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Abstract

We study the posterior contraction behavior of the latepiypation structure that
arises in admixture models as the amount of data increasesdixture model —
alternatively known as a topic model — speciftgsopulations, each of which is char-
acterized by a\“-valued vector of frequencies for generating a set of disoralues
in {0,1,...,d}. The population polytope is defined as the convex hull ofitHee-
quency vectors. Under the admixture specification, each ioidividuals generates an
i.i.d. frequency vector according to a probability distrtion defined on the (unknown)
population polytopé&-,, and then generatesdata points according to the sampled fre-
quency vector. Given a prior distribution over the spaceayation polytopes, we
establish rates at which the posterior distribution cantérto G, under the Hausdorff
metric and a minimum matching Euclidean metric, as the amofuthatam x n tends
to infinity. Rates are obtained for the overfitted setting., iwhen the number of ex-
treme points of7, is bounded above by, and for the setting in which the number of
extreme points ofy, is known. Minimax lower bounds are also established. Oul-ana
ysis combines posterior asymptotics techniques for thmasbn of mixing measures
in hierarchical models with elementary arguments in corgenmetry.

1 Introduction

We study a class of hierarchical mixture models for categbidata known as the admix-
tures, which were independently developed in the landmagers by Pritchard, Stephens
and Donnelly [[Pritchard et al., 2000] and Blei, Ng and JorfRlgi et al.,[2003]. The for-
mer set of authors applied their modeling to population Gesiewhile the latter considered
applications in text processing, where their models areemmadely known as the “latent
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Dirichlet allocation” topic models. Admixture modeling$heen applied to and extended
in a vast number of fields of engineering and sciences — in flaetGoogle scholar pages
for these two original papers alone combine for more tharzanlthousands of citations.

A finite admixture model posits that there drgpopulations, each of which is char-
acterized by aA%-valued vectord; of frequencies for generating a set of discrete values
{0,1,...,d},forj =1,...,k. Here,A%is thed-dimensional probability simplex. A sam-
pled individual may have mixed ancestry and as a result itshewme fraction of its values
from each of its ancestral populations. Thus, an individsi@ssociated with a proportion
vectord = (B, ..., Bk) € AF L wheref; denotes the proportion of the individual’s data
that are generated according to populatj@frequency vectof ;. This yields a vector of
frequenciesy = Z?Zl Bi0; € A? associated with that individual. In most applications,
one does not observe directly, but rather an i.i.d. sample generated from a maitiial
distribution parameterized by. The collection of94, ..., 8; is refered to as thpopula-
tion structurein the admixture. In population genetics modelifg,represents the allele
frequencies at each locus in an individual's genome fromjttiepopulation. In text doc-
ument modelingf; represents the frequencies of words generated by-theopic, while
an individual is a document, i.e., a collection of words. Pphenary interest is the inference
of the population structure on the basis of sampled data.Bayaesian estimation setting,
the population structure is assumed random and endowedawtior distribution — ac-
cordingly one is interested in the behavior of the postedistribution of the population
structure given the available data.

The goal of this paper is to obtain contraction rates of th&qy@r distribution of the
latent population structure that arises in admixture mmded the amount of data increases.
Admixture models present a canonical mixture model forgmieal data in which the pop-
ulation structure provides the support for the mixing measiexisting works on conver-
gence behavior of mixing measures in a mixture model are gare, in either frequentist
or Bayesian estimation literature. Chen provided the ogitioonvergence rate of mix-
ing measures in several finite mixtures for univariate d@fiaeh, 1995]. This result was
subsequentially extended to a Bayesian estimation sdtihwaran et all, 2001]. Nguyen
recently obtained posterior contraction rates of mixingasuges in several finite and infi-
nite mixture models for multivariate and continuous datauien/ 2012]. This issue has
also attracted increased attention in machine learnindalyg there are a couple of very
recent papers that study the convergence of the populatioctire arising in admixture
models for certain computationally efficient learning aitfons based on matrix factoriza-
tion techniques_[Arara et al., 2012, Anandkumar et al., 20Their results will be briefly
discussed in the sequel.

There are several interesting aspects that arise in themgewe analysis of admixture
models for categorical data. First, it is not unreasonablsuspect that in general the
population structure representedéy; . . . , 8, may be estimated up to its convex hGll=
conv(@1,...,0;). Any 6; that can be expressed as a convex combination of the others
0, for j/ # j may be difficult to identify and estimate. Throughout thipea G will
be the focus of our study, and is referred to asghpulation polytopewhose geometric



properties will be intensively exploited using ideas frooneex geometry. We adopt the
Hausdorff metric for evaluating the posterior contractiates of the population polytope.
Hausdorff is a natural choice for analyzing estimators tf é=g.,[[Dumbgen and Walther,
1996, Tsybakov, 1997, Singh et al., 2009]). One virtue oiivedion via the admixture

model is that it is possible to estimate not only the bounddir§#, but also all its extreme

points. Indeed, our analysis is also achieved for a “minimmatching” metric (defined in

Section 2) which measures how well each of the extreme pi@rgstimated, under some
geometric identifiability conditions.

The second aspect is concerned with the analysis of pastenidraction of latent mix-
ing measures in a hierarchical mixture model. The geneaatdwork of posterior asymp-
totics for density estimation has been well-establishee,(s.g.,[[Ghosal et al., 2000] and
their list of references up to year 2000). The analysis ofmgixneasure estimation in multi-
level models remains generally quite challenging. In thetext of admixture models, sup-
pose that there are individuals, each of which is observed vissampled data points, then
typically bothm andn are required to increase in order to achieve posterior actmn. In
an overfitted setting, i.e., when the true population pggtanay have less thanextreme
points, we show that under some mild identifiability corahs the posterior contracticlan rate
in either Hausdorff or minimum-matching distance metri i@;f?m vV 1"% vV 1"% e ,
wherep = (k—1) Ad is the intrinsic dimension of the population polytope whildenotes
the regularity level near boundary of the support of the terignction for . However,
if either the true population polytope is known to have elyagtextreme points, or if the
pairwise distances among the extreme points are boundedfetow by a known positive
constant, then the contraction rate is improved to a parinate of exponengﬁ. The
quantity log n/m in the rate is non-standard and appears particularly istiege which
reflects the interactions between multiple levels in therdgahierarchy of the admixture
model. This appears to suggest thanay not grow too fast relative tm. We also estab-
lish minimax lower bounds for both settings. In the overfiteetting the obtained lower

bound is(mn)_q%a, whereq = |k/2] A d, unless additional constraints are imposed on
the prior. Moreover, if the distribution for the frequencgctorn is uniform, we obtain a
minimax lower bound of the orden /¢, which does not depend on the amount of data
that provide support for the bottom level in the model hiehgr

The main technical ingredients of our convergence analysidve a number of in-
equalities which establish the relationship between Hawfsdistance (and equivalently,
the minimum matching Euclidean distance) between a giveanopaopulation polytopes
G, G, and several divergences (e.g., Kullback-Leibler divecgeor total variational dis-
tance) between the induced densities ofthex n data points. These bounds are derived
via elementary arguments in convex geometry [Schneide€¥3]19The general posterior
contraction proof strategy consists of an existence-ststargument, which is turned into
a convergence theorem in a standard way [Ghosal et al.| 2@¥jause we work in the
Hausdorff metric on the space of population polytopes (goegd to the Hellinger metric
on the space of data densities), we are forced to deal witicaovex subsets in the space



of convex polytopes. As a result, the power of the tests anéralbed in terms of the so-
call Hellinger informationof the Hausdorff metric for a given subset of polytopes, \whic
appears in both the exponent and the constant of the powedbdndeed, the Hellinger
information is a fundamental quantity running through thalgsis, which ties together the
amount of datan andn — key quantities that are associated with different levelthie
model hierarchy.

As mentioned earlier the existing works on admixture moatelkide the recent papers
by Arora et all[Arora et al., 2012] and Anandkumar et al [Anaimdar et al., 2012]. Both
sets of authors analyzed specific learning algorithms farwering the population structure
by taking the viewpoint of matrix factorization. They botlork on the setting where the
number of extreme pointsis known, andk < d. Arora et al Arora et al/[2012] addition-
ally required interesting but very special conditions om hiature of the extreme points, for
which a polynomial time learning algorithm exists, and bkshed an estimation error rate
for the algorithm. Anandkumar etal Anandkumar etlal. [20d@posed a novel moment-
based estimation method and obtained a consistency rBsutbntrast, we analyze general
Bayesian estimation without concerning a specific infeeesdgorithm. (This goes without
saying that under general conditions the posterior combra@ntails convergence of pro-
cedures such as the maximum likelihood estimation methdtie posterior contraction
rates and minimax results obtained in this paper appear Hesvposterior asymptotics and
convex geometric techniques developed here are quitediftom the existing works.

