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Abstract

We study the posterior contraction behavior of the latent population structure that
arises in admixture models as the amount of data increases. An admixture model —
alternatively known as a topic model — specifiesk populations, each of which is char-
acterized by a∆d-valued vector of frequencies for generating a set of discrete values
in {0, 1, . . . , d}. The population polytope is defined as the convex hull of thek fre-
quency vectors. Under the admixture specification, each ofm individuals generates an
i.i.d. frequency vector according to a probability distribution defined on the (unknown)
population polytopeG0, and then generatesn data points according to the sampled fre-
quency vector. Given a prior distribution over the space of population polytopes, we
establish rates at which the posterior distribution contracts toG0, under the Hausdorff
metric and a minimum matching Euclidean metric, as the amount of datam× n tends
to infinity. Rates are obtained for the overfitted setting, i.e., when the number of ex-
treme points ofG0 is bounded above byk, and for the setting in which the number of
extreme points ofG0 is known. Minimax lower bounds are also established. Our anal-
ysis combines posterior asymptotics techniques for the estimation of mixing measures
in hierarchical models with elementary arguments in convexgeometry.

1 Introduction

We study a class of hierarchical mixture models for categorical data known as the admix-
tures, which were independently developed in the landmark papers by Pritchard, Stephens
and Donnelly [Pritchard et al., 2000] and Blei, Ng and Jordan[Blei et al., 2003]. The for-
mer set of authors applied their modeling to population genetics, while the latter considered
applications in text processing, where their models are more widely known as the “latent
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Dirichlet allocation” topic models. Admixture modeling has been applied to and extended
in a vast number of fields of engineering and sciences — in fact, the Google scholar pages
for these two original papers alone combine for more than a dozen thousands of citations.

A finite admixture model posits that there arek populations, each of which is char-
acterized by a∆d-valued vectorθj of frequencies for generating a set of discrete values
{0, 1, . . . , d}, for j = 1, . . . , k. Here,∆d is thed-dimensional probability simplex. A sam-
pled individual may have mixed ancestry and as a result inherits some fraction of its values
from each of its ancestral populations. Thus, an individualis associated with a proportion
vectorβ = (β1, . . . , βk) ∈ ∆k−1, whereβj denotes the proportion of the individual’s data
that are generated according to populationj’s frequency vectorθj. This yields a vector of
frequenciesη =

∑k
j=1 βjθj ∈ ∆d associated with that individual. In most applications,

one does not observeη directly, but rather an i.i.d. sample generated from a multinomial
distribution parameterized byη. The collection ofθ1, . . . ,θk is refered to as thepopula-
tion structurein the admixture. In population genetics modeling,θj represents the allele
frequencies at each locus in an individual’s genome from thej-th population. In text doc-
ument modeling,θj represents the frequencies of words generated by thej-th topic, while
an individual is a document, i.e., a collection of words. Theprimary interest is the inference
of the population structure on the basis of sampled data. In aBayesian estimation setting,
the population structure is assumed random and endowed witha prior distribution — ac-
cordingly one is interested in the behavior of the posteriordistribution of the population
structure given the available data.

The goal of this paper is to obtain contraction rates of the posterior distribution of the
latent population structure that arises in admixture models, as the amount of data increases.
Admixture models present a canonical mixture model for categorical data in which the pop-
ulation structure provides the support for the mixing measure. Existing works on conver-
gence behavior of mixing measures in a mixture model are quite rare, in either frequentist
or Bayesian estimation literature. Chen provided the optimal convergence rate of mix-
ing measures in several finite mixtures for univariate data [Chen, 1995]. This result was
subsequentially extended to a Bayesian estimation setting[Ishwaran et al., 2001]. Nguyen
recently obtained posterior contraction rates of mixing measures in several finite and infi-
nite mixture models for multivariate and continuous data [Nguyen, 2012]. This issue has
also attracted increased attention in machine learning. Notably, there are a couple of very
recent papers that study the convergence of the population structure arising in admixture
models for certain computationally efficient learning algorithms based on matrix factoriza-
tion techniques [Arora et al., 2012, Anandkumar et al., 2012]. Their results will be briefly
discussed in the sequel.

There are several interesting aspects that arise in the convergence analysis of admixture
models for categorical data. First, it is not unreasonable to suspect that in general the
population structure represented byθ1, . . . ,θk may be estimated up to its convex hullG =
conv(θ1, . . . ,θk). Any θj that can be expressed as a convex combination of the others
θj′ for j′ 6= j may be difficult to identify and estimate. Throughout this paper, G will
be the focus of our study, and is referred to as thepopulation polytope, whose geometric
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properties will be intensively exploited using ideas from convex geometry. We adopt the
Hausdorff metric for evaluating the posterior contractionrates of the population polytope.
Hausdorff is a natural choice for analyzing estimators of sets (e.g., [Dumbgen and Walther,
1996, Tsybakov, 1997, Singh et al., 2009]). One virtue of estimation via the admixture
model is that it is possible to estimate not only the boundaryof G, but also all its extreme
points. Indeed, our analysis is also achieved for a “minimum-matching” metric (defined in
Section 2) which measures how well each of the extreme pointsis estimated, under some
geometric identifiability conditions.

The second aspect is concerned with the analysis of posterior contraction of latent mix-
ing measures in a hierarchical mixture model. The general framework of posterior asymp-
totics for density estimation has been well-established (see, e.g., [Ghosal et al., 2000] and
their list of references up to year 2000). The analysis of mixing measure estimation in multi-
level models remains generally quite challenging. In the context of admixture models, sup-
pose that there arem individuals, each of which is observed vian sampled data points, then
typically bothm andn are required to increase in order to achieve posterior contraction. In
an overfitted setting, i.e., when the true population polytope may have less thank extreme
points, we show that under some mild identifiability conditions the posterior contraction rate

in either Hausdorff or minimum-matching distance metric is

(

logm
m ∨ logn

n ∨ logn
m

)
1

2(p+α)

,

wherep = (k−1)∧d is the intrinsic dimension of the population polytope whileα denotes
the regularity level near boundary of the support of the density function for η. However,
if either the true population polytope is known to have exactly k extreme points, or if the
pairwise distances among the extreme points are bounded from below by a known positive
constant, then the contraction rate is improved to a parametric rate of exponent 1

2(1+α) . The
quantity log n/m in the rate is non-standard and appears particularly interesting, which
reflects the interactions between multiple levels in the latent hierarchy of the admixture
model. This appears to suggest thatn may not grow too fast relative tom. We also estab-
lish minimax lower bounds for both settings. In the overfitted setting the obtained lower

bound is(mn)−
1

q+α , whereq = ⌊k/2⌋ ∧ d, unless additional constraints are imposed on
the prior. Moreover, if the distribution for the frequency vectorη is uniform, we obtain a
minimax lower bound of the orderm−1/q, which does not depend onn, the amount of data
that provide support for the bottom level in the model hierarchy.

The main technical ingredients of our convergence analysisinvolve a number of in-
equalities which establish the relationship between Hausdorff distance (and equivalently,
the minimum matching Euclidean distance) between a given pair of population polytopes
G,G′, and several divergences (e.g., Kullback-Leibler divergence or total variational dis-
tance) between the induced densities of them × n data points. These bounds are derived
via elementary arguments in convex geometry [Schneider, 1993]. The general posterior
contraction proof strategy consists of an existence-of-tests argument, which is turned into
a convergence theorem in a standard way [Ghosal et al., 2000]. Because we work in the
Hausdorff metric on the space of population polytopes (as opposed to the Hellinger metric
on the space of data densities), we are forced to deal with non-convex subsets in the space

3



of convex polytopes. As a result, the power of the tests are controlled in terms of the so-
call Hellinger informationof the Hausdorff metric for a given subset of polytopes, which
appears in both the exponent and the constant of the power bound. Indeed, the Hellinger
information is a fundamental quantity running through the analysis, which ties together the
amount of datam andn — key quantities that are associated with different levels in the
model hierarchy.

As mentioned earlier the existing works on admixture modelsinclude the recent papers
by Arora et al [Arora et al., 2012] and Anandkumar et al [Anandkumar et al., 2012]. Both
sets of authors analyzed specific learning algorithms for recovering the population structure
by taking the viewpoint of matrix factorization. They both work on the setting where the
number of extreme pointsk is known, andk ≪ d. Arora et al Arora et al. [2012] addition-
ally required interesting but very special conditions on the nature of the extreme points, for
which a polynomial time learning algorithm exists, and established an estimation error rate
for the algorithm. Anandkumar et al Anandkumar et al. [2012]proposed a novel moment-
based estimation method and obtained a consistency result.By contrast, we analyze general
Bayesian estimation without concerning a specific inference algorithm. (This goes without
saying that under general conditions the posterior contraction entails convergence of pro-
cedures such as the maximum likelihood estimation method).The posterior contraction
rates and minimax results obtained in this paper appear new.The posterior asymptotics and
convex geometric techniques developed here are quite distinct from the existing works.

The remainder of the paper is organized as follows. The modeland the statement of
main results are described in Section 2. Section 3 describesthe basic geometric assump-
tions and their consequences. A general theorem for posterior contraction is formulated
in Section 4, whose conditions are verified in the subsequentsections. Section 5 proves a
contraction result which helps to establish a key lower bound on the Hellinger information,
while Section 6 provides a lower bound on the Kullback-Leibler neighborhood of the prior
support. Proofs of main theorems and other technical lemmasare presented in Section 7.

