|k ≤ Cε〈t+ |x|〉−1+2k−1C∗ε〈t− |x|〉−1+µ, (t, x) ∈ ΛT,R.

Finally we take ε ≤ 21−kν/C∗ to obtain

sup
(t,x)∈ΛT,R

〈t+ |x〉1−ν〈t− |x|〉1−µ|∂u(t, x)|k ≤ Cε. (5.26)

The final step.
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By (5.11), (5.22), and (5.26), we see that there exist two positive constants
ε2 and m such that (5.2) holds for 0 < ε ≤ ε2. This completes the proof of
Lemma 5.1. �

6. Asymptotics for the solution to the profile equation

This section is devoted to preliminaries for the proof of Theorem 1.2. Let
t0 ≥ 1. Keeping the application to the profile equation (or (5.18)) in mind, we
consider the following ordinary differential equation for t > t0:

i
dz

dt
(t) =

Φ(z(t))

t
z(t) + J(t), (6.1)

where Φ : C → R satisfies

|Φ(z)− Φ(w)| ≤ C0|z − w| for z, w ∈ C (6.2)

with a positive constant C0, and J : [t0,∞) → C satisfies

|J(t)| ≤ E0t
−1−λ (6.3)

with positive constants E0 and λ. Concerning the asymptotics for the solution
z(t) of (6.1), we have the following lemma.

Lemma 6.1. Let z(t) be the solution of (6.1), and suppose C0(E0t
−λ
0 +|z(t0)|λ) <

λ2. Then there is a function p = p(s) on [log t0,∞) such that we have

|z(t)− p(log t)| ≤ E0λ

{λ2 − C0(E0t
−λ
0 + |z(t0)|λ)}tλ

, t ≥ t0, (6.4)

and

i
dp

ds
(s) = Φ(p(s))p(s), s ≥ log t0. (6.5)

To prove Lemma 6.1, we introduce some sequences. For the solution z(t) of
(6.1), we define sequences {zn(t)}∞n=0, {Θn(t)}∞n=0, and {ζn}∞n=0 in the following
way: We set z0(t) = z(t), and inductively define

Θn(t) =

∫ t

t0

Φ
(
zn(τ)

)dτ
τ
, t ≥ t0, (6.6)

ζn = lim
τ→∞

zn(τ)e
iΘn(τ),

zn+1(t) =ζne
−iΘn(t), t ≥ t0 (6.7)

for n ∈ N0, where N0 denotes the set of non-negative integers. In order to
see that this definition works well, we have only to check the convergence of
limτ→∞ zn(τ)e

iΘn(τ) for each n.
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Lemma 6.2. The above sequences {zn(t)}∞n=0, {Θn(t)}∞n=0, and {ζn}∞n=0 are

well-defined. Moreover we have

ζn =

(
z(t0)− i

∫ ∞

t0

J(τ)eiΘ0(τ)dτ

)

× exp

(
i

∫ ∞

t0

{
Φ(zn(τ))− Φ(z0(τ))

}dτ
τ

)
(6.8)

and

|zn+1(t)− zn(t)| ≤
E0

λtλ

(
C0(E0t

−λ
0 + |z(t0)|λ)
λ2

)n

(6.9)

for n ∈ N0.

Proof. We prove Lemma 6.2 by the induction on n.
First we consider the case of n = 0. Since z0 = z, it follows from (6.1) that

(
z0(t)e

iΘ0(t)
)′
= −iJ(t)eiΘ0(t),

which yields

z0(t)e
iΘ0(t) = z(t0)− i

∫ t

t0

J(τ)eiΘ0(τ)dτ.