The remainder of the paper is organized as follows. The madlthe statement of
main results are described in Sectidn 2. Sedtion 3 desctiilgebasic geometric assump-
tions and their consequences. A general theorem for postesntraction is formulated
in Sectior 4, whose conditions are verified in the subsegseetions. Section] 5 proves a
contraction result which helps to establish a key lower ldboomthe Hellinger information,
while Sectiori 6 provides a lower bound on the Kullback-Leitieighborhood of the prior
support. Proofs of main theorems and other technical lenam@apresented in Sectioh 7.

Notations. B,(6,r) denotes g-dimensional radiug Euclidean ball centered & G.
denotes the Minkowsky sulfi. := G + Bg11(0,¢€). bd G,extr G, Diam G, aff G, vol, G
denote the boundary, the set of extreme points, the diantbteraffine span, and the
dimensional volume of sefr, respectively. “Extreme points” and “vertices” are inter-
changeable throughout this pap8f(e, G, d3;) denotes the covering number@fin Haus-
dorff metricdy. D(e, G,dy) is the packing number off in Hausdorff metric. Several
divergence measures for probability distributions are legga: K (p, q), h(p,q),V (p, q)
denote the Kullback-Leibler divergence, Hellinger andltaefariational distance between
two densitiesp and ¢ defined with respect to a measure on a common SpAcde; q) =

[ plog(p/q), B*(p,q) = 5 [(/P— ©)* andV(P,Q) = 5 [ |p — ¢|. In addition, we
defineK> = [ pllog(p/q)]?. Several probability distributions are analyzed througttbe
paper: Pg, Pya; Pyxs|c are the distribution of3, the distribution ofp given G, and the
joint distribution ofn and am-sampleSy,, givenG, respectively.; denotes the marginal
density ofSp,,; givenG (by havingn integrated out). The lower-cagg, py|a, Pyxs|G> PG



are the corresponding densities.

2 Statement of main results

Model description. As mentioned in the Introduction, a central object of the itime
model is apopulation polytopeepresented by = conv(81,...,0y), wheref, ..., 0
arek points in thed-dimensional probability simpleA?. k < oo is assumed known. Note
thatG has at mosk vertices (i.e. extreme points) amoflg, . . . , 6.

A random vectorn € G is parameterized byy = 5101 + ..., 80k, Where3 =
(Bi1,...,Bx) € AFlis a random vector distributed according to a distributidg, for
some parametet (both|Pritchard et al.| [2000] and Blei et al. [2003] used thieidhlet
distribution). This induces a probability distributiaf},; whose support is the convex
setG.

For each individuat = 1,...,m, letn;, € A? be an independent random vector dis-
tributed by, . The observed data associated w‘itlsfn] = (Xj;)j—, are assumed to be
i.i.d. draws from the multinomial distribution Myly,) specified byn, := (mi0, .- ., %id)-
That is, X;; € {0,...,d} such thatP(X;; = l|n;) = n; forl = 0,...,d. The joint dis-
tribution of n andSy,,; (without using the superscriptfor indexing a specific individual) is
denoted by, , s/ and its density,,, 5. The marginal distribution af,,; and its density
are denoted by andpg, respectively.

Admixture models are customarily introduced in an equivialeay as follows |[Blei et all.,

2003, Pritchard et al., 2000]: For eack: 1,...,m, draw an independent random variable
B e AFlasg ~ Pgy,. Giveni andg, for j = 1,...,n, draw Z;;|3 i Mult(3). Z;;
takes values if1, ..., k}. Now, data pointX;; is randomly generated by;;|Z;; = 1,6 ~

Mult(6;). This yields the same joint distribution 6% = (Xi;)}-, as the one described
earlier. The use of latent variables; is amenable to tLe development of computational al-
gorithms for inference. However, this representation $earsignificance within the scope
of this work.

Asymptotic setting and metrics on population polytopes. Assume that a data sééj]b] =

(S[in})?;l of sizem x n is generated according an admixture model given by a “trog- p
ulation polytopeGy = conv (07, ..., 05). Under the Bayesian estimation framewatkis
random and endowed with a prior distributibh The main question to be addressed in this
paper is the contraction behavior of the posterior distidinuH(G|S[[$]), as the number of
data pointsn x n goes to infinity.

It is noted that we do not always assume that the number afreetpoints of the popu-
lation polytopeG) is k. We work in a general overfitted setting whérenly serves as the
upper bound of the true number of extreme points for the mewé model parameteriza-
tion. The special case in which the number of extreme poihts,as known a priori will
also be considered.



Let extr G denote the set of extreme points of a given polytépeG* is the set of
population polytopes im\? such that extr G| < k. Let G* = Us<x<oG* be the set of
population polytopes that have finite number of extremetgamA?. A natural metric on
G* is the following “minimum-matching” Euclidean distance:

dpm(G,G') = max min || —€||V max min |6 —6|.
Ocextr G @' cextr G/ 0’ cextr G’ O€extr G

A more common metric is the Hausdorff metric:

dy(G,G") = min{e > 0|G C GL;G' C G} = maxd(0,G’) V max d(0',G).
0cG 0'cG’

Here,G. = G + Bgy1(0,¢) := {0 +¢|0 € G,e € R¥ |e| < 1}, andd(0,G") =
inf{||@ — 0'||,0’ € G'}. Observe thatl; depends on the boundary structure of sets, while
dnq depends on only extreme points. In genetial; dominatesdy, but under additional
mild assumptions the two metrics are equivalent (see Lelnjma 1

We introduce a notion of regularity for a family probabilitistributions defined on
convex polytopessy € G*. This notion is concerned with the behavior near the boyndar
of the support of distribution#’, ;. We say a family of distributiong P, |G € Gk} is
a-regular if for anyG € G¥ and anyn, € bd G,

Eoia(lln —mnoll <€) Z € vol,(G' N Bayi(ny, €))-

wherep is the number of dimensions of the affine spaffe’z that spang.

Assumptions.

(SO) Geometric properties (A1) and (A2) listed in Seclibn&satisfied uniformly for all
G in the support of the priofI.

(S1) The prior support for each 6f, ..., 8, is bounded away from the boundary Af.
Thatis, if0; = (6,0, ...,0;q) thenmin;_  46;; > coforallj =1,... k.

(S2) Eachg; has a Lesbegue density function on its support that is baliaday from O.

(S3) B is distributed (a priori) according to a symmetric probijpitiistribution P on
AR

(S4) Pg induces a family of distribution$ P, |G € G*} that isa-regular.

Theorem 1. Fix Gy € G*. Letp = (k — 1) A d. Under Assumptions (S0-S4) of the
admixture model, we have:

H(dp(Go, G) = G alS(y)) = 0 @)



in Pg,-probability as bothn andn tend to infinity. Here,

Cilogm y Cylogn y Czlogn e

5m,n = )

m n m
for some positive constants;, Cs, Cs that are independent ofi andn. The same state-
ment holds for the Hausdorff metrik, .

Remarks. (i) The geometric assumptions (S0) and their consequemegsesented in the
next section. (S0)(S1) and (S2) are very mild assumptices abserved in practice. (S4) is
a standard assumption that holds for a range,athenPg,, is a Dirichlet distribution (see
Lemma[6), but there may be other choices. The assumptiorBntii@t Pz is symmetric
is relatively strong, but it has been commonly used in pcacte.g., symmetric Dirichlet
distributions, including the uniform distribution). It mae difficult to try to relax this
assumption if one insists on using Hausdorff metric, seedhmark following the statement
of Lemmal9.

(i) In practice Pg may be further parameterized &3, where~ is endowed with
a prior distribution. Then, it would be of interest to alsadst the posterior contraction
behavior fory. In this paper we have opted to focus only on convergencevimhaf the
population polytope to simplify the exposition and the tesu

(i) The appearance of botiw—! andn~! in the contraction rate suggests that if either
m orn is small, the rate would suffer even if the total amount ofdatx n increases. What
is quite interesting is the appearancd@fn/m, which suggests that may not grow too
fast compared tan. This can be explained by the observation that ascreases, the space
of the data vectorsS,, increases in dimensions. Consequentially, the prior suppss
“thinner” in probability mass, which in turn affects the pasor contraction rate. From a
hierarchical modeling viewpoint, this provides a cautigni@le about balancing between
sample sizes provided to different levels in the model hagma This issue has not been
widely discussed in the hierarchical modeling literatura itheoretical manner, to the best
of our knowledge.