Notations. Bp(θ, r) denotes ap-dimensional radiusr Euclidean ball centered atθ. Gǫ

denotes the Minkowsky sumGǫ := G + Bd+1(0, ǫ). bdG, extrG,DiamG, aff G, volpG
denote the boundary, the set of extreme points, the diameter, the affine span, and thep-
dimensional volume of setG, respectively. “Extreme points” and “vertices” are inter-
changeable throughout this paper.N(ǫ,G, dH) denotes the covering number ofG in Haus-
dorff metric dH. D(ǫ,G, dH) is the packing number ofG in Hausdorff metric. Several
divergence measures for probability distributions are employed: K(p, q), h(p, q), V (p, q)
denote the Kullback-Leibler divergence, Hellinger and total variational distance between
two densitiesp andq defined with respect to a measure on a common space:K(p, q) =
∫

p log(p/q), h2(p, q) = 1
2

∫

(
√
p − √

q)2 andV (P,Q) = 1
2

∫

|p − q|. In addition, we
defineK2 =

∫

p[log(p/q)]2. Several probability distributions are analyzed throughout the
paper:Pβ, Pη|G, Pη×S|G are the distribution ofβ, the distribution ofη givenG, and the
joint distribution ofη and ann-sampleS[n] givenG, respectively.PG denotes the marginal
density ofS[n] givenG (by havingη integrated out). The lower-casepβ, pη|G, pη×S|G, pG
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are the corresponding densities.

2 Statement of main results

Model description. As mentioned in the Introduction, a central object of the admixture
model is apopulation polytoperepresented byG = conv(θ1, . . . ,θk), whereθ1, . . . ,θk

arek points in thed-dimensional probability simplex∆d. k < ∞ is assumed known. Note
thatG has at mostk vertices (i.e. extreme points) amongθ1, . . . ,θk.

A random vectorη ∈ G is parameterized byη = β1θ1 + . . . , βkθk, whereβ =
(β1, . . . , βk) ∈ ∆k−1 is a random vector distributed according to a distributionPβ|γ for
some parameterγ (both Pritchard et al. [2000] and Blei et al. [2003] used the Dirichlet
distribution). This induces a probability distributionPη|G whose support is the convex
setG.

For each individuali = 1, . . . ,m, let ηi ∈ ∆d be an independent random vector dis-
tributed byPη|G. The observed data associated withi, Si

[n] = (Xij)
n
j=1 are assumed to be

i.i.d. draws from the multinomial distribution Mult(ηi) specified byηi := (ηi0, . . . , ηid).
That is,Xij ∈ {0, . . . , d} such thatP (Xij = l|ηi) = ηil for l = 0, . . . , d. The joint dis-
tribution ofη andS[n] (without using the superscripti for indexing a specific individual) is
denoted byPη×S|G and its densitypη×S|G. The marginal distribution ofS[n] and its density
are denoted byPG andpG, respectively.

Admixture models are customarily introduced in an equivalent way as follows [Blei et al.,
2003, Pritchard et al., 2000]: For eachi = 1, . . . ,m, draw an independent random variable

β ∈ ∆k−1 asβ ∼ Pβ|γ . Given i andβ, for j = 1, . . . , n, drawZij |β iid∼ Mult(β). Zij

takes values in{1, . . . , k}. Now, data pointXij is randomly generated byXij |Zij = l,θ ∼
Mult(θl). This yields the same joint distribution ofSi

[n] = (Xij)
n
j=1 as the one described

earlier. The use of latent variablesZij is amenable to the development of computational al-
gorithms for inference. However, this representation bears no significance within the scope
of this work.

Asymptotic setting and metrics on population polytopes. Assume that a data setS [m]
[n] :=

(Si
[n])

m
i=1 of sizem× n is generated according an admixture model given by a “true” pop-

ulation polytopeG0 = conv(θ∗
1, . . . ,θ

∗
k). Under the Bayesian estimation framework,G is

random and endowed with a prior distributionΠ. The main question to be addressed in this
paper is the contraction behavior of the posterior distribution Π(G|S [m]

[n] ), as the number of
data pointsm× n goes to infinity.

It is noted that we do not always assume that the number of extreme points of the popu-
lation polytopeG0 is k. We work in a general overfitted setting wherek only serves as the
upper bound of the true number of extreme points for the purpose of model parameteriza-
tion. The special case in which the number of extreme points of G0 is known a priori will
also be considered.

5



Let extrG denote the set of extreme points of a given polytopeG. Gk is the set of
population polytopes in∆d such that| extrG| ≤ k. Let G∗ = ∪2≤k<∞Gk be the set of
population polytopes that have finite number of extreme points in∆d. A natural metric on
G∗ is the following “minimum-matching” Euclidean distance:

dM(G,G′) = max
θ∈extrG

min
θ′∈extrG′

‖θ − θ′‖ ∨ max
θ′∈extrG′

min
θ∈extrG

‖θ′ − θ‖.

A more common metric is the Hausdorff metric:

dH(G,G′) = min{ǫ ≥ 0|G ⊂ G′
ǫ;G

′ ⊂ Gǫ} = max
θ∈G

d(θ, G′) ∨ max
θ′∈G′

d(θ′, G).

Here,Gǫ = G + Bd+1(0, ǫ) := {θ + e|θ ∈ G, e ∈ R
d+1, ‖e‖ ≤ 1}, andd(θ, G′) :=

inf{‖θ − θ′‖,θ′ ∈ G′}. Observe thatdH depends on the boundary structure of sets, while
dM depends on only extreme points. In general,dM dominatesdH, but under additional
mild assumptions the two metrics are equivalent (see Lemma 1).

We introduce a notion of regularity for a family probabilitydistributions defined on
convex polytopesG ∈ G∗. This notion is concerned with the behavior near the boundary
of the support of distributionsPη|G. We say a family of distributions{Pη|G|G ∈ Gk} is
α-regular if for anyG ∈ Gk and anyη0 ∈ bdG,

Pη|G(‖η − η0‖ ≤ ǫ) & ǫα volp(G ∩Bd+1(η0, ǫ)).

wherep is the number of dimensions of the affine spaceaff G that spansG.

Assumptions.

(S0) Geometric properties (A1) and (A2) listed in Section 3 are satisfied uniformly for all
G in the support of the priorΠ.

(S1) The prior support for each ofθ1, . . . ,θk is bounded away from the boundary of∆d.
That is, ifθj = (θj,0, . . . , θj,d) thenminl=0,...,d θj,l > c0 for all j = 1, . . . , k.

(S2) Eachθj has a Lesbegue density function on its support that is bounded away from 0.

(S3) β is distributed (a priori) according to a symmetric probability distribution Pβ on
∆k−1.

(S4) Pβ induces a family of distributions{Pη|G|G ∈ Gk} that isα-regular.

Theorem 1. Fix G0 ∈ Gk. Let p = (k − 1) ∧ d. Under Assumptions (S0–S4) of the
admixture model, we have:

Π(dM(G0, G) ≥ δm,n|S [m]
[n] ) → 0 (1)
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in PG0 -probability as bothm andn tend to infinity. Here,

δm,n =

[

C1 logm

m
∨ C2 log n

n
∨ C3 log n

m

]
1

2(p+α)

,

for some positive constantsC1, C2, C3 that are independent ofm andn. The same state-
ment holds for the Hausdorff metricdH.

Remarks. (i) The geometric assumptions (S0) and their consequences are presented in the
next section. (S0)(S1) and (S2) are very mild assumptions often observed in practice. (S4) is
a standard assumption that holds for a range ofα, whenPβ|γ is a Dirichlet distribution (see
Lemma 6), but there may be other choices. The assumption in (S3) thatPβ is symmetric
is relatively strong, but it has been commonly used in practice (e.g., symmetric Dirichlet
distributions, including the uniform distribution). It may be difficult to try to relax this
assumption if one insists on using Hausdorff metric, see theremark following the statement
of Lemma 9.

(ii) In practicePβ may be further parameterized asPβ|γ , whereγ is endowed with
a prior distribution. Then, it would be of interest to also study the posterior contraction
behavior forγ. In this paper we have opted to focus only on convergence behavior of the
population polytope to simplify the exposition and the results.

(iii) The appearance of bothm−1 andn−1 in the contraction rate suggests that if either
m orn is small, the rate would suffer even if the total amount of datam×n increases. What
is quite interesting is the appearance oflog n/m, which suggests thatn may not grow too
fast compared tom. This can be explained by the observation that asn increases, the space
of the data vectorsSn increases in dimensions. Consequentially, the prior support gets
“thinner” in probability mass, which in turn affects the posterior contraction rate. From a
hierarchical modeling viewpoint, this provides a cautionary tale about balancing between
sample sizes provided to different levels in the model hierarchy. This issue has not been
widely discussed in the hierarchical modeling literature in a theoretical manner, to the best
of our knowledge.

(iv) The exponent 1
2(p+α) appears quite weak. The following theorem shows that it is

possible to achieve a parametric rate if additional constraints are imposed either on the true
G0, or the priorΠ:

Theorem 2. Fix G0 ∈ Gk. Assume (S0–S4), and either one of the following two conditions
hold:

(a) | extrG0| = k, or

(b) There is a known constantr0 > 0 such that the pairwise distances of the extreme
points of allG in the support of the prior (includingG0), are bounded from below by
r0.
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Then, the posterior contraction given in Eq.(1) holds with

δm,n =

[

C1 logm

m
∨ C2 log n

n
∨ C3 log n

m

]
1

2(1+α)

,

for some positive constantsC1, C2, C3 that are independent ofm andn. The same state-
ment holds for the Hausdorff metricdH.

The next result shows that the nonparametrics-like rates obtained in Theorem 1 may be
not too far off from a minimax optimal rate. In the following theorem,η is not parameter-
ized byβ andθj ’s as in the admixture model. Instead, we shall simply replace assumptions
(S3) and (S4) onPβ|γ by either one of the following assumptions onPη|G:

(S5) For any pair ofp-dimensional polytopesG′ ⊂ G that satisfy property A1,

V (Pη|G, Pη|G′) . dH(G,G′)α volpG \G′.

(S5’) For anyp-dimensional polytopeG, Pη|G is the uniform distribution onG.2

Since a parameterization forη is not needed, the overall model can be simplified as

follows: Given population polytopeG ∈ ∆d, for eachi = 1, . . . ,m, drawηi
iid∼ Pη|G. For

eachj = 1, . . . , n, drawSi
[n] = (Xij)

n
j=1

iid∼ Mult(ηi).