This shows that z0(τ)e
iΘ0(τ) converges as τ → ∞, and that (6.8) for n = 0

holds, because (6.3) implies J(·)eiΘ0(·) ∈ L1(t0,∞). As for (6.9) with n = 0,
we have

(
z1(t)− z0(t)

)
eiΘ0(t) = ζ0 − z0(t)e

iΘ0(t) = −i
∫ ∞

t

J(τ)eiΘ0(τ)dτ,

whence

|z1(t)− z0(t)| ≤
∫ ∞

t

|J(τ)|dτ ≤ E0

λtλ
.

Note that by (6.3) we have

|ζ0| =
∣∣∣∣z(t0)− i

∫ ∞

t0

J(τ)eiΘ0(τ)dτ

∣∣∣∣ ≤ |z(t0)|+
E0

λtλ0
. (6.10)

Next we consider the case of n = n0 + 1 under the assumption that ζn
for n ≤ n0 are well-defined (thus zn(t) and Θn(t) for n ≤ n0 + 1 are also
well-defined), and that (6.8) and (6.9) are true for n ≤ n0. We set K =
C0(E0t

−λ
0 + |z(t0)|λ)/λ2. By (6.2) and (6.9) for n = n0, we get

∣∣Φ(zn0+1(t))− Φ(zn0
(t))

∣∣ ≤ C0|zn0+1(t)− zn0
(t)| ≤ C0E0

λtλ
Kn0 . (6.11)

We put

θn0
=

∫ ∞

t0

{
Φ(zn0+1(τ))− Φ(zn0

(τ))
}dτ
τ
,
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which is finite because of (6.11). It also follows from (6.11) that

∣∣Θn0+1(t)−Θn0
(t)− θn0

∣∣ ≤
∫ ∞

t

∣∣Φ(zn0+1(τ))− Φ(zn0
(τ))

∣∣dτ
τ

≤C0E0

λ2tλ
Kn0. (6.12)

Now we obtain from (6.7) for n = n0 and (6.12) that

ζn0+1 = lim
τ→∞

(
zn0+1(τ)e

iΘn0+1(τ)
)
= ζn0

exp
(
i lim
τ→∞

(Θn0+1(τ)−Θn0
(τ))

)

=ζn0
eiθn0 ,

which immediately leads to (6.8) for n = n0 + 1 if we replace ζn0
by the right-

hand side of (6.8) for n = n0. Since |ζn0
| = |ζ0|, it follows from (6.7), (6.10),

and (6.12) that
∣∣zn0+2(t)− zn0+1(t)

∣∣ =
∣∣ζn0

eiθn0e−iΘn0+1(t) − ζn0
e−iΘn0

(t)
∣∣

≤
∣∣ζn0

∣∣∣∣θn0
−Θn0+1(t) + Θn0

(t)
∣∣

≤
(
|z(t0)|+

E0

λtλ0

)
C0E0

λ2tλ
Kn0

=
E0

λtλ
Kn0+1,

which is (6.9) for n = n0 + 1. This completes the proof. �

Now we are in a position to prove Lemma 6.1.

Proof of Lemma 6.1. We put K = C0(E0t
−λ
0 + |z(t0)|λ)/λ2. Then we have

0 < K < 1 from the assumption. By (6.9) we can easily show that {zn(·)}∞n=0

is a uniform Cauchy sequence on [t0,∞), and {zn(·)}∞n=0 converges uniformly
on [t0,∞) as n→ ∞. We put

p(s) := lim
n→∞

zn(e
s), s ≥ log t0.

Note that we have |p(s)| = |ζ0|, because (6.7) and (6.8) imply |zn(t)| = |ζn−1| =
|ζ0| for any n ∈ N. Since we have p(log t) = limn→∞ zn(t) and 0 < K < 1, it
follows from (6.9) that

|z(t)− p(log t)| = lim
n→∞

|z0(t)− zn(t)|

≤
∞∑

n=0

|zn+1(t)− zn(t)| ≤
∞∑

n=0

E0

λtλ
Kn ≤ E0

λ(1−K)tλ
,

which is (6.4).
To show (6.5), we set

Θ∞(t) =

∫ t

t0

Φ
(
p(log τ)

