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Abstract

Let A be the adjacency matrix of a graph X and suppose U(t) =
exp(itA). We view A as acting on CV (X) and take the standard basis
of this space to be the vectors eu for u in V (X). Physicists say that
we have perfect state transfer from vertex u to v at time τ if there is
a scalar γ such that

U(τ)eu = γev.

(Since U(t) is unitary, ‖γ‖ = 1.) For example, if X is the d-cube and
u and v are at distance d then we have perfect state transfer from
u to v at time π/2. Despite the existence of this nice family, it has
become clear that perfect state transfer is rare. Hence we consider a
relaxation: we say that we have pretty good state transfer from u to
v if there is a complex number γ and, for each positive real ǫ there is
a time t such that

‖U(t)eu − γev‖ < ǫ.

Again we necessarily have |γ| = 1.
In Godsil, Kirkland, Severini and Smith [7] it is shown that we

have have pretty good state transfer between the end vertices of the
path Pn if and only n+1 is a power of two, a prime, or twice a prime.
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(There is perfect state transfer between the end vertices only for P2

and P3.) It is something of a surprise that the occurrence of pretty
good state transfer is characterized by a number-theoretic condition.
In this paper we study double-star graphs, which are trees with two
vertices of degree k+1 and all other vertices with degree one. We prove
that there is never perfect state transfer between the two vertices of
degree k+1, and that there is pretty good state transfer between them
if and only if 4k + 1 is a perfect square.

1 Introduction

Let X be a graph on n vertices with adjacency matrix A and let U(t) denote
the matrix-valued function exp(iAt). We note that U(t) is both symmetric
and unitary, and that it determines what is called a continuous quantum
walk. Work in quantum computing has raised many questions about the
relation between physically interesting properties of U(t) and properties of
the graph X . For recent surveys see [4], [8].

The physical properties of interest to us in this paper are perfect state
transfer and pretty good state transfer. Assume n = |V (X)| and identify
the coordinates of Rn with V (X). If u ∈ V (X), we use eu to denote the
standard basis vector indexed by u. If u and v are distinct vertices of X we
say we have perfect state transfer from u to v at time τ if there is a complex
number γ such that

U(τ)eu = γev.

Since U(t) is unitary, |γ| = 1. The evidence is that perfect state transfer is
uncommon, and we consider a relaxation of it. We say that we have pretty
good state transfer from u to v if there is a complex number γ and, for each
positive real ǫ there is a time t such that

‖U(t)eu − γev‖ < ǫ.

Again we necessarily have |γ| = 1. Pretty good state transfer was introduced
in [4].

There is a considerable literature on perfect state transfer. In a semi-
nal paper on the topic Christandl et al. [3] show that there is perfect state
transfer between the end vertices of the paths P2 and P3, but perfect state
transfer does not occur between the end vertices of any path on four or more
vertices. From [4] we know that, for any integer k, there are only finitely
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many connected graphs with maximum valency at most k on which perfect
state transfer occurs.

Much less is known about pretty good state transfer. In [4] it is shown
that it takes place on P4 and P5. Vinet and Zhedanov [12] have studied pretty
good state transfer on weighted paths with loops Godsil, Kirkman, Severini
and Smith that pretty good state transfer occurs between the end-vertices of
Pn if and only n+ 1 = 2m, or if n+ 1 = p or 2p where p is an odd prime. It
is surprising to see that the existence of pretty good state transfer depends
so delicately on the prime divisors of n+ 1.

In this paper we provide a second class of graphs where pretty good state
transfer occurs if and only if a number theoretic condition holds. Let Sk,k

denote the graph we get by taking two copies of K1,k and joining the two
vertices of degree k by a new edge. We show that there is pretty good state
transfer between the vertices of degree k + 1 in Sk,k if and only if 4k + 1 is
not a perfect square. We also show that there is never perfect state transfer
between these two vertices. We conclude the paper with some remarks that
show that if pretty good state transfer does occur on a graph, then, in a
sense, it must occur regularly.

2 Quotients

We introduce a useful tool. A more expansive treatment will be found in [6,
Ch. 9].