Theorem 3. (a) Letq = ⌊k/2⌋ ∧ d. Under Assumption (S5), we have

inf
Ĝ

sup
G0∈Gk

PG0dH(G0, Ĝ) &

(

1

mn

)
1

q+α

.

The infimum is taken over all estimatorŝG = Ĝ(S [m]
[n]

) of G, on the basis of the

m× n-data setS [m]
[n] .

(b) Letq = ⌊k/2⌋ ∧ d. Under Assumption (S5’), we have

inf
Ĝ

sup
G0∈Gk

PG0dH(G0, Ĝ) &

(

1

m

)
1
q

.

(c) Assume (S5’), and that either condition (a) or (b) of Theorem 2 holds, then

inf
Ĝ

sup
G0

PG0dH(G0, Ĝ) &

(

1

mn

)
1

1+α

.

Furthermore, if (S5) is replaced by (S5’), the lower bound becomes1/m.

2It is straightforward to show that (S5’) entails (S5) forα = 0, by invoking Lemma 2 (b).
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Remarks. (i) There remain some gaps between the posterior contraction rates in Theo-
rem 1 and Theorem 2 and the minimax lower bounds in Theorem 3, especially in the rate
exponent (by a factor of 2 or 4 if we allowm ≍ n). This may be partly attributable to the
slightly enlarged models considered in Theorem 3, due to therelaxed parameterization. We
do not know if the gaps are also due to our proof techniques, orthe nature of the Bayesian
estimation in the studied models.

(ii) The nonparametrics-like lower bounds in part (a) and (b) in the overfitted setting
are somewhat surprising even ifPβ is known exactly (e.g.,Pβ is uniform distribution). In
practice, we are more likely to be in the overfitted setting than knowing the extract number
of extreme points. Thus, it is important to impose a lower bound in the prior on the pairwise
distances between the extreme points of the population polytope.

(iii) The results in part (b) and (c) under assumption (S5’) present an interesting scenario
in which the obtained lower bounds do not depend onn, which determines the amount of
data at the bottom level in the model hierarchy.

(iv) It is worth mentioning that the exponent form in the lower bounds(1/mn)1/(d+α)

of part (a) (whenk ≥ 2d) and(1/m)1/d of part (b) (whenk ≥ 2d and (S5’) holds) appear
compatible to a general minimax optimal rate(logm/m)1/(d+α) for estimating the sup-
port of the density functionpη|G, assuming that an iidm-sample ofη is directly observed
[Tsybakov, 1997, Singh et al., 2009]. A word of caution aboutmaking this comparison is
that while the latter problem is easier due to the direct observations ofη, the density support
for η is not required to be convex as is the case with admixture models.

3 Geometric assumptions and basic lemmas

In this section we discuss the geometric assumptions postulated in the main theorems, and
describe their consequences using elementary arguments inconvex geometry of Euclidean
spaces. These results relate Hausdorff metric, the minimum-matching metric, and the vol-
ume of the set-theoretic difference of polytopes. These relationships prove crucial in obtain-
ing explicit posterior contraction rates. Here, we state the properties and prove the results
for p-dimensional polytopes and convex bodies of points in∆d, for a givenp ≤ d. (Convex
bodies are bounded convex sets that may have an unbounded number of extreme points.
Within this section, the detail of the ambient space is irrelevant. For instance,∆d may be
replaced byRd+1 or a higher dimensional Euclidean space).

Property A1. (Property of thick body): For somer,R > 0, θc ∈ ∆d, G contains the
spherical ballBp(θc, r) and is contained inBp(θc, R).

Property A2. (Property of non-obstute corners): For some smallδ > 0, the angle be-
tween every pair of adjacent edges ofG is less thanπ − δ.
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Lemma 1. (a) dH(G,G′) ≤ dM(G,G′).
(b) If the two polytopesG,G′ satisfy property A2, thendM(G,G′) ≤ C0dH(G,G′), for
some positive constantC0 > 0 depending only onδ, p.

Proof. (a) LetG = conv(θ1, . . . ,θk) andG′ = conv(θ′
1, . . . ,θ

′
k′). This part of the lemma

is immediate from the definition by noting that for anyx ∈ G, d(x,G′) ≤ minj ‖x − θ′
j‖,

while the maximum ofd(x,G′) is attained at some extreme point ofG.
(b) Let dH(G,G′) = ǫ for some smallǫ > 0. Take an extreme point ofG, sayθ1.

Due to A2, there is a small constantδ′ > 0 depending only onδ, p, such that there is a ray
emanating fromθ1 that intersects withG and the angles formed by the ray and all (exposed)
edges incident toθ1 are bounded from above byπ/2−δ′. Letx be the intersection between
the ray andBp(θ1, ǫ).

Let H be ap − 1-dimensional hyperplane inRp that touchesBp(θ1, ǫ) at x. Define
C(x), resp.Cǫ(x), to be thep-dimensional caps obtained by the intersection betweenG,
resp.Gǫ, with the half-space which containsθ1 and which is supported byH. For anyx′

that lies in the intersection ofH and a line segment[θ1,θi], whereθi is another vertex, the
line segment[x, x′] ∈ H and‖x − x′‖ ≤ ǫ cot δ′. Suppose that the ray emanating from
x throughx′ intersects withbdGǫ atx′′. Then,‖x′ − x′′‖ ≤ ǫ/ sin δ′, which implies that
‖x− x′′‖ ≤ O(ǫ). This entails thatDiamCǫ(x) ≤ O(ǫ).

Now, dH(G,G′) = ǫ implies thatG′ ∩ Bp(θ1, ǫ) 6= ∅. There is an extreme point of
G′ in the half-space which containsB(θ1, ǫ) and is supported byH. But G′ ⊂ Gǫ, so
there is an extreme point ofG′ in Cǫ(x). Hence, there isθ′

j ∈ G′ such that‖θ′
j − θ1‖ ≤

Diam(Cǫ(x)) ≤ O(ǫ). Repeat this argument for all other extreme points ofG to conclude
thatdM(G,G′) ≤ O(ǫ).

Lemma 2. There are positive constantsC1 andc1 depending only onr,R, p such that for
any twop-dimensional convex bodiesG,G′ satisfying property A1:

(a) volpG△G′ ≥ c1dH(G,G′)p.

(b) volpG△G′ ≤ C1dH(G,G′).

Both bounds in this lemma are probably well-known in the folklore of convex geom-
etry. For instance, part (b) is similar to (but not preciselythe same as) Lemma 2.3.6.
from Schneider [1993]. We include a proof below due to the absence of a more direct
reference.

Proof. (a) Let dH(G,G′) = ǫ. There exists either a pointx ∈ bdG such thatG′ ∩
Bp(x, ǫ/2) = ∅, or a pointx′ ∈ bdG′ such thatG ∩ Bp(x, ǫ/2) = ∅. Without loss of
generality, assume the former. Thus,volpG△G′ ≥ volpBp(x, ǫ/2)∩G. Consider the con-
vex cone emanating fromx that circumscribes thep-dimensional spherical ballBp(θc, r)
(whose existence is given by Condition A1). Since‖x − θc‖ ≤ R, the angle between
the line segment[x,θc] and the cone’s rays is bounded from below bysinϕ ≥ r/R. So,
volpBd(x, ǫ/2) ∩G & ǫp.
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(b) Let dH(G,G′) = ǫ. ThenG′ ⊂ Gǫ andG ⊂ G′
ǫ. Take any pointx ∈ bdG, let x′

be the intersection betweenbdGǫ and the ray emanating fromθc and passing throughx.
LetH1 be ap− 1 dimensional supporting hyperplane forG atx. There is also a supporting
hyperplaneH2 of G′ that is parallel toH1 and of at mostǫ distance away fromH1. Since
‖θc − x‖ ≤ R, while the distance fromθc to H1 is lower bounded byr, the angleϕ
between vectorθc−x and the vector normal toH1 satisfiescosϕ ≥ r/R. This implies that
‖x′−x‖ ≤ ǫ/ cosϕ ≤ ǫR/r, so‖x′−θc‖/‖x−θc‖ ≤ 1+ǫR/r2. In other words,Gǫ−θc ⊂
(1 + ǫR/r2)(G − θc). So,volpG′ \ G ≤ volpGǫ \ G ≤ [(1 + ǫR/r2)p − 1] volpG . ǫ.
We obtain a similar bound forvolpG \G′, which concludes the proof.

Remark. The exponents in both bounds in Lemma 2 are attainable. Indeed, for the lower
bound in part (a), consider a fixed convex polytopeG. For each vertexθi ∈ G, consider
point x that lie on edges incident toθi such that‖x − θi‖ = ǫ. Let G′ be the convex
hull of all suchx’s and the remaining vertices ofG. Clearly, dH(G,G′) = O(ǫ), and
volpG \ G′ ≤ O(ǫp). Thus, for the collection of convex polytopesG′ constructed in this
way, volp(G △ G′) ≍ dH(G,G′)p. The upper bound in part (b) is also tight for a broad
class of convex polytopes, as exemplified by the following lemma.

Lemma 3. Fix a polytopeG (i.e., | extrG| = k < ∞). G′ is an arbitrary polytope that
satisfies properties A1and A2, and suppose that either one ofthe following conditions holds:

(a) | extrG′| = k, or

(b) The pairwise distances between the extreme points ofG′ is bounded away from a
constantr0 > 0.

Then, there is a positive constantc2 such that

volpG△G′ ≥ c2dH(G,G′),

if dH(G,G′) is sufficiently small.c2 depends only onG in case (a) andG, r0 in case (b).

Proof. We provide a proof for case (a). LetG = conv(θ1, . . . ,θk) andG′ = conv(θ′
1, . . . ,θ

′
k).