)dτ
τ

=

∫ log t

log t0

Φ(p(σ))dσ,
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which is well-defined because |p(s)| = |ζ0| for s ≥ log t0. Then it follows that

|Θ∞(t)−Θn(t)| ≤
∫ t

t0

C0|p(log τ)− zn(τ)|
dτ

τ

≤
∫ ∞

t0

C0

∞∑

j=n

E0

λτλ
Kj dτ

τ

≤ C0E0K
n

λ2(1−K)tλ0
,

whence limn→∞Θn(t) = Θ∞(t). Similarly we can show

lim
n→∞

∫ ∞

t0

{
Φ
(
zn(τ)

)
− Φ

(
z0(τ)

)} dτ
τ

=

∫ ∞

t0

{
Φ
(
p(log τ)

)
− Φ

(
z0(τ)

)} dτ
τ
,

which implies that {ζn} converges as n→ ∞ with the help of (6.8) (note that
(6.4) shows the existence of the integral on the right-hand side of the identity
above). Thus, by setting ζ∞ = limn→∞ ζn, we have

p(s) = lim
n→∞

ζn−1e
−iΘn−1(es) = ζ∞e

−iΘ∞(es) = ζ∞ exp

(
−i

∫ s

log t0

Φ(p(σ))dσ

)
.

By differentiation, we see that p(s) solves the desired equation (6.5). �

In the remaining part of this section, we will apply Lemma 6.1 to the profile
equation. Let u be the global solution to (2.1)–(2.3) for small ε, let U be
as in (4.4), and let R be the constant appearing in (4.1). From now on, we
write V (t; σ, ω) = U(t, (t + σ)ω), instead of Vσ,ω(t), for (σ, ω) ∈ R × S

2 and
t > max{0,−σ}. It follows from (5.18) that V (t; σ, ω) satisfies

i∂tV (t; σ, ω) =
Re

(
V (t; σ, ω)

)

2t
V (t; σ, ω) + iH(t, (t+ σ)ω) (6.13)

for t > t0,σ and σ ≤ R. Note that all the estimates obtained in the proof of
Lemma 5.1 are valid with T = ∞, because we have already shown that (5.4)
is valid. On the other hand, for σ > R, we have

lim
t→∞

V (t; σ, ω) = lim
t→∞

0 = 0

because of the finite propagation property (4.2).
As an application of Lemma 6.1, we have the following.

Corollary 6.3. Let ε be sufficiently small. Then limt→∞ V (t; σ, ω) exists for

each (σ, ω) ∈ R× S2. If we put

V +(σ, ω) := lim
t→∞

V (t; σ, ω)

for each (σ, ω) ∈ R× S2, then we have

ReV +(σ, ω) = 0 (6.14)
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for (σ, ω) ∈ R× S2. Moreover we have V + ∈ L2(R× S2) and

lim
t→∞

∫

R×S2

|χt(σ)V (t; σ, ω)− V +(σ, ω)|2dσdSω = 0, (6.15)

where χt(σ) = 1 for σ > −t, and χt(σ) = 0 for σ ≤ −t.

Proof. First we show the convergence of V (t; σ, ω) as t → ∞, and (6.14). We
have only to consider the case σ ≤ R, because the opposite case is trivial. By
(5.14) and (5.20), we can apply Lemma 6.1 to (6.13) with z(t) = V (t; σ, ω),
J(t) = iH(t, (t+ σ)ω), t0 = t0,σ if ε is small enough, because we have

C0(E0t
−λ
0 + |z(t0)|λ) ≤ C1ε < λ2

for 0 < ε < λ2/C1, where we have taken C0 = 1/2, E0 = Cε〈σ〉−µ, and
λ = 1− 2µ, while C1 is an appropriate positive constant independent of σ and
ω. It follows from Lemma 6.1 that for any (σ, ω) ∈ (−∞, R]×S2, there is p(s)
satisfying

i
dp

ds
(s) =

Re
(
p(s)

)

2
p(s)

and

lim
t→∞

|V (t; σ, ω)− p(log t)| = 0.