Let X be a graph. A partition π of vertex set V (X) with cells

C1, C2, · · · , Cr

is equitable, if the number of neighbors in Cj of any vertex u in Ci is a
constant bij . The directed graph with the r cells of π as its vertices and bij
arcs from the i-th to the j-th cells of π is called the quotient of X over π, and
denoted by X/π. The entries of the adjacency matrix of this quotient graph
are given by A(X/π)i,j = bij . We can symmetrize A(X/π) to B by letting
Bi,j =

√

bijbji. We call the (weighted) graph with adjacency matrix B the
symmetrized quotient graph. In the following we always use B to denote the
symmetrized form of the matrix A(X/π).

If π is a partition of V (X), its characteristic matrix, denoted by P , is
the 01-matrix whose columns are the characteristic vectors of the cells of
π, viewed as subsets of V (X). If we normalize the characteristic matrix
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P such that each column have length one, then we obtain the normalized
characteristic matrix of π, denoted by Q. Note that QTQ = I and QQT is
a block diagonal matrix with diagonal blocks 1

r
Jr, where Jr is the all-ones

matrix of order r× r, and the size of the i-th block is the size of the i-th cell
of π. The vertex u forms a singleton cell of π if and only if QQT eu = eu.

For the sake of convenience, in the following text, we always denote by
{u} the singleton cell {u}.

Since A is symmetric, it has a spectral decomposition

A =
∑

r

θrEr

where θr runs over the distinct eigenvalues θr of A and Er is the matrix that
represents orthogonal projection onto the the eigenspace belonging to θr.

2.1 Lemma. Let π be an equitable partition of X with normalized charac-
teristic matrix Q. Let A be the adjacency matrix of X and let B be the
adjacency matrix of the symmetrized quotient graph. Then the idempotents
in the spectral decomposition of B are the non-zero matrices QTErQ, where
Er runs over the idempotents in the spectral decomposition of A.

Proof. As π is equitable, AQ = QB. Hence AkQ = QBk and so if f(t)
is a polynomial then f(A)Q = Qf(B). There is a polynomial fr such that
fr(A) = Er, and hence

ErQ = Qfr(B).

Then fr(B) = QTErQ is symmetric, we show it is idempotent. We have

(QTErQ)2 = QTErQQTErQ

and since QQT commutes with A, it commutes with Er. Since QTQ = I we
then have

QTErQQTErQ = QTQQTErQ = QTErQ.

It follows that
B = QTAQ =

∑

r

θrQ
TErQ (2.1)

and since
∑

r

QTErQ = QTQ = I

we conclude that (2.1) is the spectral decomposition of B.
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If u and v are singletons in π, the 2 × 2 submatrix of QTEeQ indexed
by {u} and {v} is equal to the 2 × 2 submatrix of Er indexed by u and v.
Since u and v are strongly cospectral if and only if for each idempotent Er,
we have (Er)u,u = (Er)v,v = ±(Er)u,v.

In [1], R. Bachman et el. studied perfect state transfer of quantum walks
on quotient graphs. They showed that the ab-entry of the transition function
exp(iA(G)t) of original graph G is equal to the {a}{b}-entry of the transition
function exp(iA(G/π)t) of the quotient graph with equitable distance parti-
tion with respect to vertices a and b. In fact, their result and their proof hold
for an arbitrary equitable partition with vertices a and b as singleton cells.
(This is because all they need is that QQT commutes with B and QTQ = I,
and these conditions hold for any equitable partition. We state the general
result without proof. For the details, see [1, Theorem 2].

2.2 Lemma. Let X be a graph with an equitable partition π. {a} and {b}
are singleton cells. B is the adjacency matrix of symmetric quotient graph.
Then, for any time t,

(e−itAX )a,b = (e−itB){a},{b}.

Therefore, G has perfect state transfer from a to b at time t if and only if the
symmetrized quotient graph has perfect state transfer from {a} to {b}.

3 Strongly Cospectral Vertices

Let u and v be vertices in X . We say that u and v are cospectral vertices
if the characteristic polynomials φ(X \ u, t) and φ(X \ v, t) are equal. If
θ1, . . . , θm are the distinct eigenvalues of X and the matrices E1, . . . , Em are
the orthogonal projections onto the corresponding eigenspaces we have the
spectral decomposition

A =
∑

r

θrEr.