SinceG is fixed, bothG andG′ satisfies A2and A1(for some fixedθc, radii r,R such that
0 < r < R). Let dH(G,G′) = ǫ for a smallǫ > 0. Due to property A2and Lemma 1 (b)
for each vertex ofG, sayθi, there is a vertice ofG′, sayθ′

i, such thatθ′
i ∈ Bp(θi, C0ǫ)

for some constantC0 > 1. Moreover, there is at least one vertice ofG, sayθ1, for which
‖θ′

1 − θ1‖ ≥ ǫ.
There are only three possible general positions forθ′

1 relatively toG. Either

(i) θ′
1 ∈ G, or

(ii) θ′
1 ∈ 2θ1 −G, or

(iii) θ′
1 lies in a cone formed by all half-spaces supported by thep− 1 dimensional faces

adjacent toθ1. Among these there is at least one half-space that containsG, and one
that does not containG.
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If (i) is true, by property A1, there is at least one faceS ⊃ θ1 such that the distance fromθ′
1

to the hyperplane that provides support forS is bounded from below byǫr/R. LetB ⊂ S
be a homothetic transformation ofS with respect to centerθ1 that mapsx ∈ S to x′ ∈ B

such that‖θ1 − x′‖/‖θ1 − x‖ = r/R
2(r/R+C0)

(constant 2 in the denominator can be replaced
by any other constant greater than 1). It is simple to verify that for sufficiently smallǫ,
B ∩ G′ = ∅. Moreover,volp−1B is a multiple ofvolp−1 S (independent ofǫ), so it is
bounded from below by a constant. LetQ be ap-pyramid which has apexθ′

1 and baseB. It
follows thatrelintQ ∩ relintG′ = ∅, which implies thatrelintQ ⊂ G \G′. (relint stands
for the relative interior of a set). Hence,volpG \G′ ≥ volpQ ≥ 1

pǫr/R volp−1B & ǫ.
If (ii) is true, the same argument can be applied to show that one can construct ap-

pyramid contained inG′ \G such that whose volume is bounded from below by a multiple
of ǫ. If (iii) is true, a similar argument continues to apply, butwe may have eithervolpG′\G
or volpG \G′ & ǫ, depending on the relative distance ofθ′

1 to the hyperplanes that provide
the support for thep − 1 dimensional faces adjacent toθ1. In particular, if there is a face
(supported by hyperplaneH) such that the distance fromθ′

1 toH isΩ(ǫ), but the half-space
supported byH that containsθ′

1 but does not containG, thenvolpG′ \ G & ǫ. If, on the
other hand, the associated half-space does containG, thenvolpG \G′ & ǫ.

The proof for case (b) is similar and is omitted.

4 A general posterior contraction theorem

A key ingredient in the general analysis of convergence of posterior distributions is through
establishing the existence of tests for subsets of parameters of interest. A testϕm,n is

a measurable indicator function of them × n-sampleS [m]
[n] = (S1

[n], . . . ,Sm
[n]) from an

admixture model. For a fixed pair of convex polytopesG0, G1 ∈ G, whereG is a given
subset of∆d, consider tests for discriminatingG0 against a closed Hausdorff ball centered
atG1. Define the Hausdorff ball as:

BH(G1, r) := {G ∈ ∆d : dH(G1, G) ≤ r}.

Definition 1. Fix G0 ∈ Gk. G is a subset ofG∗. For a fixedn, the sample size ofS[n], define
the Hellinger information ofdH metric for setG as a real-valued function on the real line
Ck,n(G, ·) : R → R:

Ck,n(G, r) := inf
G∈G; dH(G0,G)≥r/2

h2(pG0 , pG). (2)

The following two lemmas on the existence of tests highlightthe fundamental role of
the Hellinger information ofdH metric for a given set. Both lemmas require the following
condition:

Condition C. G is a subset ofG∗. All G ∈ G are bounded away from the boundary
from ∆d. That is, there is a constantc0 > 0 such thatminl=0,...,d ηl ≥ c0 for all η =
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(η0, . . . , ηd) ∈ G. Moreover, allG ∈ G satisfy geometric A2, so that Lemma 1 (b) holds
for some constantC0.

Lemma 4. Suppose thatG satisfies Condition C. Fix a pair of(G0, G1) ∈ (Gk × G) and
let r = dH(G0, G1). Then, there exist tests{ϕm,n} that have the following properties:

PG0 ϕm,n ≤ D exp[−mCk,n(G, r)] (3)

sup
G∈G∩BH(G1,r/2)

PG (1− ϕm,n) ≤ exp[−mCk,n(G, r)]. (4)

Here D = D

(

c0Ck,n(G,r)
4nC0

,G ∩ BH(G1, r/2), dH

)

denotes a packing number, i.e., the

maximal number of elements inG ∩ BH(G1, r/2) that are mutually separated by at least
c0Ck,n(G, r)/(4nC0) in Hausdorff distance.

Next, the existence of tests can be shown for discriminatingG0 against the complement
of a closed Hausdorff ball:

Lemma 5. Suppose thatG satisfies condition C. FixG0 ∈ Gk. Suppose that for some
non-increasing functionD(ǫ), someǫm,n ≥ 0 and everyǫ > ǫm,n,

sup
G1∈G

D(c0Ck,n(G, ǫ)/(4nC0),G ∩BH(G1, ǫ/2), dH)

×D(ǫ/2,G ∩BH(G0, 2ǫ) \BW (G0, ǫ), dH) ≤ D(ǫ). (5)

Then, for everyǫ > ǫm,n, and anyt0 ∈ N, there exist testsϕm,n (depending onǫ > 0) such
that

PG0 ϕm,n ≤ D(ǫ)

⌈1/ǫ⌉
∑

t=t0

exp[−mCk,n(G, tǫ)/8] (6)

sup
G∈G:dH(G0,G)>t0ǫ

PG (1− ϕm,n) ≤ exp[−mCk,n(G, t0ǫ)/8]. (7)

Remarks. (i) We note the appearance of two packing numbers in the upperbound for
the test power. The first quantity is the packing number of thethin Hausdorff layer, i.e.,
the setG ∩ BH(G0, 2ǫ) \ BH(G0, ǫ). This is similar to a quantity that arises the analysis
of Ghosal et al. [2000]. The second quantity is the packing number for the small ball, i.e.,
G ∩BH(G1, ǫ/2) in terms of smaller balls in Hausdorff metric. This extra term appears to
be intrinsic to the analysis of the latent polytopeG ∈ G, as opposed to the data densitypG,
and is attributed to the non-convexity of the Hausdorff balls when restricted to a subsetG
(for instance, whenG = Gk). See the proof of Lemma 4 for more details. (ii) Note also the
roles of the Hellinger information function: it appears as the exponent in the powers of the
tests, but it also provides the radius for the smaller balls which define the second packing
number. This feature was also observed in the posterior asymptotics using Wasserstein
metric [Nguyen, 2012].
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The two aforementioned lemmas form the core argument for establishing the following
general theorem for posterior contraction of latent mixingmeasures in the admixture model
for discrete data. Define the Kullback-Leibler neighborhood of G0 under the admixture
model and the prior distributionΠ on population polytopeG as:

BK(G0, δ) = {G ∈ G∗ : K(pG0 , pG) ≤ δ;K2(pG0 , pG) ≤ δ}. (8)

Theorem 4. LetG0 ∈ Gk for somek < ∞. Assume the following:

(a) Π is a prior distribution onG∗ such that the support of the prior is a subsetG ⊂ G∗

which satisfies condition C.

(b) There is a sequence of subsetsGm ⊂ G∗.

(c) There is a sequenceǫm,n → 0 such thatmǫ2m,n is bounded away from 0 or tending
to infinity, and a sequenceMm such that

logD(ǫ/2,Gm ∩BH(G0, 2ǫ) \BH(G0, ǫ), dH) +

sup
G1∈Gm

D(c0Ck,n(Gm, ǫ)/(4nC0),Gm ∩BH(G1, ǫ/2), dH) ≤ mǫ2m,n

for all ǫ ≥ ǫm,n, (9)

Π(G∗ \ Gm)

Π(BK(G0, ǫm,n))
= o(exp(−2mǫ2m,n)), (10)

Π(Gm ∩BH(G0, 2jǫm,n) \BH(G0, jǫm,n))

Π(BK(ǫm,n))
≤ exp[mCk,n(Gm, jǫm,n)/16]

for all j ≥ Mm, (11)

exp(2mǫ2m,n)
∑

j≥Mm

exp[−mCk,n(Gm, jǫm,n)/16] → 0. (12)

Then,Π(G : dH(G0, G) ≥ Mmǫm,n|S [m]
[n] ) → 0 in PG0 -probability asm andn → ∞.

The proof of this theorem follows the method of Ghosal, Ghoshand van der Vaart [Ghosal et al.,
2000], and is deferred to the Appendix. The remainder of the paper is devoted to verify-
ing the conditions of this theorem so it can be applied. Theseconditions hinge on our
having established a lower bound for the Hellinger information functionCk,n(Gm, ·) (via
Theorem 5), and a lower bound for the prior probability defined on Kullback-Leibler balls
BK(G0, ·) (via Theorem 6). Both types of results are obtained by utilizing the convex
geometry lemmas described in the previous section.

5 Contraction properties

The following contraction result guarantees that as the data densities get closer, so do the
population polytopes. This gives a lower bound for the Hellinger information defined by
Eq. (2), since the Hellinger distanceh can be lower bounded by the variational distanceV
via inequalityh ≥ V .
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Theorem 5. (a) LetG,G′ be two convex bodies in∆d. G is a p-dimensional body con-
tainingBd+1(θc, r) ∩G, whileG′ is p′-dimensional body containingBd+1(θc, r) ∩G′ for
somep, p′ ≤ d, r > 0,θc ∈ ∆d. In addition, assume that bothpη|G andpη|G′ areα-regular
densities onG andG′, respectively. Then, there is a constantc1 > 0 independent ofG,G′

such that

V (pG, pG′) ≥ c1dH(G,G′)(p∨p
′)+α − 6(d+ 1) exp

[

− n

8(d+ 1)
dH(G,G′)2

]

.