So it is enough to show that p(s) converges as s → ∞, and that Re p(s) → 0
as s → ∞. For this purpose, we set X(s) = Re p(s)/2, Y (s) = Im p(s)/2 to
rewrite the above equation as

dX

ds
(s) = X(s)Y (s),

dY

ds
(s) = −X(s)2. (6.16)

We observe that
d

ds

(
X(s)2 + Y (s)2

)
= 0,

which implies thatX(s)2+Y (s)2 is independent of s. We denote this conserved
quantity by ρ2, where ρ ≥ 0. The case ρ = 0 is trivial, because we have
X(s) = Y (s) ≡ 0. Hence we assume ρ > 0 from now on. From the second
equation of (6.16) we have

dY

ds
(s) = Y (s)2 − ρ2.

This can be explicitly integrated as

Y (s) = ρ
(ρ+ η)e−ρs − (ρ− η)eρs

(ρ+ η)e−ρs + (ρ− η)eρs

with some real constant η satisfying |η| ≤ ρ. We can also see that

X(s) =
2ρξ

(ρ+ η)e−ρs + (ρ− η)eρs
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with some real constant ξ satisfying ξ2 + η2 = ρ2. If ξ = 0, then we have
X(s) ≡ 0, and Y (s) ≡ ±ρ. If ξ 6= 0, then η2 < ρ2. Especially we have η 6= ρ,
and we get

lim
s→∞

X(s) = lim
s→∞

2ρξe−ρs

(ρ+ η)e−2ρs + (ρ− η)
= 0,

lim
s→∞

Y (s) =ρ lim
s→∞

(ρ+ η)e−2ρs − (ρ− η)

(ρ+ η)e−2ρs + (ρ− η)
= −ρ.

Now the existence of limt→∞ V (t; σ, ω) and (6.14) have been established.
It follows from (5.5) and (5.9) that

|U(t, rω)| =
∣∣D−

(
ru(t, rω)

)∣∣ ≤ Cε〈t− r〉−1+µ

for any (t, r, ω) ∈ [0,∞) × (0,∞)× S2. Since V (t; σ, ω) = U
(
t, (t + σ)ω

)
, we

obtain
|V (t; σ, ω)| ≤ Cε〈σ〉−1+µ

for (σ, ω) ∈ R × S2 and t > max{0,−σ}. Hence, by taking the limit of this
inequality as t→ ∞, we have

|V +(σ, ω)| ≤ Cε〈σ〉−1+µ, (σ, ω) ∈ R× S
2,

which shows V + ∈ L2(R× S2) since µ < 1/2. Furthermore we have

|χt(σ)V (t; σ, ω)− V +(σ, ω)|2 ≤ Cε2〈σ〉−2+2µ ∈ L1(R× S
2)

for t ≥ 0. Now, since limt→∞ |χt(σ)V (t; σ, ω)−V +(σ, ω)|2 = 0 for each (σ, ω) ∈
R × S2, Lebesgue’s convergence theorem implies (6.15). This completes the
proof. �

7. Proof of Theorem 1.2

In the following, we write

ω̂(x) =
(
ω̂a(x)

)
a=0,1,2,3

= (−1, x1/|x|, x2/|x|, x3/|x|)

for x ∈ R3 \ {0}. For the proof of Theorem 1.2, we will use the following
lemma:

Lemma 7.1. Let φ ∈ C
(
[0,∞); Ḣ1(R3)

)
∩ C1

(
[0,∞);L2(R3)