From [4] we know that u and v are cospectral if and only if (Er)u,u = (Er)v,v,
for all r. Since (Er)u,u = ‖Ereu‖2, we see that u and v are cospectral if and
only if the projections Ereu and Erev have the same length for each r. We
say that u and v are strongly cospectral if, for each r,

Erev = ±Ereu.

5



[9] observed that if there is perfect state transfer from vertices u to v, then
u and v are strongly cospectral. In [4], an argument due to Dave Witte is
presented, which shows that if there is pretty good state transfer from vertex
u to vertex v, then u and v are strongly cospectral. If the eigenvalues of A
are simple then two vertices are strongly cospectral if and only if they are
cospectral.

3.1 Lemma. Vertices u and v are strongly cospectral if and only if for each
idempotent Er, we have (Er)u,u = (Er)v,v = ±(Er)u,v.

Proof. The vertices u and v are cospectral if and only if (Er)u,u = (Er)v,v for
each r. Set y = Ereu and z = Erev. By Cauchy-Schwarz

0 ≤ ‖y‖2‖z‖2 − |yTz|2

and equality holds if and only if {y, z} is linearly dependent. Since

‖y‖2‖z‖2 − |yTz|2 = (Er)u,u(Er)v,v − (Er)
2
u,v.

and since ‖Ereu‖ = ‖Erev‖ when u and v are cospectral, the lemma follows.

We will show that for the symmetric double star graphs Sk,k, the two
central vertices are strongly cospectral.

Now, we will give characterize the strongly cospectral using equitable
partition.

3.2 Lemma. Let X be a graph and let π be an equitable partition of X in
which {u} and {v} are singleton cells. Then u and v are strongly cospectral
in X if and only if {u} and {v} are strongly cospectral in the symmetrized
quotient graph X/π.

Proof. Let Q be the normalized characteristic matrix of π and let B be
the symmetrized quotient matrix. If Er is an idempotent in the spectral
decomposition of A, then Er = pr(A) for some polynomial p and so

ErQ = pr(A)Q = Qpr(B).

Therefore pr(B) = QTErQ and

AErQ = θrErQ = θrAQpr(B) = θrQBpr(B),
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from which it follows that the non-zero matrices QTErQ are the idempotents
in the spectral decomposition of B. If a, b ∈ {u, v}, then since {u} and {v}
are singleton cells of π, we have

(QTErQ)a,b = (Er)a,b.

We conclude that u and v are strongly cospectral in X if an only if they are
strongly cospectral in X/π.

3.3 Lemma. ([4]) If X admits perfect transfer from u to v, then Eθeu =
± Eθev for all θ, and u and v are cospectral.

4 Double Star Graphs

Let Sk and Sℓ be the two star graphs with k and ℓ edges respectively. Then
the double star graph, which we denote by S(k, ℓ), is the graph obtained by
joining the two vertices with degrees k and ℓ of Sk and Sℓ, respectively. We
call a double star graph a symmetric double-star if k = ℓ.

In this section, we will show that the symmetric double star graphs do
not have perfect state transfer. Furthermore, we will show that these graphs
have pretty good state transfer between two central vertices if and only if
4k + 1 is not a perfect square.

First, we will give some known results which we will use later. [4] For
the first, note that if G is a group of automorphisms of the graph x, then Gx

denotes the subgroup consisting of the automorphisms that fix x.

4.1 Lemma. Let G be the automorphism group of X . If we have a perfect
state transfer from vertex u to vertex v, then Gu = Gv, where Gu is the
automorphism group which fixed vertex u.

Denoted by φ(X, x) the characteristic polynomial of A(X). Recall that
vertices u and v in the graph X are cospectral if

φ(X\u, t) = φ(X\v, t).

For double star graph S(k, ℓ), by symmetry we may always assume in the
following that k ≤ ℓ.