(b) Assume further thatG is fixed convex polytope,G′ an arbitrary polytope,p′ = p,
and that either| extrG′| = | extrG| or the pairwise distances of extreme points ofG′ is
bounded from below by a constantr0 > 0. Then, there are constantsc2, C3 > 0 depending
only onG andr0 such that

V (pG, pG′) ≥ c2dH(G,G′)1+α − 6(d + 1) exp

[

− n

C3(d+ 1)
dH(G,G′)2

]

.

Proof. (a) Given a data vectorS[n] = (X1, . . . ,Xn), defineη̂(S) ∈ ∆d such that thei-
element ofη̂(S) is 1

n

∑n
j=1 I(Xj = i) for eachi = 0, . . . , d. In the following we simply

useη̂ to ease the notations. By the definition of the variational distance,

V (pG, pG′) = sup
A

|PG(η̂ ∈ A)− PG′(η̂ ∈ A)|, (13)

where the supremum is taken over all measurable subsets of∆d.
Fix a constantǫ > 0. By Hoeffding’s inequality and the union bound, under the condi-

tional distributionPS[n]|η,

PS[n]|η( max
i=0,...,d

|η̂i − ηi| ≥ ǫ) ≤ 2(d+ 1) exp(−2nǫ2)

with probability one (asη is random). It follows that

Pη×S|G(‖η̂ − η‖ ≥ ǫ) ≤ Pη×S|G( max
i=0,...,d

|η̂i − ηi| ≥ ǫ(d+ 1)−1/2)

≤ 2(d+ 1) exp[−2nǫ2/(d + 1)].

The same bound holds underPη×S|G′ . Now, define eventB = {‖η̂ − η‖ < ǫ}. Take any
(measurable) setA ⊂ ∆d,

|PG(η̂ ∈ A)− PG′(η̂ ∈ A)|
= |Pη×S|G(η̂ ∈ A;B) + Pη×S|G(η̂ ∈ A;BC)

−Pη×S|G′(η̂ ∈ A;B)− Pη×S|G′(η̂ ∈ A;BC)|
≥ |Pη×S|G(η̂ ∈ A;B)− Pη×S|G′(η̂ ∈ A;B)| − 4(d+ 1) exp[−2nǫ2/(d + 1)].(14)

Let ǫ1 = dH(G,G′)/4. For anyǫ ≤ ǫ1, recall the outerǫ-parallel setGǫ = (G +
Bd+1(0, ǫ)), which is full-dimensional (d + 1) eventhoughG may not be. By triangular
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inequality, dH(Gǫ, G
′
ǫ) ≥ dH(G,G′)/2. We shall argue that for anyǫ ≤ ǫ1, there is a

constantc1 > 0 independent ofG,G′, ǫ andǫ1 such that either one of the two scenarios
holds:

(i) There is a setA∗ ⊂ G \G′ such thatA∗
ǫ ∩G′

ǫ = ∅ andvolp(A∗) ≥ c1ǫ
p
1, or

(ii) There is a setA∗ ⊂ G′ \G such thatA∗
ǫ ∩Gǫ = ∅ andvolp′(A∗) ≥ c1ǫ

p′

1 .

Indeed, observe that either one of the following two inequalities holds:dH(G\G′
3ǫ, G

′) ≥
dH(G,G′)/4 or dH(G′ \ G3ǫ, G) ≥ dH(G,G′)/4. If the former inequality holds, let
A∗ = G \ G′

3ǫ. Then,A∗ ⊂ G \ G′ andA∗
ǫ ∩ G′

ǫ = ∅. Moreover, by Lemma 2 (a),
volp(A

∗) ≥ c1ǫ
p
1, for some constantc1 > 0 independent ofǫ, ǫ1, G,G′, soA∗ satisfies (i).

Combined with theα-regularity ofPη|G, we havePη|G(A
∗) ≥ c1ǫ

p+α for some constant
c1 > 0. If the latter inequality holds, the same argument applies by definingA∗ = G′ \G3ǫ

so that (ii) holds.
Suppose that (i) holds for the chosenA∗. This means thatPη×S|G′(η̂ ∈ A∗

ǫ ;B) ≤
Pη|G′(η ∈ A∗

2ǫ) = 0, sinceA2ǫ∗ ∩ G′ = ∅, which is a consequence ofA∗
ǫ ∩ G′

ǫ = ∅. In
addition,

Pη×S|G(η̂ ∈ A∗
ǫ ;B) ≥ Pη×S|G(η ∈ A∗;B)

≥ Pη|G(A
∗)− Pη×S|G(B

C)

≥ Pη|G(A
∗)− 2(d + 1) exp(−2nǫ2/(d+ 1))

≥ c1ǫ
p+α
1 − 2(d + 1) exp(−2nǫ2/(d+ 1)),

for some constantc1 > 0. Hence, by Eq. (14)|PG(η̂ ∈ A∗
ǫ )− PG′(η̂ ∈ A∗

ǫ )| ≥ c1ǫ
p+α
1 −

6(d + 1) exp(−2nǫ2). Setǫ = ǫ1, the conclusion then follows by invoking Eq. (13). The
scenario of (ii) proceeds in the same way.

(b) Under the condition that the pairwise distances of extreme points ofG′ are bounded
from below byr0 > 0, the proof is very similar to part (a), by involking Lemma 3. Under the
condition that| extrG′| = k, the proof is also similar, but it requires a suitable modification
for the existence of setA∗. For any smallǫ, let G̃ǫ be the minimum-volume homethetic
transformation ofG, with respect to centerθc, such thatG̃ǫ containsGǫ. SinceBp(θc, r) ⊂
G ⊂ Bp(θc, R) for R = 1, it is simple to see thatdH(G, G̃ǫ) ≤ ǫR/r = ǫ/r.

Setǫ1 = dH(G,G′)r/4. We shall argue that for anyǫ ≤ ǫ1, there is a constantc0 > 0
independent ofG′, ǫ andǫ1 such that either one of the following two scenarios hold:

(iii) There is a setA∗ ⊂ G \G′ such thatA∗
ǫ ∩G′

ǫ = ∅ andvolp(A∗) ≥ c2ǫ1, or

(iv) There is a setA∗ ⊂ G′ \G such thatA∗
ǫ ∩Gǫ = ∅ andvolp(A∗) ≥ c2ǫ1.

Indeed, note that either one of the following two inequalities holds:dH(G \ G̃′
3ǫ, G

′) ≥
dH(G,G′)/4 or dH(G′ \ G̃3ǫ, G) ≥ dH(G,G′)/4. If the former inequality holds, letA∗ =
G\G̃′

3ǫ. Then,A∗ ⊂ G\G′ andA∗
ǫ∩G̃′

ǫ = ∅. Observe that bothG andG̃′
3ǫ have the same

number of extreme points by the construction. Moreover,G is fixed so that all geometric
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properties A2, A1are satisfied for bothG and G̃′
3ǫ for sufficiently smalldH(G,G′). By

Lemma 3,volp(A∗) ≥ c2ǫ1. Hence, (iii) holds. If the latter inequality holds, the same
argument applies by definingA∗ = G′ \ G̃3ǫ so that (iv) holds.

Now the proof of the theorem proceeds in the same manner as in part (a).

6 Concentration properties of the prior support

In this section we study properties of the support of the prior probabilities as specified by
the admixture model, including bounds for the Kullback-Leibler balls.

α-regularity. Let β be a random variable taking values in∆k−1 that has a densitypβ
(with respect to thek − 1-dimensional Hausdorff measure onRk). Define random variable
η = β1θ1 + . . . + βkθk, which takes values inG = conv(θ1, . . . ,θk). Write η = Lβ,
whereL = [θ1 . . . θk] is a(d+1)×k matrix. If k ≤ d+1, θ1, . . . ,θk are generally linearly
independent, in which case matrixL has rankk − 1. By the change of variable formula
[Evans and Gariepy, 1992] (Chapter 3),Pβ induces a distributionPη|G onG ⊂ ∆d, which
admits the following density with respect to thek − 1 dimensional Hausdorff measure on
∆d:

pη(η|G) = pβ(L
−1(η))J(L)−1.

HereJ(L) denotes the Jacobian of the linear map. On the other hand, ifk ≥ d + 1, then
L is generallyd-ranked. The induced distribution forη admits the following density with
respect to thed-dimensional Hausdorff measure onRd+1:

pη(η|G) =

∫

L−1{η}
pβ(β)J(L)

−1Hk−(d+1)(dβ).

A common choice forPβ is the Dirichlet distribution, as adopted by Pritchard et al.
[2000], Blei et al. [2003]: given parameterγ ∈ R

k
+, for anyA ⊂ ∆k−1,

Pβ(β ∈ A|γ) =
∫

A

Γ(
∑

γj)
∏k

j=1 Γ(γj)

k
∏

j=1

β
γj−1
j Hk−1(dβ).

Lemma 6. Letη =
∑k

j=1 βjθk, whereβ is distributed according to ak − 1-dimensional
Dirichlet distribution with parametersγj ∈ (0, 1] for j = 1, . . . , k.

(a) If k ≤ d + 1, there is constantǫ0 = ǫ0(k) > 0, and constantc6 = c6(γ, k, d) > 0
dependent onγ, k andd such that for anyǫ < ǫ0,

inf
G⊂∆d

inf
η∗∈G

Pη|G(‖η − η∗‖ ≤ ǫ) ≥ c6ǫ
k−1.

(b) If k > d+ 1, the statement holds with a lower boundc6ǫd+
∑k

i=1 γi .
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A consequence of this lemma is that ifγj ≤ 1 for all j = 1, . . . , k, k ≤ d + 1 and
G is k − 1-dimensional, then the inducedPη|G has a Hausdorff density that is bounded
away from 0 on the entire its support∆k−1, which implies0-regularity. On the other hand,
if γj ≤ 1 for all j, k > d + 1, andG is d-dimensional, thePη|G is at least

∑k
j=1 γj-

regularity. Note that theα-regularity condition is concerned with the density behavior near
the boundary of its support, and thus is weaker than what is guaranteed here.