(iv) The exponentm appears quite weak. The following theorem shows that it is
possible to achieve a parametric rate if additional coitggare imposed either on the true
Gy, or the priorII:

Theorem 2. Fix Gy € G*. Assume (S0-S4), and either one of the following two comiti
hold:

(@) |extr Go| =k, or

(b) There is a known constang > 0 such that the pairwise distances of the extreme
points of allG in the support of the prior (includingr,), are bounded from below by
ro-.



Then, the posterior contraction given in E@l) holds with

1
[ Crlogm v Cslogn y Cslogn | 2+

5m,n = ’

m n m

for some positive constan(s;, Cs, C5 that are independent of. andn. The same state-
ment holds for the Hausdorff metrif; .

The next result shows that the nonparametrics-like ratesrad in Theorerhl1 may be
not too far off from a minimax optimal rate. In the followinjgorem,n is not parameter-
ized by3 and@,’s as in the admixture model. Instead, we shall simply rep&gsumptions
(S3) and (S4) or’g, by either one of the following assumptions 8)¢:

(S5) For any pair op-dimensional polytope&’ C G that satisfy property Al,

V(Pyic: Pyier) S d(G,G')*vol, G\ G

(S5) For anyp-dimensional polytopé-, P, ¢ is the uniform distribution o6

Since a parameterization fey is not needed, the overall model can be simplified as
follows: Given population polytop&' € A<, for eachi = 1,...,m, drawn, i niG- For

. i n iid
eachj =1,...,n, drawS},, = (Xi)7—1 ~ Mult(n;).

Theorem 3. (a) Letq = |k/2] A d. Under Assumption (S5), we have

A 1\ e
inf sup Pg,dy(Go, G) Z(—) .

G Goegk mn

m

The infimum is taken over all estimatofs = G(S[[n}
[m]

[n] *
(b) Letq = |k/2] A d. Under Assumption (S5’), we have

}) of G, on the basis of the
m X n-data setS

1
~ 1\a
inf sup Peyn(Go6) 2 ()
G Goegk m

(c) Assume (S5’), and that either condition (a) or (b) of Thee®2 holds, then

. 1\ e
inf sup Pg,dy(Go, G) Z(—) .

G Gy mn

Furthermore, if (S5) is replaced by (S5’), the lower bounddieesl /m.

21t is straightforward to show that (S5) entails (S5) fer= 0, by invoking LemmalR (b).

8



Remarks. (i) There remain some gaps between the posterior contracdi®s in Theo-
rem[1 and Theorem 2 and the minimax lower bounds in Thebterap&celly in the rate
exponent (by a factor of 2 or 4 if we allom = n). This may be partly attributable to the
slightly enlarged models considered in Theofém 3, due todlaged parameterization. We
do not know if the gaps are also due to our proof techniquetheonature of the Bayesian
estimation in the studied models.

(i) The nonparametrics-like lower bounds in part (a) angifbthe overfitted setting
are somewhat surprising evenhg is known exactly (e.g.Pg is uniform distribution). In
practice, we are more likely to be in the overfitted settirgntknowing the extract number
of extreme points. Thus, it is important to impose a lowemabin the prior on the pairwise
distances between the extreme points of the populatiortqusy

(i) The results in part (b) and (c) under assumption (SEsent an interesting scenario
in which the obtained lower bounds do not dependpmwhich determines the amount of
data at the bottom level in the model hierarchy.

(iv) It is worth mentioning that the exponent for in the lower boundsg1 /mmn)*/(4+)
of part (a) (wherk > 2d) and(1/m)"/? of part (b) (wherk > 2d and (S5’) holds) appear
compatible to a general minimax optimal rédteg m/m)'/(@+) for estimating the sup-
port of the density functiop,, ;, assuming that an iich-sample ofn is directly observed
[Tsybakov, 1997, Singh etlal., 2009]. A word of caution abamatking this comparison is
that while the latter problem is easier due to the direct ndadi®ns ofr), the density support
for n is not required to be convex as is the case with admixture teode

3 Geometric assumptions and basic lemmas

In this section we discuss the geometric assumptions @etlin the main theorems, and
describe their consequences using elementary argumecsvex geometry of Euclidean
spaces. These results relate Hausdorff metric, the minimatching metric, and the vol-
ume of the set-theoretic difference of polytopes. Thessiogiships prove crucial in obtain-
ing explicit posterior contraction rates. Here, we stateploperties and prove the results
for p-dimensional polytopes and convex bodies of pointAfn for a givenp < d. (Convex
bodies are bounded convex sets that may have an unbounddzbnofmextreme points.
Within this section, the detail of the ambient space is évaht. For instanced? may be
replaced byR%*! or a higher dimensional Euclidean space).

Property A1l. (Property of thick body): For some R > 0, 8, € A¢, G contains the
spherical ballB, (6., r) and is contained i3, (6., R).

Property A2. (Property of non-obstute corners): For some smal 0, the angle be-
tween every pair of adjacent edges(ofs less thanr — §.



Lemma 1. (a) dy(G,G’) < dm(G,G).
(b) If the two polytopesr, G’ satisfy property A2, thediy(G,G") < Cody(G,G"), for
some positive constant; > 0 depending only og, p.

Proof. (a) LetG = conv (81, ...,0;) andG’ = conv(0",...,0},). This part of the lemma
is immediate from the definition by noting that for anye G, d(x,G’) < min; ||z — 67,
while the maximum ofi(z, G’) is attained at some extreme point@f

(b) Letdy(G,G") = € for some smale > 0. Take an extreme point @, say6;.
Due to A2, there is a small constaiit> 0 depending only om, p, such that there is a ray
emanating fron®; that intersects witlis and the angles formed by the ray and all (exposed)
edges incident t6, are bounded from above hy/2 —¢'. Letx be the intersection between
the ray andB, (61, ¢).

Let H be ap — 1-dimensional hyperplane iR? that touchesB,(0:,¢) atz. Define
C(z), resp. C¢(x), to be thep-dimensional caps obtained by the intersection betw&en
resp. G, with the half-space which contaifls and which is supported bif. For anyx’
that lies in the intersection df and a line segmeni@, ;], whereé; is another vertex, the
line segmentz, 2’| € H and|jz — /|| < ecotd’. Suppose that the ray emanating from
x througha' intersects wittbd G, atz”. Then, ||z’ — 2| < ¢/sind’, which implies that
|z — 2”|] < O(e). This entails thaDiam Cc(z) < O(e).

Now, dy(G,G’) = ¢ implies thatG’ N B,,(01,¢) # 0. There is an extreme point of
G’ in the half-space which containg(6;,¢) and is supported by/. But G’ C G, so
there is an extreme point &' in C(x). Hence, there i§; € G’ such that|@); — 6] <
Diam(C.(z)) < O(e). Repeat this argument for all other extreme point&'db conclude
thatdy (G, G') < O(e). O

Lemma 2. There are positive constanfs; and c¢; depending only om, R, p such that for
any twop-dimensional convex bodi€s, G’ satisfying property Al:

(@) vol, G A G' > c1dy(G, G')P.
(b) vol, G A G' < Chdy(G, G").

Both bounds in this lemma are probably well-known in the lfmi& of convex geom-
etry. For instance, part (b) is similar to (but not precistig same as) Lemma 2.3.6.
from |Schneider| [1993]. We include a proof below due to theeabs of a more direct
reference.

Proof. (a) Letdy(G,G') = e. There exists either a point € bd G such thatG’' N
B,(z,e/2) = 0, or a pointz’ € bd G’ such thatG N By(z,€¢/2) = 0. Without loss of
generality, assume the former. Thusl, G AG' > vol, B,(x,e/2)NG. Consider the con-
vex cone emanating from that circumscribes thg-dimensional spherical balB, (6., )
(whose existence is given by Condition Al). Singe— 6.|| < R, the angle between
the line segmeniz, 6.] and the cone’s rays is bounded from belowshyy > r/R. So,
vol, By(z,€/2) NG Z €P.