)
. There exists

(φ+
0 , φ

+
1 ) ∈ Ḣ1(R3) ∩ L2(R3) such that

lim
t→∞

‖φ(t)− φ+(t)‖E = 0,

if and only if there is a function P = P (σ, ω) ∈ L2(R× S2) such that

lim
t→∞

‖∂u(t, ·)− ω̂(·)P ♯(t, ·)‖L2(R3) = 0,

where φ+ ∈ C
(
[0,∞); Ḣ1(R3)

)
∩ C1

(
[0,∞);L2(R3)

)
is the unique solution to

✷φ+ = 0 with (φ+, ∂tφ
+)(0) = (φ+

0 , φ
+
1 ), P

♯ is given by

P ♯(t, x) =
1

|x|P (|x| − t, |x|−1x), x 6= 0,
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and ∂ = (∂0, ∂1, ∂2, ∂3).

See [9] for the proof (see also [8], where the above result was implicitly
proved). We note that if (φ+

0 , φ
+
1 ) is given, P above is obtained as the trans-

lation representation of (φ+
0 , φ

+
1 ), which was introduced by Lax-Phillips [14,

Chapter IV].

Proof of Theorem 1.2. Let u be the global solution to (2.1)–(2.3) for small ε.
We put U(t, x) := D−

(
ru(t, x)

)
(with r = |x|), V (t; σ, ω) = U(t, (t + σ)ω),

and V +(σ, ω) = limt→∞ V (t; σ, ω) as in the previous section. Then, as we have
mentioned above, all the estimates in the proof of Lemma 5.1 are valid.

Let

V +,♯(t, x) =
1

|x|V
+(|x| − t, |x|−1x), x 6= 0.

We define

J1(t) =

(∫

S2

(∫ ∞

0

|r∂u(t, rω)− ω̂(rω)V (t; r − t, ω)|2dr
)
dSω

)1/2

,

J2(t) =

(∫

S2

(∫ ∞

0

|ω̂(rω)V (t; r − t, ω)− rω̂(rω)V +,♯(t, rω)|2dr
)
dSω

)1/2

.

By (3.4), (3.5), and (5.9) we get

J1(t)
2 ≤C

∫

S2

(∫ ∞

0

|u(t, rω)|21dr
)
dSω ≤ Cε2

∫ ∞

0

〈t + r〉2µ−2dr

≤Cε2〈t〉2µ−1 → 0

as t→ ∞. It follows from (6.15) that

J2(t)
2 =2

∫

S2

(∫ ∞

0

|V (t; r − t, ω)− V +(r − t, ω)|2dr
)
dSω

=2

∫

S2

(∫ ∞

−t

|χt(σ)V (t; σ, ω)− V +(σ, ω)|2dσ
)
dSω

≤2

∫

S2

(∫

R

|χt(σ)V (t; σ, ω)− V +(σ, ω)|2dσ
)
dSω → 0

as t→ ∞, because χt(σ) = 1 for σ > −t. Therefore we get
∥∥∂u(t, ·)− ω̂(·)V +,♯(t, ·)

∥∥
L2(R3)

=

(∫

S2

(∫ ∞

0

|r∂u(t, rω)− rω̂(rω)V +,♯(t, rω)|2dr
)
dSω

)1/2

≤ J1(t) + J2(t) → 0 (7.1)

as t→ ∞.
We write u1 = Re u and u2 = Im u as before. Similarly we put V +

1 =

ReV +, V +
2 = ImV +, V +,♯

1 = ReV +,♯, and V +,♯
2 = ImV +,♯. (6.14) says that
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V +
1 (σ, ω) = 0, and accordingly we have V +,♯

1 (t, x) = 0. Hence from (7.1) we
get

lim
t→∞

‖u1(t, ·)‖E = lim
t→∞

1√
2
‖∂u1(t, ·)− ω̂(·)V +,♯

1 (t, ·)‖L2(R3) = 0.

It also follows from (7.1) that

lim
t→∞

‖∂u2(t, ·)− ω̂(·)V +,♯
2 (t, ·)‖L2(R3) = 0.