Bounds on KL divergences. Suppose that the population polytopeG is endowed with
a prior distribution onGk. Under the admixture model specification, this induces a (prior)
distribution on the space of marginal densitiespG of the data vectorS[n]. To establish the
concentration properties of the Kullback-Leibler neighborhoodBK as induced by the prior
distribution, we need to obtain an upper bound on the KL divergences for the marginal den-
sities in terms of Hausdorff metric on population polytopes. First, consider a very special
case:

Lemma 7. LetG,G′ ∈ ∆d be closed convex sets satisfying property A1. Moreover, assume
that

(a) G ⊂ G′, aff G = aff G′ is p-dimensional, forp ≤ d.

(b) Pη|G (resp.Pη|G′) are uniform distributions onG, (resp.G′).

Then, there is a constantC1 = C1(r, p) > 0 such thatK(pG, pG′) ≤ C1dH(G,G′) when-
everdH(G,G′) is sufficiently small.

Proof. First, we note a well-known fact of KL divergences: the divergence between marginal
distributions are bounded from above by the divergence between joint distributions:

K(pG, pG′) ≤ K(Pη×S|G, Pη×S|G′).

Due to conditional independence,pη×S|G = pη|G×pS[n]|η andpη×S|G′ = pη|G′×pS[n]|η, so
K(Pη×S|G, Pη×S|G′) = K(pη|G, pη|G′). SincePη|G andPη|G′ are assumed to be uniform
distributions onG andG′, respectively, andG ⊂ G′, we obtain that

K(pη|G, pη|G′) =

∫

log
1/ volpG

1/ volpG′
dPη|G.

By Lemma 2 (b),log[volpG′/ volpG] ≤ log(1 +C1dH(G,G′)) ≤ C1dH(G,G′) for some
constantC1 = C1(r, p) > 0. This completes the proof.

Remark. The previous lemma requires a particular stringent condition, aff G = aff G′,
which is usually violated whenk < d+ 1. However, the conclusion is worth noting in that
the upper bound does not depend on the sample sizen (for S[n]). The next lemma removes
this condition and the condition that bothpη|G andpη|G′ be uniform. As a result the upper
bound obtained is weaker, in the sense that the bound is not interms of a Hausdorff distance,
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but in terms of a Wasserstein distance. Moreover, sample size n now appears as a linear
term in the upper bound, as one would expect.

Let Q(η1,η2) denote a coupling ofP (η|G) and P (η|G′), i.e., a joint distribution
on G × G′ whose induced marginal distributions ofη1 andη2 are equal toP (η|G) and
P (η|G′), respectively. LetQ be the set of all such couplings. The Wasserstein distance
betweenpη|G andpη|G′ is defined as

W1(pη|G, pη|G′) = inf
Q∈Q

∫

‖η1 − η2‖ dQ(η1,η2).

Lemma 8. Let G,G′ ⊂ ∆d be closed convex subsets such that anyη = (η0, . . . , ηd) ∈
G ∪G′ satisfiesminl=0,...,d ηl > c0 for some constantc0 > 0. Then

K(pG, pG′) ≤ n

c0
W1(pη|G, pη|G′).

Proof. Associating each sampleS[n] with a d + 1-dimensional vectorη(S) ∈ ∆d, where
η(S)i = 1

n

∑n
j=1 I(Xj = l) for eachi = 0, . . . , d. The density ofS[n] givenG (with

respect to the counting measure) takes the form:

pG(S[n]) =

∫

η∈G
p(S[n]|η)dP (η|G) =

∫

η∈G
exp

(

n

d
∑

i=0

η(S)i log ηi

)

dP (η|G).

Due to the convexity of Kullback-Leibler divergence, by Jensen inequality, for any
couplingQ ∈ Q:

K(pG, pG′) = K

(
∫

p(S[n]|η1) dQ(η1,η2),

∫

p(S[n]|η1) dQ(η1,η2)

)

≤
∫

K(p(S[n]|η1), p(S[n]|η2)) dQ(η1,η2).

It follows thatK(pG, pG′) ≤ infQ
∫

K(pS[n]|η1
, pS[n]|η2

) dQ(η1,η2).
Note thatK(PS[n]|η1

, PS[n]|η2
) =

∑

S[n]
n(K(η(S),η2)−K(η(S),η1))pS[n]|η1

, where

the summation is taken over all realizations ofS[n] ∈ {0, . . . , d}n. For anyη(S) ∈ ∆d,
η1 ∈ G andη2 ∈ G′,

|K(η(S),η1)−K(η(S),η2)| = |
d

∑

i=0

η(S)i log(η1,i/η2,i)|

≤
∑

i

η(S)i|η1,i − η2,i|/c0

≤ (
∑

i

η(S)2i )1/2‖η1 − η2‖/c0

≤ ‖η1 − η2‖/c0.
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Here, the first inequality is due the assumption, the second due to Cauchy-Schwarz. It
follows thatK(PS[n]|η1

, PS[n]|η2
) ≤ n‖η1 − η2‖/c0, soK(pG, pG′) ≤ n

c0
W1(pη|G, pη|G′).

Lemma 9. LetG = conv(θ1, . . . ,θk) andG′ = conv(θ′
1, . . . ,θ

′
k) (samek). A random

variableη ∼ Pη|G is parameterized byη =
∑

j βjηj, while a random variableη ∼ Pη|G′

is parameterized byη =
∑

j β
′
jη

′
j , whereβ andβ′ are both distributed according to a

symmetric probability densitypβ.
(a) Assume that bothG,G′ satisfy property A2. Then, for sufficiently smalldH(G,G′),

W1(pη|G, pη|G′) ≤ C0dH(G,G′) for some constantC0 specified by Lemma 1.
(b) Assume further that assumptions in Lemma 8 hold, thenK(pG, pG′) ≤ n

c0
C0dH(G,G′).

Remark. In order to obtain an upper bound forK(pG, pG′) in terms ofdH(G,G′), the
assumption thatpβ is symmetric appears essential. Without this assumption, it is possible
to havedH(G,G′) = 0, butK(pG, pG′) > 0.

Proof. By Lemma 1 under property A2,dM(G,G′) ≤ C0dH(G,G′) for some constant
C0. Let dH(G,G′) ≤ ǫ for some smallǫ > 0. Assume without loss of generality that
|θj − θ′

j| ≤ C0ǫ for all j = 1, . . . , k (otherwise, simply relabel the subscripts forθ′
j ’s).

Let Q(η,η′) be a coupling ofPη|G andPη|G′ such that underQ, η =
∑k

j=1 βjθj and

η′ =
∑k

j=1 βjθ
′
j , i.e.,η andη′ share thesameβ, whereβ is a random variable with density

pβ. This is a valid coupling, sincepβ is assumed to be symmetric.
Under distributionQ, E‖η − η′‖ ≤ E

∑k
j=1 βj‖θj − θ′

j‖ ≤ C0ǫE
∑k

j=1 βj = C0ǫ.
HenceW1(Pη|G, Pη|G′) ≤ C0ǫ. Part (b) is an immediate consequence.

Recall the definition of the Kullback-Leibler neighborhoodgiven by Eq. (8). The main
result of this section is the following:

Theorem 6. Under Assumptions (S1) and (S2), for anyG0 in the support of priorΠ, for
anyδ > 0 andn > log(1/δ)

Π(G ∈ BK(G0, δ)) ≥ c(δ/n3)kd,

where constantc = c(c0) depends only onc0.

Proof. We shall invoke a bound of Wong and Shen [1995] (Theorem 5) on the KL diver-
gence. This bound says that ifp and q are two densities on a common space such that
∫

p2/q < M , then for some universal constantǫ0 > 0, as long ash(p, q) ≤ ǫ < ǫ0, there
holds:K(p, q) = O(ǫ2 log(M/ǫ)), andK2(p, q) :=

∫

p(log(p/q))2 = O(ǫ2[log(M/ǫ)]2),
where the big O constants are universal.

Let G0 = conv(θ∗
1, . . . ,θ

∗
k). Consider a random setG ∈ Gk represented byG =

conv(θ1, . . . ,θk), and the eventE that‖θj − θ∗
j‖ ≤ ǫ for all j = 1, . . . , k. For the pair

of G0 andG, consider a couplingQ for Pη|G andPη|G0
such that any(η1,η2) distributed

by Q is parameterized byη1 = β1θ1 + . . . βkθk andη2 = β1θ
∗
1 + . . . βkθ

∗
k (that is, under
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the couplingη1 andη2 share the same vectorβ). Then, underQ, E‖η1 − η2‖ ≤ ǫ. This
entails thatW1(Pη|G, Pη|G0

) ≤ ǫ. (We note here that the argument appears similar to the
one from Lemma 9, but we do not need to assume thatpβ be symmetric in this theorem).
If G is randomly distributed according to priorΠ, under assumption (S2), the probability
of eventE is lower bounded byΩ(ǫkd). By Lemma 8,h2(pG0 , pG) ≤ K(pG0 , pG)/2 ≤
(n/c0)W1(Pη|G, Pη|G0

) ≤ nǫ/(2c0). Note that the density ratiopG/pG0 ≤ (1/c0)
n, which

implies that
∑

S[n]
p2G0

/pG ≤ (1/c0)
n. We can apply the upper bound described in the

previous paragraph to obtain:

K2(pG0 , pG) = O

(

nǫ

2c0

[

1

2
log

2c0
nǫ

+ n log
1

c0

]2)

.

Here, the big O constant is universal. If we setǫ = δ/n3, then the quantity in the right hand
side of the previous display is bounded byO(δ) as long asδ > 1/en. Combining with the
probability boundΩ(ǫkd) derived above, we obtain the desired result.