10



(b) Letdy(G,G") = e. ThenG' C G. andG C G.. Take any point: € bd G, let 2’
be the intersection betweénl G, and the ray emanating froé. and passing through.
Let H; be ap — 1 dimensional supporting hyperplane fGratx. There is also a supporting
hyperplaneH; of G’ that is parallel toH; and of at most distance away fron#;. Since
|6. — z|| < R, while the distance fron®. to H; is lower bounded by-, the angley
between vectof. — x and the vector normal tf; satisfiesos ¢ > r/R. This implies that
|z’ —z| < €/cosp < eR/r,s0|x’—0.|/||[x—0.|| < 1+eR/r?. In other wordsG.—0, C
(14 €R/r?)(G — 6.). So,vol, G' \ G < vol, G\ G < [(1 + €eR/r*)P — 1]vol, G < e.
We obtain a similar bound farol, G \ G’, which concludes the proof. O

Remark. The exponents in both bounds in Leminha 2 are attainable. dhdieethe lower
bound in part (a), consider a fixed convex polytape For each verte®; € G, consider
point z that lie on edges incident t8; such that|z — 6;|| = e. Let G’ be the convex
hull of all sucha’s and the remaining vertices @. Clearly, dy(G,G’) = O(e), and
vol, G\ G’ < O(€P). Thus, for the collection of convex polytopés constructed in this
way, vol,(G A G') < dy(G,G’)P. The upper bound in part (b) is also tight for a broad
class of convex polytopes, as exemplified by the followingriea.

Lemma 3. Fix a polytopeG (i.e., |extr G| = k < oo). G’ is an arbitrary polytope that
satisfies properties Aland A2, and suppose that either dine ébllowing conditions holds:

(@) |extrG'| =k, or

(b) The pairwise distances between the extreme points’ & bounded away from a
constantrg > 0.

Then, there is a positive constantsuch that
vol, G A G' > cdy (G, G"),
if di (G, @) is sufficiently smallc, depends only ot in case (a) and7, ¢ in case (b).

Proof. We provide a proof for case (a). L6t= conv(61,...,0;) andG’ = conv (6, ...,0}).
Sinced is fixed, bothG andG’ satisfies A2and Al(for some fixed., radii r, R such that
0 < r < R). Letdy(G,G") = e for a smalle > 0. Due to property A2and Lemnia 1 (b)
for each vertex of7, say@;, there is a vertice ofy, say#);, such tha®; € B,(6;, Coe)
for some constant’, > 1. Moreover, there is at least one vertice(@f say8,, for which
165 — 01| > .

There are only three possible general positiongforelatively toG. Either

() 6, € G, or
(i) ), €20, -G, or

(iii)y @) lies in a cone formed by all half-spaces supported bysthel dimensional faces
adjacent t@@,. Among these there is at least one half-space that contgiasd one
that does not contai&y.
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If (i) is true, by property A1, there is at least one f&e 60, such that the distance fro@j

to the hyperplane that provides support fois bounded from below byr/R. Let B C S

be a homothetic transformation Sfwith respect to cented; that mapsr € Stoaz’ € B
such that|@, — 2/||/||61 — z|| = T/T}éfc (constant 2 in the denominator can be replaced
by any other constant greater t an 1). It is simple to vetist for sufficiently smalk,

B NG = (. Moreover,vol,_; B is a multiple ofvol,,_; S (independent ot), so it is
bounded from below by a constant. l@te ap-pyramid which has ape®| and base3. It
follows thatrelint @ N relint G’ = (), which implies thatelint @ C G \ G’. (relint stands

for the relative interior of a set). Henceyl, G \ G’ > vol, Q > %er/R volp—1 B 2 €.

If (ii) is true, the same argument can be applied to show thataan construct g-
pyramid contained iz’ \ G such that whose volume is bounded from below by a multiple
of e. If (iii) is true, a similar argument continues to apply, g may have eitherol, G'\ G
orvol, G\ G’ Z ¢, depending on the relative distanceffto the hyperplanes that provide
the support for the — 1 dimensional faces adjacent &g. In particular, if there is a face
(supported by hyperplan®) such that the distance froé to H is Q(¢), but the half-space
supported byH that contain®} but does not contaiy, thenvol, G’ \ G 2 e. If, on the
other hand, the associated half-space does co@taihenvol, G \ G’ 2 e.

The proof for case (b) is similar and is omitted. O

4 A general posterior contraction theorem

A key ingredient in the general analysis of convergence sfgrwor distributions is through
establishing the existence of tests for subsets of parasnefeinterest. A testp,, ,, is

a measurable indicator function of the x n—sampIeS[Zib] = (8[174,...,8[71’;]) from an
admixture model. For a fixed pair of convex polytogds, G1 € G, whereg is a given
subset ofA?, consider tests for discriminating, against a closed Hausdorff ball centered
atG;. Define the Hausdorff ball as:

By(Gr,r) :={G € A" : dy(G1,G) <1}

Definition 1. Fix Gy € G*. G is a subset of*. For a fixedn, the sample size cﬂ‘[n], define
the Hellinger information otly; metric for setG as a real-valued function on the real line
Chn(G,) i R - R:

Cin(G,1) = inf R (pa,,pa)- 2
en (G, 1) S L (PG, Pa) 2)

The following two lemmas on the existence of tests highlidjet fundamental role of
the Hellinger information ofl;; metric for a given set. Both lemmas require the following
condition:

Condition C. G is a subset of7*. All G € G are bounded away from the boundary
from A%, That is, there is a constan§ > 0 such thatmin;—g . qm > co for all n =
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(no,...,mq) € G. Moreover, allG € G satisfy geometric A2, so that Lemrha 1 (b) holds
for some constant’,.

Lemma 4. Suppose thag satisfies Condition C. Fix a pair ¢iGy, G1) € (G* x G) and
letr = dy(Go, G1). Then, there exist tes{g,,, , } that have the following properties:

PGO Pm,n < DeXp[_ka,n(gv T)] (3)

sup Po (1= omp) < exp[—-mCin(G,7)). (4)
GEGNBy (G1,r/2)

Here D = D<%’}f”),g N BH(Gl,r/2),dH> denotes a packing number, i.e., the

maximal number of elements éhn By (G1,r/2) that are mutually separated by at least
coCr.n(G,7)/(4nCyh) in Hausdorff distance.

Next, the existence of tests can be shown for discriminatinggainst the complement
of a closed Hausdorff ball:

Lemma 5. Suppose thag satisfies condition C. Fixd, € G*. Suppose that for some
non-increasing functio (¢), somee,,, , > 0 and every > e, ,,

éupg D(COCk:,n(g7 E)/(4n00)7 gn BH(GD 6/2)7 d?‘l)
1€

xD(€/2,G N By(Go, 2€) \ Bw (Go,€), dy) < D(e). (5)

Then, for every > ¢, ,, and anyty € N, there exist testg,, ,, (depending or > 0) such
that

[1/€]
D(e) Y exp[-mCyn(G,te)/8]  (6)
t=to

sup Pe (1 —¢mn) < exp[=mCy,(G,toe)/8]. 7
GeG:dy (Go,G)>toe

IN

PGO Pm,n

Remarks. (i) We note the appearance of two packing numbers in the uppend for
the test power. The first quantity is the packing number ofttive Hausdorff layer, i.e.,
the setG N By (Go, 2¢) \ By (Go,€). This is similar to a quantity that arises the analysis
of|Ghosal et al.[[2000]. The second quantity is the packingler for the small ball, i.e.,

G N By(G1,¢/2) in terms of smaller balls in Hausdorff metric. This extrameappears to
be intrinsic to the analysis of the latent polytofez G, as opposed to the data density,
and is attributed to the non-convexity of the Hausdorff alhen restricted to a subsgt
(for instance, whe = G¥). See the proof of Lemnid 4 for more details. (i) Note also the
roles of the Hellinger information function: it appears las exponent in the powers of the
tests, but it also provides the radius for the smaller baligchvdefine the second packing
number. This feature was also observed in the posterior pteyits using Wasserstein
metric [Nguyven, 2012].
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The two aforementioned lemmas form the core argument fabéshing the following
general theorem for posterior contraction of latent miximgasures in the admixture model
for discrete data. Define the Kullback-Leibler neighborhad G, under the admixture
model and the prior distributioll on population polytopé& as:

Bk (Go,0) ={G € G* : K(pg,,pa) < 6; K2(pcy, pa) < 0} (8)
Theorem 4. LetG € G* for somek < oo. Assume the following:

(a) I is a prior distribution onG* such that the support of the prior is a subget- G*
which satisfies condition C.