Hence recalling that V +
2 ∈ L2(R × S2), we can apply Lemma 7.1 to conclude

the existence of (f+
2 , g

+
2 ) ∈ Ḣ1 × L2 such that

lim
t→∞

‖u2(t)− u+2 (t)‖E = 0,

where u+2 solves ✷u+2 = 0 with (u+2 , ∂tu
+
2 )(0) = (f+

2 , g
+
2 ). This completes the

proof. �

8. Concluding remarks

Our reduction of the original two-component system (1.1) to the single
complex-valued equation (2.1) in Section 2 is just for simplicity of exposi-
tion and not essential in our proof. In fact, we can apply our method to show
the small data global existence for an N -component system

✷vj = Fj(∂v), (t, x) ∈ R× R
3 (8.1)

for 1 ≤ j ≤ N with v = (vj)1≤j≤N : R × R3 → RN under the following
assumptions:

(i) Fj vanishes of quadratic order at the origin of R4N ,
(ii) There are positive constants κ1, . . . , κN such that

N∑

j=1

κjYjF
red
j (ω, Y ) = 0, (ω, Y ) ∈ S

2 × R
N , (8.2)

where, writing Fj(∂v) = Fj(∂0v, ∂1v, ∂2v, ∂3v), we define the reduced nonlin-

earity F red
j by

F red
j (ω, Y ) := lim

λ→+0
λ−2Fj(−λY, ω1λY, ω2λY, ω3λY )

for ω = (ω1, ω2, ω3) ∈ S
2 and Y = (Yj)1≤j≤N ∈ R

N . Note that
{
F red
1 (ω, Y ) = −c2Y1Y2,
F red
2 (ω, Y ) = c1Y

2
1

in the case of (1.1) or (1.6), whence (ii) is satisfied if and only if c1c2 > 0 or
c1 = c2 = 0.

For a solution v = (vj)1≤j≤N to (8.1), we put Uj(t, rω) = D−
(
rvj(t, rω)

)

and U = (Uj)1≤j≤N . Then the associated system of profile equations becomes

∂+Uj(t, rω) = − 1

2t
F red
j

(
ω, U(t, rω)

)
+Hj(t, rω),



A SEMILINEAR HYPERBOLIC SYSTEM VIOLATING THE NULL CONDITION 23

where Hj is given by

Hj = −1

2

(
rFj(∂v)−

1

t
F red
j (ω, U)

)
− 1

2r
∆S2vj .

We also put U
(α)
j (t, rω) = D−

(
rΓαvj(t, rω)

)
for |α| ≥ 1. Then the system

corresponding to (4.6) is

∂+U
(α)
j = − 1

2t
Gj,α +Hj,α,

where

Gj,α =
N∑

k=1

(
∂Yk

F red
j

)
(ω, U)U

(α)
k ,

Hj,α =− 1

2

(
rΓ̃αFj(∂v)−

1

t
Gj,α

)
− 1

2r
∆S2Γ

αvj.

The condition (ii) plays the role of (2.2) in the derivation of an estimate cor-
responding to (5.19), because (8.2) implies

∂+

N∑

j=1

κj |Uj(t, rω)|2 = 2
N∑

j=1

κjUj(t, rω)Hj(t, rω).

We need only apparent modifications for the other parts of the arguments
to obtain the small data global existence. We can also show that the global
solution v to (8.1) satisfies

sup
t∈R

‖v(t)‖E <∞

and

|∂v(t, x)| ≤ Cε〈t+ |x|〉−1〈t− |x|〉−1+µ, (t, x) ∈ R× R
3

under (i) and (ii), where µ ∈ (0, 1/2) can be arbitrarily fixed. However, it is
difficult to specify the asymptotic profile of the solution as precisely as that
stated in Theorem 1.2 because our argument heavily depends on the form of
the profile equation and the explicit integrability of (6.5). For related results
on the nonlinear Schrödinger systems, see [4], [15], etc.
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