7 Proofs of main theorems and auxiliary lemmas

Proof of Theorem 1 (Overfitted setting).

Proof. The proof proceeds by verifying conditions of Theorem 4. Letǫm,n be a large
multiple of (logm/m)1/2 ∨ (log n/m)1/2 ∨ (log n/n)1/2.

Choose the sequence of subsetsGm simply asGm = Gk, so thatΠ(G∗ \ Gm) = 0.
Condition (10) trivially holds. Turning to the entropy conditions, we note that

logD(ǫ/2,Gk ∩BH(G0, 2ǫ), dH) ≤ logN(ǫ/4,Gk ∩BH(G0, 2ǫ), dH) = O(1).

By Theorem 5 (a), assumption (S4) and the general inequalitythath ≥ V , we have:
Ck,n(Gk, ǫ) & [ǫp+α−6(d+1)e−nǫ2/8(d+1)]2, wherep is defined asp = min(k−1, d). So
Ck,n(Gk, ǫ) & ǫ2(p+α) as long asǫp+α ≥ 12(d + 1) exp[−nǫ2/8(d + 1)]. This is satisfied
for anyǫ ≥ ǫm,n & (p+α

2 log n/n)1/2. It follows that

logD(c0Ck,n(Gk, ǫ)/(4nC0),Gk ∩BH(G1, ǫ/2), dH)

. logN(ǫ2(p+α)/n,Gk ∩BH(G1, ǫ/2), dH)

. log(nkdǫ−(2p+2α−1)kd) ≤ mǫ2,

where the last inequality holds sinceǫ ≥ ǫm,n & (log n/m)1/2 ∨ (logm/m)1/2. Thus, the
entropy condition (9)) is established.

To verify condition Eq. (12), we note that for some constantc > 0,

exp(2mǫ2m,n)
∑

j≥Mm

exp[−mCk,n(Gm, jǫm,n)/16]

. exp(2mǫ2m,n)
∑

j≥Mm

exp[−cm(jǫm,n)
2(p+α)]

. exp(2mǫ2m,n) exp[−cm(Mmǫm,n)
2(p+α)],
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where the right side of the above display vanishes if(Mmǫm,n)
p+α is a sufficiently large

multiple of ǫm,n. This holds if we chooseMm = Mǫ
− p+α−1

p+α
m,n for a large constantM .

It remains to verify Eq. (11). By Theorem 6,log Π(G ∈ BK(G0, ǫm,n)) & log(ǫm,n/n
3)kd =

kd(log ǫm,n − 3 log n).
Moreover,Π(BH(G0, 2jǫm,n) \ BH(G0, jǫm,n)) ≤ Π(BH(G0, 2jǫm,n)). Take any

j ≥ Mm, if dH(G,G0) ≤ jǫm,n, then at least one ofG’s extreme points is withinO(jǫm,n)
distance fromG0’s extreme points, by Lemma 1 (b). By an union bound, and the assump-
tion that the prior densities forθ1, . . . ,θk are bounded away from 0,Π(BH(G0, 2jǫm,n)) .
k2(2jǫm,n)

d. As the result, the logarithm of the left side of Eq. (11) is upper bounded by

log[k2(2jǫm,n)
d(n3/ǫm,n)

kd] ≤ log(k22d) + d log j + kd log(1/ǫm,n) + 3kd log n

. m(jǫm,n)
2(p+α) . mCk,n(Gm, jǫm,n)/16

The last inequality of the previous display is due to Theorem5 (a). The next to the last in-
equality holds because for anyj ≥ Mm, m(jǫm,n)

2(p+α) & mǫ2m,n & log n∨ log(1/ǫm,n),

and thatm(jǫm,n)
2(p+α) & log j.

Now, we can apply Theorem 4 to obtain a posterior contractionrateMmǫm,n ≍ ǫ
1/(p+α)
m,n ≍

[ logmm ∨ logn
m ∨ logn

n ]
1

2(p+α) .

Proof of Theorem 2. The proof proceeds in exactly the same way as in Theorem 1, except
that part (b) of Theorem 5 is applied instead of part (a). Accordingly p is replaced by1 in
the rate exponent.

Proof of Theorem 3 (Minimax lower bounds). (a) The proof involves the construction
of a pair of polytopes inGk whose set difference has small volume for a given Hausdorff
distance. We consider two separate cases: (i)k/2 ≤ d and (ii)k > 2d.

If k/2 ≤ d, consider aq = ⌊k/2⌋-simplexG0 that is spanned byq + 1 vertices in
general positions. Take a vertex ofG0, sayθ0. ConstructG′

0 by choppingG0 off by an
ǫ-cap that is obtained by the convex hull ofθ0 andq other points which lie on the edges
adjacent toθ0, and of distanceǫ from θ0. Clearly,G′

0 has2q ≤ k vertices, so bothG0 and
G′

0 are inGk. We havedH(G0, G
′
0) ≍ ǫ, andvolq(G0 \G′

0) ≍ ǫq. Due to Assumption (S5),
V (pη|G0

, pη|G′
0
) . ǫq+α.

If k ≥ 2d, consider ad-dimensional polytopeG0 which hask − d + 1 vertices in
general positions. ConstructG′

0 in the same way as above (by choppingG0 off by anǫ-cap
that contains a vertexθ0 which hasd adjacent vertices). Then,G′

0 has(k−d+1)−1+d = k
vertices. Thus, bothG′

0 andG0 are inGk. We havedH(G0, G
′
0) ≍ ǫ, andvold(G0 \G′

0) ≍
ǫd. Due to Assumption (S5),V (pη|G0

, pη|G′
0
) . ǫd+α.

To combine the two cases, letq = min(⌊k/2⌋, d). We have constructed a pair of
G0, G

′
0 ∈ Gk such thatdH(G0, G

′
0) ≍ ǫ, andV (pη|G0

, pη|G′
0
) . ǫq+α. By Lemma 8,

K(pG0 , pG′
0
) . nW1(pη|G0

, pη|G′
0
) . nV (pη|G0

, pη|G′
0
) ≤ Cnǫq+α for some constant

C > 0.
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Applying the method due to Le Cam (cf. [Yu, 1997], Lemma 1), for any estimator̂G,

max
G∈{G0,G′

0}
PG0dH(G, Ĝ) & ǫ(1− 1

2
V (p

[m]
G0

, p
[m]
G′

0
)).

Here,p[m]
G0

denotes the marginal density of them-sampleS1
[n], . . . ,Sm

[n]. Thus,V 2(p
[m]
G0

, p
[m]
G′

0
) ≤

h2(p
[m]
G0

, p
[m]
G′

0
) = 1 −

∫

[p
[m]
G0

p
[m]
G′

0
]1/2 = 1 − (1 − h2(pG0 , pG′

0
))m ≤ 1 − (1 − Cnǫq+α)m.

The last inequality is due toh2(pG0 , pG′
0
) ≤ K(pG0 , pG′

0
) ≤ Cnǫq+α. Thus,

max
G∈{G0,G′

0}
PG0dH(G, Ĝ) & ǫ(1− 1

2
[1− (1− Cnǫq+α)m]1/2).

Letting ǫq+α = 1
Cmn , the right side of the previous display is bounded from belowby

ǫ(1− 1
2(1− 1/2)1/2).

(b) We employ the same construction ofG0 andG′
0 as in part (a). Using the argument

used in the proof of Lemma 7K(pG′
0
, pG0) =

∫

log[volq G0/ volq G
′
0]dPη|G0

≤
∫

log(1+

Cǫq)Pη|G0
. ǫq. So,h2(pG0 , pG′

0
) ≤ K(pG′

0
, pG0) . ǫq. Then, the proof proceeds as in

part (a).
(c) LetG′

0 be a polytope such that| extrG′
0| = | extrG0| = k anddH(G′

0, G0) = ǫ.
By Lemma 2,volp(G0 △ G′

0) = O(ǫ), wherep = (k − 1) ∧ d. The proof proceeds as in
part (a) to obtain(1/mn)1/(1+α) rate for the lower bound under assumption (S5). Under
assumption (S5’), as in part (b), the dependence onn can be removed to obtain1/m rate.

Proof of the existence of tests in Lemma 4.

Proof. DefineP1 = {pG|G ∈ G ∩ BH(G1, r/2)}. We note in passing that that this is
generally not a convex set of densities forS[n]. For instance, ifG = Gk, which is a non-
convex set, thenP1 is non-convex. Thus, a straightforward application of standard results
on existence of tests (cf. [Cam, 1986], Chapter 4) is not possible. Consider a maximalc1r-
packing indH metric for the setG ∈ G∩BH(G1, r/2), wherec1 is a positive constant to be
determined. This yields a set ofD = D(c1r,G∩BH(G1, r/2), dH) elementsG̃1, . . . , G̃D ∈
G ∩BH(G1, r/2).

Next, we note the following fact: for anyt = 1, . . . ,D, if G ∈ G ∩ BH(G1, r/2) and
dH(G, G̃t) ≤ c1r, then by Lemma 9

h2(pG, pG̃t
) ≤ K(pG, pG̃t

) ≤ n

c0
C0dH(G, G̃t) ≤

n

c0
C0c1r

Choosec1 =
c0

4nrC0
Ck,n(G, r), so thath2(pG, pG̃t

) ≤ 1
4Ck,n(G, r). By definition,h2(pG0 , pG̃t

) ≥
Ck,n(G, r). Thus, by triangle inequality,h(pG0 , pG) ≥ 1

2Ck,n(G, r)1/2.

For each pair ofG0, G̃t there exist testsω(t)
n of pG0 versus the Hellinger ballP2(t) :=

{pG|G ∈ G∗;h(pG, pG̃t
) ≤ 1

2h(pG0 , pG̃t
)} such that,

PG0 ω(t)
m,n ≤ exp[−mh2(pG0 , pG̃t

)/8],

sup
P2∈P2(t)

P2 (1− ω(t)
m,n) ≤ exp[−mh2(pG0 , pG̃t

)/8].
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Consider the testϕm,n = max1≤t≤D ω
(t)
m,n, then

PG0 ϕm,n ≤ D × exp[−mCk,n(G, r)/8],
sup

G∈G∩BH(G1,r/2)
PG (1− ϕm,n) ≤ exp[−mCk,n(G, r)/8].