(b) There is a sequence of subsgts C G*.

(c) There is a sequenas, ,, — 0 such thatmefnm is bounded away from O or tending
to infinity, and a sequenckf,,, such that

IOgD(€/27 Gm N BH(G0> 26) \ BH(G07 6)7 d’H) +
sSup D(COCk,n(gﬂ”w E)/(4n00)7 Gm N BH(le 6/2)7 d?‘l) < megn,n

G1€Gm
forall € > €, o
0O \Gw) o

H(BK(G(b Em,n)) o O(GXp( 2m6m,n))7 (10)

H(Gm N By(Go, 2j€mn) \ Bu(Go, jémn)) .
: : <
H(BK(Em,n)) — exp[mck,n(gm>]€m,n)/16]
forall j > M,,, (1))
exp(2mefn7n) Z exp[—mCl 1, (Gm, j€mn)/16] — 0. (12)
J2Mm

ThenII(G : dy(Go, G) > Mmem,n|5[[g}b}) — 0in Pg,-probability asm andn — oo.

The proof of this theorem follows the method of Ghosal, Grarsthvan der Vaart [Ghosal et al.,
2000], and is deferred to the Appendix. The remainder of #y@epis devoted to verify-
ing the conditions of this theorem so it can be applied. Thasw®litions hinge on our
having established a lower bound for the Hellinger infoiiprafunction Cy, ,,(Gy,, -) (via
Theoreni5), and a lower bound for the prior probability defioae Kullback-Leibler balls
Bk (Gy,-) (via Theoren B). Both types of results are obtained by utijizhe convex
geometry lemmas described in the previous section.

5 Contraction properties

The following contraction result guarantees that as tha dansities get closer, so do the
population polytopes. This gives a lower bound for the ldghir information defined by
Eq. (2), since the Hellinger distanéecan be lower bounded by the variational distafice
via inequalityh > V.
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Theorem 5. (a) LetG, G’ be two convex bodies in¢. G is a p-dimensional body con-
taining By.1(0., ) N G, while G’ is p’-dimensional body containing,. (6., r) N G’ for
somep,p’ < d,r > 0,0, € A Inaddition, assume that both,  andpy, - are a-regular
densities orG and G, respectively. Then, there is a constapt> 0 independent of7, G’
such that

V(pe,per) > crdy (G, G PVPITY —6(d + 1) exp [ - dy (G, fo] '

n
8(d+1)

(b) Assume further tha® is fixed convex polytop&;’ an arbitrary polytopep’ = p,
and that either| extr G’| = | extr G| or the pairwise distances of extreme points#fis
bounded from below by a constant > 0. Then, there are constants, C5 > 0 depending
only onG andrg such that

V(pesper) = cadn(G, G0 — 6(d + 1) exp [ an (G, G’)?] .

"
Cs(d+1)

Proof. (a) Given a data vecta$j,) = (X1,...,Xy,), definen(S) € A? such that the-

element off)(S) is 1 > j—11(X; = i) for eachi = 0,...,d. Inthe following we simply
usen to ease the notations. By the definition of the variationsiatice,
V(pa,per) = SUp |Fa(n) € A) — For () € A, (13)

where the supremum is taken over all measurable subsgt8. of
Fix a constant > 0. By Hoeffding’s inequality and the union bound, under thadie
tional distributionPS[n] I

Py inl max [l =] > €) < 2(d+ 1) exp(~2n¢?)

i=0,...

with probability one (ag is random). It follows that

Posic( =nll 2 €) < Poesio( max [y —m| = e(d+ 1))

< 2(d+1)exp[—2ne?/(d + 1)].

The same bound holds undBy,, 5. Now, define evend = {||7 — || < ¢}. Take any
(measurable) set ¢ A¢,

|Pe() € A) — Per (1) € A)|
= |Pyxsic(il € 4 B) + Pyxsia(i € A; BY)
—Pyysicr(fl € A; B) — Pyysior(f € A; BY)
|Pyxsic(f € A; B) — Pyysier (7 € A; B)| — 4(d + 1) exp[—2ne®/(d + 1)](14)

v

By+1(0,¢€)), which is full-dimensional { + 1) eventhoughG may not be. By triangular

Let e = dy(G,G')/4. For anye < ¢, recall the outer-parallel setG. = (G +

15



inequality, dy (Ge, GL) > dy(G,G")/2. We shall argue that for any < ¢, there is a
constantc; > 0 independent of7, G’, ¢ ande; such that either one of the two scenarios
holds:

(i) Thereisasetl* C G\ G’ such thatd} N G. = 0 andvol,(A*) > ¢;€), or
(i) Thereisase!* C G'\ G such thatd? N G, = () andvol, (A*) > cle‘f/.

Indeed, observe that either one of the following two ineifjeal holds:dy (G\ G5, G') >
dy(G,G") /4 or dy(G' \ Gse,G) > dy(G,G")/4. If the former inequality holds, let
A* = G\ G%.. Then,A* ¢ G\ G’ and A N G. = (. Moreover, by Lemmal2 (a),
vol,(A*) > ¢1€}, for some constant; > 0 independent of, e;, G, G’, so A* satisfies (i).
Combined with thex-regularity ofP,,ﬂG, we haveP,,7|G(A*) > c1ePT* for some constant
c1 > 0. If the latter inequality holds, the same argument appliedddining A* = G’ \ G5,
so that (ii) holds.

Suppose that (i) holds for the choséii. This means thab,, s (7 € Af; B) <
Pycr(n € A5.) = 0, sinceAs- N G’ = ), which is a consequence dff N G, = (. In
addition,

Pyxsia(n € Ag; B) Pysic(n € A*;B)

Ppia(A*) = Pyxsic(BY)
P,”G(A*) —2(d+1) exp(—2n62/(d +1))
1l —2(d 4 1) exp(—2ne?/(d + 1)),

AVAR VARV

v

for some constant; > 0. Hence, by Eq[(A4)Pq(7) € A¥) — Pg/(fy € A¥)| > c18T —
6(d + 1) exp(—2ne?). Sete = ¢;, the conclusion then follows by invoking E§.{13). The
scenario of (ii) proceeds in the same way.

(b) Under the condition that the pairwise distances of exér@oints ofG’ are bounded
from below byry > 0, the proof is very similar to part (a), by involking Lemina 3ndér the
condition that extr G| = k, the proof is also similar, but it requires a suitable modifizn
for the existence of sei*. For any smalk, let GE be the minimum-volume homethetic
transformation of~, with respect to centet,., such thati, containsG,. SinceB,(0.,r) C
G C By(8., R) for R = 1, itis simple to see thaty, (G, G.) < eR/r = ¢/r.

Sete; = dy (G, G')r /4. We shall argue that for any< ¢, there is a constant > 0
independent of, e ande; such that either one of the following two scenarios hold:

(i) Thereisasetd* C G\ G’ such thatd} N G, = () andvol,(A*) > ceeq, OF
(iv) Thereisasetd* C G'\ G such thatd! N G, = 0 andvol,(A*) > cae;.

Indeed, note that either one of the following two inequeditholds:dy (G \ G's., G') >
dy(G,G") /4 or du(G'\ G, G) > dyy (G, G") /4. If the former inequality holds, let* =
G\G'3.. Then,A* C G\G' andA*NG’, = . Observe that botty andG’;. have the same
number of extreme points by the construction. Moreo¥ers fixed so that all geometric
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properties A2, Alare satisfied for botk and G5, for sufficiently smalldy (G,G"). By
Lemma[3,vol,(A*) > cqe;. Hence, (iii) holds. If the latter inequality holds, the sam
argument applies by defining* = G’ \ Gs. so that (iv) holds.

Now the proof of the theorem proceeds in the same manner astife).

6 Concentration properties of the prior support

In this section we study properties of the support of thergiobabilities as specified by
the admixture model, including bounds for the KullbackHler balls.

a-regularity. Let 3 be a random variable taking values &f~! that has a densityg
(with respect to thé — 1-dimensional Hausdorff measure Bf). Define random variable
n = 1601 + ... + B0k, which takes values i = conv(01,...,60x). Writen = LS,
whereL = [0 ...0]isa(d+1) xk matrix. Ifk < d+1, 04,..., 60 are generally linearly
independent, in which case matrlixhas rankk — 1. By the change of variable formula
[Evans and Gariepy, 1992] (Chapter B) induces a distributior,; on G C A4, which
admits the following density with respect to the- 1 dimensional Hausdorff measure on
A%

pn(n|G) = pa(L™"(m))J(L)™".