The first inequality is due toϕm,n ≤ ∑D
t=1 ω

(t)
m,n, and the second is due to the fact that for

anyG ∈ G ∩BH(G1, r/2) there is somed = 1, . . . ,D such thatdH(G, G̃t) ≤ c1r, so that
pG ∈ P2(t).

Proof of the existence of tests in Lemma 5.

Proof. The proof utilizes a peeling idea of Ghosal et al. [2000], andthen apply a packing
argument as in the previous proof. For a givent ∈ N choose a maximaltǫ/2-packing for
setSt = {G : tǫ < dH(G0, G) ≤ (t+1)ǫ}. This yields a setS′

t of at mostD(tǫ/2, St, dH)
points. Moreover, everyG ∈ St is within distancetǫ/2 of at least one of the points inS′

t.
For every such pointG1 ∈ S′

t, there exists a testωm,n satisfying Eqs. (3) and (4), wherer
is taken to ber = tǫ. Takeϕm,n to be the maximum of all tests attached this way to some
point G1 ∈ S′

t for somet ≥ t0. Note thatG ∈ G ⊂ ∆d, so t ≤ ⌈1/ǫ⌉. Then, by union
bound, and the condition thatD(ǫ) is non-increasing,

PG0 ϕm,n

≤
⌈1/ǫ⌉
∑

t=t0

∑

G1∈S′
t

D

(

c0Ck,n(G, tǫ)
4nC0

,G ∩BH(G1, tǫ/2), dH

)

exp[−mCk,n(G, tǫ)/8]

≤ D(ǫ)
∑

t≥t0

exp[−mCk,n(G, tǫ)/8]

sup
G∈∪u≥t0

Su

PG (1 − ϕn) ≤ sup
u≥t0

exp[−mCk,n(G, uǫ)/8] ≤ exp[−mCk,n(G, t0ǫ)/8],

where the last inequality is due the monotonicity ofCk,n(G, ·).

Proof of α-regularity of the Dirichlet-induced densities in Lemma 6.

Proof. First, consider the casek ≤ d + 1. Forη∗ ∈ G, write η∗ = β∗
1θ1 + . . . + β∗

kθk.
Forβ ∈ ∆k−1 such that|βi − β∗

i | ≤ ǫ/k for all i = 1, . . . , k − 1, we have‖η − η∗‖ =

‖∑k
i=1(βi − β,∗i )θi‖ ≤ ∑k

i=1 |βi − β∗
i | ≤ 2

∑k−1
i=1 |βi − β∗

i | ≤ 2ǫ. Here, we used the fact
that‖θi‖ ≤ 1 for anyθi ∈ ∆d. Without loss of generality, assume thatβ∗

k ≥ 1/k. Then,
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for anyǫ < 1/k

Pη|G(‖η − η∗‖ ≤ 2ǫ) ≥ Pβ(|βi − β∗
i | ≤ ǫ/k; i = 1, . . . , k − 1)

=
Γ(

∑

γi)
∏

i Γ(γi)

∫

βi∈[0,1];|βi−β∗
i |≤ǫ/k;i=1,...,k−1

k−1
∏

i=1

βγi−1
i (1−

k−1
∑

i=1

βi)
γk−1dβ1 . . . dβk−1

≥ Γ(
∑

γi)
∏

i Γ(γi)

k−1
∏

i=1

∫ min(γ∗
i +ǫ/k,1)

max(γ∗
i −ǫ/k,0)

βγi−1
i dβi ≥

Γ(
∑

γi)
∏

i Γ(γi)
(ǫ/k)k−1.

Both the second and the third inequality in the previous display exploits the fact that since
γi ≤ 1, xγi−1 ≥ 1 for anyx ≤ 1.

Now, consider the casek > d+1. Sinceη∗ ∈ conv(θ1, . . . ,θk) ⊂ ∆d, by Carathéodory’s
theorem,η∗ is the convex combination ofd+1 or fewer extreme points amongθi’s. Without
loss of generality, letθ1, . . . ,θd+1 be such points, and writeη∗ = β∗

1θ1 + . . . β∗
d+1θd+1.

Considerη = β1θ1 + . . . + βkθk, where‖βi − β∗
i | ≤ ǫ/k, for i = 1, . . . , d, while

0 ≤ βi ≤ ǫ/k for i = d+ 2, . . . , k. Then,‖η − η∗‖ ≤ 2ǫ. This implies that

Pη|G(‖η − η∗‖ ≤ 2ǫ) ≥ Pβ(|βi − β∗
i | ≤ ǫ/k, i = 1, . . . , d+ 1; |βj | ≤ ǫ/k, j > d+ 1)

≥ Γ(
∑

γi)
∏

i Γ(γi)

d
∏

i=1

∫ min(γ∗
i +ǫ/k,1)

max(γ∗
i −ǫ/k,0)

βγi−1
i dβi

k
∏

i=d+2

∫ ǫ/k

0
βγi−1
i dβi

≥ Γ(
∑

γi)
∏

i Γ(γi)
(ǫ/k)d+

∑k
i=d+2 γi/

n
∏

i=d+2

γi & ǫd+
∑k

i=1 γi .

8 Appendix

Proof of the general posterior contraction in Theorem 4.

Proof. By a result of Ghosal et al [Ghosal et al., 2000] (Lemma 8.1, pg. 524), for every
ǫ > 0, C > 0 and every probability measureΠ0 supported on the setBK(G0, ǫ) defined by
Eq. (8), we have,

PG0

(
∫ m

∏

i=1

pG(Si
[n])

pG0(Si
[n])

dΠ0(G) ≤ exp(−(1 + C)mǫ2)

)

≤ 1

C2mǫ2
.

This entails that, for a fixedC ≥ 1, there is an eventAm with PG0-probability at least
1− (Cmǫ2m,n)

−1, for which there holds:

∫ n
∏

i=1

pG(Si
[n])/pG0(Si

[n])dΠ(G) ≥ exp(−2mǫ2m,n)Π(BK(G0, ǫm,n)). (15)
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Let Om = {G ∈ G∗ : dH(G0, G) ≥ Mmǫm,n}, Sn,j = {G ∈ Gm : dH(G0, G) ∈
[jǫm,n, (j + 1)ǫm,n)} for eachj ≥ 1. Due to Eq.(9), the condition specified by Lemma 5
is satisfied by settingD(ǫ) = exp(mǫ2m,n) (constant inǫ). Thus there exist testsϕm,n for
which Eq. (6) and (7) hold. Then,

PG0Π(G ∈ Om|S1
[n], . . . ,Sm

[n])

= PG0 [ϕm,nΠ(G ∈ Om|S1
[n], . . . ,Sm

[n])] + PG0 [(1 − ϕm,n)Π(G ∈ Om|S1
[n], . . . ,Sm

[n])]

≤ PG0 [ϕm,nΠ(G ∈ Om|S1
[n], . . . ,Sm

[n])] + PG0I(A
c
m)

+PG0

[

(1− ϕm,n)Π(G ∈ Om|S1
[n], . . . ,Sm

[n])I(Am)

]

.

Applying Lemma 5, the first term in the preceeding display is bounded above byPG0ϕm,n ≤
D(ǫm,n)

∑

j≥Mm
exp[−mCk,n(Gm, jǫm,n)/8] → 0, thanks to Eq. (12). The second term

in the above display is bounded by(Cmǫ2m,n)
−1 by the definition ofAm. Sincemǫ2m,n

is bounded away from 0,C can be chosen arbitrarily large so that the second term can be
made arbitrarily small. It remains to show that third term inthe display also vanishes as
m → ∞. We exploit the following expression:

Π(G ∈ Om|S1
[n], . . . ,Sm

[n]) =

∫

Om

∏m
i=1 pG(Si

[n])/pG0(Si
[n])Π(G)

∫
∏m

i=1 pG(Si
[n])/pG0(Si

[n])Π(G)
,

and then obtain a lower bound for the denominator by Eq. (15).For the nominator, by
Fubini’s theorem:

PG0

∫

Om∩Gm

(1− ϕm,n)
m
∏

i=1

pG(Si
[n])/pG0(Si

[n])Π(G)

= PG0

∑

j≥Mm

∫

Sm,j

(1− ϕm,n)

m
∏

i=1

pG(Si
[n])/pG0(Si

[n])Π(G)

=
∑

j≥Mm

∫

Sm,j

PG(1− ϕm,n)Π(G)

≤
∑

j≥Mm

Π(Sm,j) exp[−mCk,n(Gm, jǫm,n)/8], (16)

where the last inequality is due to Eq. (7). In addition, by (10),

PG0

∫

Om\Gm

(1− ϕm,n)
m
∏

i=1

pG(Si
[n])/pG0(Si

[n])Π(G)

=

∫

Om\Gm

PG(1− ϕm,n)Π(G)

≤ Π(G∗ \ Gm) = o(exp(−2mǫ2m,n)Π(BK(G0, ǫm,n))). (17)
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Now, combining bounds (16) and (17) with condition (11), we obtain:

PG0(1− ϕm,n)Π(G ∈ Om|S1
[n], . . . ,Sm

[n])I(Am)

≤
o(exp(−2mǫ2m,n)Π(BK(G0, ǫm,n))) +

∑

j≥Mm
Π(Sm,j) exp[−mCk,n(Gm, jǫm,n)/8]

exp(−2mǫ2m,n)Π(BK(ǫm,n))

≤ o(1) + exp(2mǫ2m,n)
∑

j≥Mm

exp[−mCk,n(Gm, jǫm,n)/16]

The upper bound in the preceeding display converges to 0 by Eq. (12), thereby concluding
the proof.
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