Here J(L) denotes the Jacobian of the linear map. On the other hahkd>ifd + 1, then
L is generallyd-ranked. The induced distribution fer admits the following density with
respect to the-dimensional Hausdorff measure BA+!:

panlG) = [ ps(8)I()H a8
an

A common choice forPg is the Dirichlet distribution, as adopted by Pritchard et al
[2000], Blei et al. [2003]: given parametere RX, for any A ¢ Ak~1

Ps(B € Aly) = /H (2 73) Hﬁ7f_17-tk‘1(dﬁ).

(1) 5

Lemma6. Letn = Ele B0, whereg is distributed according to & — 1-dimensional
Dirichlet distribution with parameters; € (0,1] forj =1,... k.

(@) If £ < d+ 1, there is constanty = ¢y(k) > 0, and constants = c¢(v, k,d) > 0
dependent on, k andd such that for any < ¢,

inf mf Poa(ln—n% <€) > ceet L.
GcAadn

(b) If £ > d + 1, the statement holds with a lower bouaﬁdeZ?:l Vi,
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A consequence of this lemma is thatyif < 1 forall j = 1,...,k, k < d+1and
G is k — 1-dimensional, then the induced,; has a Hausdorff density that is bounded
away from 0 on the entire its suppakt®~!, which impliesO-regularity. On the other hand,
if v, < 1forallj, k > d+ 1, andG is d-dimensional, the is at IeastZé‘?:1 v
regularity. Note that the:-regularity condition is concerned with the density bebaviear
the boundary of its support, and thus is weaker than whatasagieed here.

Bounds on KL divergences. Suppose that the population polytopeis endowed with
a prior distribution org*. Under the admixture model specification, this induces tpr
distribution on the space of marginal densitigsof the data vectos,,;. To establish the
concentration properties of the Kullback-Leibler neigtitumd By as induced by the prior
distribution, we need to obtain an upper bound on the KL dieeces for the marginal den-
sities in terms of Hausdorff metric on population polytopEgst, consider a very special
case:

Lemma 7. LetG, G’ € A?be closed convex sets satisfying property Al. Moreoveunass
that

(@) G Cc @, aff G = aff G’ is p-dimensional, fop < d.
(b) Py i (resp. Py ) are uniform distributions ord, (resp.G’).

Then, there is a constaidt; = Cy(r,p) > 0 such thatK (pg, per) < C1dy (G, G') when-
everdy (G, G") is sufficiently small.

Proof. First, we note a well-known fact of KL divergences: the dgesrce between marginal
distributions are bounded from above by the divergence detvjoint distributions:

K(pc,per) < K(Pyxs|a» Pyxsicr)-

Due to conditional independengs, . s = py|c X DS In andp,xsj¢ = Py XD, |n» SO

K(Pyxs|a> Ppxsiar) = K(pyjas Pnjar)- SincePy; and P are assumed to be uniform
distributions onGZ andG’, respectively, and’ C G’, we obtain that

1/vol, G
K(pyjasPyjar) = /log /7pdpnlc-

1/vol, G’
By Lemmd2 (b)Jlog[vol, G’/ vol, G] <log(1l + Cidy(G,G")) < Cidy(G,G") for some
constantCy = C1(r,p) > 0. This completes the proof. O

Remark. The previous lemma requires a particular stringent canditiff G = aff G,

which is usually violated wheh < d + 1. However, the conclusion is worth noting in that
the upper bound does not depend on the samplensfi@ S;,,)). The next lemma removes
this condition and the condition that bath); andp,, - be uniform. As a result the upper
bound obtained is weaker, in the sense that the bound is textns of a Hausdorff distance,
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but in terms of a Wasserstein distance. Moreover, sampéensizow appears as a linear
term in the upper bound, as one would expect.

Let Q(n;,n,) denote a coupling of’(n|G) and P(n|G’), i.e., a joint distribution
on G x G' whose induced marginal distributions gf andn, are equal taP(n|G) and
P(n|G"), respectively. LeQ be the set of all such couplings. The Wasserstein distance
betweerp,, ¢ andp,, - is defined as

Wilpnic: pricr) = inf, [ Iy = mll 4@y, ).

Lemma 8. LetG, G’ ¢ A“ be closed convex subsets such that gang (1o, ...,14) €
G U G satisfiesmin,—q__4m > ¢o for some constanty > 0. Then

n
K(pa,par) < awl(pmcapmc')-
Proof Associating each samplg,, with ad + 1-dimensional vectof(S) € A, where

S); =1 = [) for eachi = 0,...,d. The density ofS;,,; given G (with
] 1 J [n]
respect to the counting measure) takes the form:

Pe(Si) = /  SulmiP(lG) - / exp( Zn logm> 4P(|G).

Due to the convexity of Kullback-Leibler divergence, by Sem inequality, for any
coupling@ € Q:

K(perper) — K( [ p(Sualne) d@n ). [ piSiln,) d@(nl,m))
< / K (p(S|m1), 2(Si11)) dQ (11, m).
It follows that K (pg, per) < infq [ K (Ps,,yjn, : PS;ln,) AQ(M1:12)-
Note thatk (Ps;, n, s Ps;m,) = 22, (K (0(S),12) =K (0(S), m1))ps,,n, » Where

the summation is taken over all realizationspf; € {0,...,d}". For anyn(S) € A,
n, € Gandn, € G,

|K(8),m1) — K(n(S),m)| = IZ’H i1og(m.i/n2,)]
< Zn Jilni = 2.l /co

< Zn D2 = mall /o

Hm — sl /co-

IN
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Here, the first inequality is due the assumption, the secaredtd Cauchy-Schwarz. It
follows thatK(PS[n]ml , Pg[n]m2) < anl — 7’[2H/CQ, SOK(p(;,pgl) < £W1 (pn\G7p"7\G'£

= ¢

Lemma 9. LetG = conv(@1,...,0;) andG’ = conv(6,...,07) (samek). A random
variablen ~ P, is parameterized by = Zj B;n;,» while a random variabley ~ P ¢
is parameterized by, = Zj ﬁ;n;, where3 and 3’ are both distributed according to a
symmetric probability densityg.

(a) Assume that bot&y, G’ satisfy property A2. Then, for sufficiently small(G, G’),
Wiy Pricr) < Cody(G, G") for some constanf, specified by Lemnia 1.

(b) Assume further that assumptions in Leriina 8 hold, fén;, pgr) < %COdH(G, G).

Remark. In order to obtain an upper bound féf(pg, pgr) in terms ofdy (G, G'), the
assumption thatg is symmetric appears essential. Without this assumptios possible
to havedy (G,G') = 0, but K (pg, per) > 0.

Proof. By Lemmall under property A2i\((G,G’) < Cydy(G,G") for some constant
Cy. Letdy(G,G") < e for some smalk > 0. Assume without loss of generality that
|0; — 9;-] < Cpeforall j =1,...,k (otherwise, simply relabel the subscripts Hérs).

Let Q(n,n’) be a coupling ofP,,; and P, s such that unde®), n = Z;‘?:l B;0; and
n = Z;‘?:l ﬁjag, i.e.,n andn’ share thesame3, whereg is a random variable with density
pg- This is a valid coupling, sincgg is assumed to be symmetric.

Under distribution@, Elln — n'| < EX"f_, 8,16, — 6] < CoeE -5, 8; = Coe.

HenceW:( Py q, Ppier) < Coe. Part (b) is an immediate consequence. O

Recall the definition of the Kullback-Leibler neighborhogidten by Eq.[(8). The main
result of this section is the following:

Theorem 6. Under Assumptions (S1) and (S2), for ady in the support of priorl, for
anyd > 0 andn > log(1/4)

II(G € Bk (Gy,d)) > c(5/n)*,
where constant = ¢(cp) depends only ony.

Proof. We shall invoke a bound of Wong and Shen [1995] (Theorem Sherki_ diver-
gence. This bound says thatzifand ¢ are two densities on a common space such that
[p?/q < M, then for some universal constait> 0, as long ai(p, q) < € < ¢, there
holds: K (p, q) = O(e*log(M/e)), andK(p, q) == [ p(log(p/q))? = O(e*[log(M/€)]?),
where the big O constants are universal.

Let Gy = conv(03,...,0%). Consider a random sét € G* represented by: =
conv(@1,...,0;), and the evenf that||6; — 07| < eforall j = 1,...,k. For the pair
of Gy andG, consider a coupling for P, and P, such that anyn,,n,) distributed
by @ is parameterized by, = 5161 + ... 80 andn, = 5107 + ... 507, (that is, under
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the couplingn; andn, share the same vect®). Then, undeQ, E||n; — ns|| < e. This
entails thatV'; (P ¢, Pyic,) < ¢ (We note here that the argument appears similar to the
one from Lemmal9, but we do not need to assumehdie symmetric in this theorem).

If G is randomly distributed according to pridk, under assumption (S2), the probability
of event€ is lower bounded by2(¢*¥). By Lemmal8,h%(pg,,pc) < K(pg,,ra)/2 <
(n/co)W1(Ppias Pyia,) < ne/(2co). Note that the density ratiaz/pa, < (1/co)", which
implies thatzsm p2GO/pG < (1/eg)™. We can apply the upper bound described in the

previous paragraph to obtain:

ne |1 2cq 112
K =0 —|=zlog— log — .
2(PGo, PG) <260 [2 og—— +nlog CO} >

Here, the big O constant is universal. If we set §/n>, then the quantity in the right hand
side of the previous display is bounded ®Y)) as long a9 > 1/e". Combining with the
probability bound2(¢*¢) derived above, we obtain the desired resullt. O

7 Proofs of main theorems and auxiliary lemmas

Proof of Theorem[1 (Overfitted setting).

Proof. The proof proceeds by verifying conditions of Theorem 4. kgt, be a large
multiple of (log m/m)'/? v (logn/m)Y? v (log n/n)/2.

Choose the sequence of subsgts simply asG,, = G*, so thatll(G* \ G,,) = 0.
Condition [10) trivially holds. Turning to the entropy cations, we note that

10gD(6/2, gk N BH(G07 26)7 d'H) < 10gN(6/4, gk N BH(G07 26)7 d'H) = O(l)

By Theorenlb (a), assumption (S4) and the general inequalitly, > V', we have:
Crn(GF,€) = [Pt —6(d+1)e " /8(d+D))2 wherep is defined ap = min(k — 1, d). So
Crn(GF €) 2 2P+a) as long asP+* > 12(d + 1) exp[—ne?/8(d + 1)]. This is satisfied
for anye > en,, > (252 logn/n)'/2. It follows that

log D(coCl.n (G, €)/(4nCyo), G* N By (G, €/2), da)
5 10g N(E2(p+a) /’I’L, gk N BH(Gla 6/2)7 d?‘l)
5 log(nkde—(2p+2a—1)kd) < m€2’
where the last inequality holds sinee> ¢, ,, > (logn/m)"/? v (log'm/m)'/2. Thus, the

entropy condition[(9)) is established.
To verify condition Eq.[(IR), we note that for some constant 0,

exp(2mefn7n) Z exp[=mCh (G, j€mn)/16]
Jj>2Mm

Sexp(2me, ) D expl—em(jemn)? ]
J=Mm

< exp(2me2m’n) exp[—cm(Mmemm)z(erO‘)],
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where the right side of the above display vanishe@\if,,e,, »)’T* is a sufficiently large

pta—1

multiple of ¢,,, ,,. This holds if we choosé/,,, = Me;ﬁ“ for a large constant/.

It remains to verify Eq.[(T1). By Theordmhbg I1(G € B (Go, €mn)) 2 log(emn/n)*d =
kd(log € n — 3logn).

Moreover, I1( By (Go, 2jemn) \ Bu(Go,jeémn)) < (B (Go,2jemn)). Take any
Jj > My, itdy(G,Go) < jem n, then at least one @’'s extreme points is withil® (je, )
distance fromG’s extreme points, by Lemnid 1 (b). By an union bound, and tearap-
tion that the prior densities fdt, . . ., 8, are bounded away from O( By (Go, 2j€mn)) S

~

k2(2j€m.n)?. As the result, the logarithm of the left side of Elq.](11) ipepbounded by

10g[k*(25€m.n) (13 /€m.n)*] < log(k*2%) + dlog j + kdlog(1/epmn) + 3kdlogn
S m(jem,n)2(p+a) S ka,n(gmajem,n)/16
The last inequality of the previous display is due to ThedEefa). The next to the last in-

equality holds because for afiy> My, m(jenn)?Pt®) > me2, , 2 lognVlog(1/emn),
and thatmn(je, )Pt > log j.

Now, we can apply Theoreim 4 to obtain a posterior contractten/,, e, , =< e%ﬁ{’M) =
[loim V lo;;in V; loin]m_ 0

Proof of Theorem[2. The proof proceeds in exactly the same way as in Theblem é&péexc
that part (b) of Theoreml 5 is applied instead of part (a). Adcwly p is replaced byl in
the rate exponent.

Proof of Theorem[3 (Minimax lower bounds). (a) The proof involves the construction
of a pair of polytopes irG* whose set difference has small volume for a given Hausdorff
distance. We consider two separate cases: /)< d and (ii) & > 2d.

If /2 < d, consider &g = |k/2]-simplex G, that is spanned by + 1 vertices in
general positions. Take a vertex @f, say,. ConstructG{, by choppingG off by an
e-cap that is obtained by the convex hull & and ¢ other points which lie on the edges
adjacent td, and of distance from 6,. Clearly,G{, has2q < k vertices, so botlé, and
G} are inG*. We havedy (G, Gjy) < ¢, andvol,(Go \ Gj)) < €9. Due to Assumption (S5),
V(p'r]|Go7pn|G6) S ette,

If & > 2d, consider ad-dimensional polytope&~, which hask — d + 1 vertices in
general positions. Constru€t in the same way as above (by choppifig off by ane-cap
that contains a vertef which has/ adjacent vertices). The6s, has(k—d+1)—1+d = k
vertices. Thus, botl&) andG are inG*. We havedy, (Go, Gj) = ¢, andvoly(Go \ Gj) =<
¢?. Due to Assumption (S5)/ (py|cq» Prjcy) S €77

To combine the two cases, let = min(|k/2],d). We have constructed a pair of
Go, Gy € G* such thatdy (Go, Gp) = €, andV (pygy, Pnicy,) S €7 By Lemmals,
K(pGO7pG6) S nWl(p'r]\GmpMGf)) 5 nv(pmGo?pn\G&) < Cnet*® for some constant
C > 0.
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Applying the method due to Le Cam (cf._[Yu, 1997], Lemma 1),dny estimator7,

- Lo o iml [m]
> _
o Paydn(G,G) 2 e(1 = 5V(pg, Py ))-

Here,p[(g’z] denotes the marginal density of thesampleS .., . .. St ThUS,VZ(p[g(L},p[CT}) <

[ 0
WGy pgy) = 1 =[G, pg 1> = 1= (1= W60, py))™ < 1= (1= Cnettoy™.

The last inequality is due t*(pc,, pa;) < K(pGo: Per,) < Cned™®. Thus,

A 1
> e _ g+a\ymi1/2
GE%?(G&}PGOM(G, G) 2 e(l = S[1 = (1 = Cnet™)™]7%).

Letting e97® = ﬁ the right side of the previous display is bounded from bebgw
e(1—1(1—1/2)1/2).

(b) We employ the same construction@f andGj, as in part (a). Using the argument
used in the proof of Lemni@ K (pg; , pc,) = [ log[vol, Go/ voly Gold Py c, < [log(1+
Ce")Ppig, S €. SO,h2(pGO,pG6) < K(p(;{),pgo) < €%. Then, the proof proceeds as in
part (a).

(c) Let G|, be a polytope such thaextr Gj)| = |extr Go| = k anddy (G, Go) = e.

By Lemma2,vol,(Gy A Gy)) = O(e), wherep = (k — 1) A d. The proof proceeds as in
part (a) to obtain(1/mn)Y 1+ rate for the lower bound under assumption (S5). Under
assumption (S5’), as in part (b), the dependence oan be removed to obtairym rate.

Proof of the existence of tests in LemmEgl4.

Proof. DefineP; = {pc|G € G N By(G1,r/2)}. We note in passing that that this is
generally not a convex set of densities &5]. For instance, ity = G, which is a non-
convex set, thefP; is non-convex. Thus, a straightforward application of dtad results
on existence of tests (cf. [Cam, 1986], Chapter 4) is notiptessConsider a maximat -
packing indy, metric for the seG € GN By (G1,7/2), wherec, is a positive constant to be
determined. Thisyields a setdf = D(c;r, GNBy (G1,7/2),dy) elementssy, ..., Gp €
G N By(Gy,r/2).

Next, we note the following fact: forany=1,..., D, if G € G N By(Gy,r/2) and
dwn(G,Gy) < ¢rr, then by Lemmal9

n ~ n
W (pa.pe,) < K(pa.pg,) < aC'odH(G, Gi) < 500617“
Choose; = :5%Ci.n(G,7), S0 thath® (pe, pg,) < Ckn(G, 7). By definition,h? (pc,, pe,) >
Cn(G, 7). Thus, by triangle inequalityy(pc,, pc) > 5Chn(G,7)Y/2.

For each pair of~, G, there exist test@,(f) of pg, versus the Hellinger baP,(t) :=
{pc|G € G*; h(pa,pa,) < $h(pay,pa,)} such that,

Fea, wﬁz?,n < eXp[_mh2(pGo>pét)/8]v

sup Py (1—wil),) < exp[-mh®(pgy,pe,)/8).
PrePo(t)
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Consider the tesp,,, ,, = maxi<;<p w,(ﬁ)n then

D x exp[—mCj, (G, 7)/8],
exp[—mCyn(G,7)/8].

PGO Pm,n

sup PG (1 - Spm,n)
GeGNBy (G1,r/2)

<
<

The first inequality is due t@,,,, < >°2 w,(fb)n and the second is due to the fact that for
anyG € G N By (Gy,r/2) thereissomeé = 1, ..., D such thatiy (G, Gy) < ¢;r, so that
PG € PQ(t). ]

Proof of the existence of tests in Lemmal>5.

Proof. The proof utilizes a peeling idea of _Ghosal et al. [2000], #rah apply a packing
argument as in the previous proof. For a givea N choose a maximalk /2-packing for
setS; = {G : te < dy(Go, G) < (t+1)e}. This yields a seb; of at mostD(te/2, Sy, dy)
points. Moreover, everg € S; is within distancete/2 of at least one of the points ifi/.

For every such point; € S, there exists a test,, ,, satisfying Egs.[(3) and4), where

is taken to be- = te. Takey,, ,, to be the maximum of all tests attached this way to some
point Gy € S, for somet > t,. Note thatG' € G ¢ A% sot < [1/e]. Then, by union
bound, and the condition th#l(e) is non-increasing,

PGO Pm,n
[1/€]
coCr.n(G, te
<> > D< 0 ch ) gmBH<Gl,te/2>,dH> exp[—mCi.n(G, te) /8]
t=to G1€S5]

€) Z exp[—mCy, (G, te) /8]

t>to

sup Po (1— gn) < sup expl-mCin(G,ue)/8] < expl-mCin(G, toe)/8].
GEUuZtOSu u>to

where the last inequality is due the monotonicity(f,, (G, -). O

Proof of a-regularity of the Dirichlet-induced densities in Lemma [8.
Proof. First, consider the case < d + 1. Forn* € G, write n* = 3761 + ... + [(,0y.
For 3 € A*~! such thatl3; — ;| < ¢/k for all z' =1,....k — 1, we have|n — n*| =

ISF (B = B.0)8il < SF 18— B <2381 18, — BF| < 2e. Here, we used the fact
that|@;]| < 1 for any®; € Ad. Without loss of generality, assume thigt > 1/k. Then,
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foranye < 1/k

Pc(ln —n*ll < 2€) = Pg(18i — il < e/kyi=1,....k—1)

- ) T viml — S Ne—1g d
a Hz F(’YZ) / [0,1];18:—B;|<e/k;i=1,....k—1 le[l ﬁl ( ; ﬁz) ﬁl .. 5]6—1
INODRD) min(y;+€/k,1) - (Y )
—1ag; > i
N Hz F(’YZ) E /n’lax('yi*—g/k; 0) 5 5 H ( ) ( / )

Both the second and the third inequality in the previousldispxploits the fact that since
v < 1,2% 1 > 1foranyz < 1.

Now, consider the case> d+1. Sincen* € conv (1, ...,0;) C A%, by Carathéodory’s
theorempn* is the convex combination a@f-1 or fewer extreme points amoidly's. Without
loss of generality, led,, ..., 04,1 be such points, and writg* = 3761 + ... 37, 60441
Considern = (101 + ... + B0y, Where||3; — BF| < €/k, fori = 1,...,d, while
0<pB;<e/kfori=d+2,...,k. Then,||n — n*|| < 2¢. This implies that

Boia(lln —n*ll < 2€) > Pa(|8: — 57| < 6/’9 i=1. . d+ 1B <efkj>d+1)

min(y}+¢/k,1) e/k
14 T / )
)

i=d+2

L) ﬁ

P fyl) i—1 Y max(vyf —e/k,0
)

(Z Vi
L'(v)

| V

Y

—| =

(E/k;)dJrZZ a2 / H Ny 2 T
i=d+2

i

8 Appendix

Proof of the general posterior contraction in Theoreni 4.

Proof. By a result of Ghosal et al [Ghosal et al., 2000] (Lemma 8.1, p24), for every
e > 0,C > 0 and every probability measuf&, supported on the séy (G, €) defined by
Eq. (8), we have,

1
C?me?’

T Pe(S) . )

This entails that, for a fixed' > 1, there is an eventi,, with Py, -probability at least
1 — (Cmez, )", for which there holds:

/HPG(SE}L])/PGO (8})dI(G) = exp(—2me;, ,)I(Bk (Go, émn))-  (15)
i=1
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Let O, = {G € G* : dy(Go,G) > Mmem,n}, Sn,j = {G € G d’H(GO,G) S
[J€mn, (J + 1)emn)} for eachj > 1. Due to Eql(9), the condition specified by Lemima 5
is satisfied by settind(¢) = exp(me%mn) (constant ire). Thus there exist tests,, ,, for
which Eq. [6) and[{]7) hold. Then,

PgyTI(G € Op|Shys -+ STy)

Poy[pmnIl(G € OulShy -, S+ Piy[(1 = 0mn)IH(G € O|SLy, -, S[Y)]

Py [pmnTU(G € OmSpys- - Sip)] + Paol(A5,)

nlr* n]

IN

+Pg, |(1 = @mn) (G € OnShy, -, SII(Am) |

Applying Lemmab, the firstterm in the preceeding displayasried above b¥c, ¢.,.n <
D(emn) D25 n,, €XP[=mCl (G, jemn) /8] — 0, thanks to Eq.[(12). The second term
in the above display is bounded B¢'me, ,,)~" by the definition ofA,,. SincemeZ, ,
is bounded away from @’ can be chosen arbitrarily large so that the second term can be
made arbitrarily small. It remains to show that third ternthie display also vanishes as
m — oo. We exploit the following expression:

it 0 (S],1) /PGy (St)TL(G
H(G60m|8[1n],...,5ﬁ):foml;£ 176(S]n))/ PG (Sjo T >7
JTLZ P (Sp) /P60 (S}, TG)

and then obtain a lower bound for the denominator by Eql (E®) the nominator, by
Fubini’s theorem:

Fe, /O =) [T a8 e 1G)

=1

= PGO Z/ (1_me,n)HpG(an})/pGo(an])H(G)
> My Smoi i=1
= > [ Rell-ena@)
G2 My 7 Smog
< Y (Smy) exp[—mChn(Gm. Jémn) /8], (16)
j=Mm

where the last inequality is due to EfQl (7). In addition, b@)(1

Fe, /O o 0= e T et /ra (S,

i=1
= / P (1 — omn)II(G)
Om\gm

I(G*\ Gn) = o(exp(—2me$n,n)H(BK(Go, €mm)))- a7)

IN
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Now, combining bounds (16) and (17) with conditidnl(11), vistain:

Pay(1 = @) TG € O[S}y, -, SI(A)
O(exp(—QmGEn’n)H(BK(GO, €m,n))) + ijMm (S, ;) eXp[_ka,n(gmajem,N)/S]
- exp(—2me$n7n)H(BK(em,n))

< 0(1)+exp(2mezn7n) Z exp[—mCl 1 (Gm, j€m.n)/16]
Jj>Mm

The upper bound in the preceeding display converges to 0 b{12, thereby concluding
the proof.
]
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