4.2 Lemma. If the double star graph S(k, ℓ) has perfect state transfer then
either:
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(a) k = 2, ℓ > 2 and perfect state transfer occurs between two vertices with
degree one and adjacent to the same vertices with degree 3, or

(b) k = ℓ and perfect state transfer can only occur between the two central
vertices u and v.

Proof. Assume that double star graph S(k, ℓ) has perfect state transfer.
If k = ℓ = 1, then S(k, ℓ) is P4 and has no perfect state transfer between

two end vertices.
If k = 2, l 6= 2, by Lemma 3.3 and Lemma 4.1, perfect state transfer

could occurs between two vertices with degree one and adjacent to the same
vertices with degree three.

If k, ℓ > 2, then by Lemma 4.1 if S(k, ℓ) admits perfect state transfer,
then perfect state transfer could only occurs from vertex u to v, where u and
v are the only two vertices in X with degree at least two. And furthermore,if
there is perfect state transfer from u to v, then u and v are cospectral by
Lemma 3.3. Therefore the degree of vertices u and v are the same, that is,
k = l.

u v

1
u

2
u

1
v

2
v

l
v

Figure 1: The double star graph S2,ℓ

4.3 Theorem. The double star graph S(2, ℓ) has pretty good state transfer
if ℓ 6= 2 and ℓ2 − 2l + 9 or 2l + 6±

√
l2 − 2l + 9 is not a perfect square.

Proof. Suppose u and v are the two central vertices of S(2, ℓ) with d(u) = 2
and w1, w2 are the two neighbors of u. Then

{{w1}, {w2}, {u}, {v}, N(v) \ {u}}
is an equitable partition of S(2, ℓ). Let B be the adjacency matrix of the
corresponding symmetrized quotient graph, then the eigenvalues of B are

0, ±1

2

√

2ℓ+ 6 + 2
√
ℓ2 − 2ℓ+ 9, ±1

2

√

2ℓ+ 6− 2
√
ℓ2 − 2ℓ+ 9
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Let

F =













0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













Then by direct calculation, we have F = −E1 + E2 + E3 + E4 + E5, where
E1, . . . , E5 are the idempotents of the matrix B. If there is perfect state
transfer, then

U(t) =
∑

r

exp(iθrt)Eθr = γF.

Hence γ = −1 and exp(iθit) = −1 for i = 2, 3, 4, 5. Therefore, there is
no perfect state transfer between [w1]B and [w2]B. However, by Kronecker’s
approximation theorem, if ℓ2−2ℓ+9 or 2ℓ+6±

√
ℓ2 − 2ℓ+ 9 is not a perfect

square, then we can choose a sequence {tk} such that limk→∞ exp(iθrtk) = −1
for r = 2, 3, 4, 5. Therefore, by Lemma 2.2, the result follows.

u v

1
u

2
u

k
u

1
v

2
v

k
v

Figure 2: The double star graph Sk,k

4.4 Lemma. Let X be a symmetric double star graph Sk,k. Then

exp(iAt)u,v =
(

(1− 2β) sinαt+ 2β sin(1− α)t
)

i.

where α = 1+
√
1+4k
2

and β = k
1+4k+

√
1+4k

.

Proof. Let π be an equitable partition with cells {N(u)\v, {u}, {v}, N(v)\u}.
Then the adjacency matrix of the quotient graphX/π is in Fig. 1. Then

AX/π =









0 1 0 0
k 0 1 0
0 1 0 k
0 0 1 0








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After symmetrizing, we get

B =









0
√
k 0 0√

k 0 1 0

0 1 0
√
k

0 0
√
k 0









The eigenvalues of B are α, 1−α, α−1,−α. The corresponding eigenvectors
are the columns of the following matrix:















−1 −1 1 1

−
√
k
α

√
k

α−1

√
k

α−1
−

√
k
α

√
k
α

−
√
k

α−1

√
k

α−1

√
k
α

1 1 1 1















Hence

exp(iBt){u},{v} =(
1

2
− β) exp(iαt) + β exp(i(1− α)t)

− β exp(−i(1 − α)t)− (
1

2
− β) exp(−iαt)

= ((1− 2β) sin(αt) + 2β sin((1− α)t))i.

By Lemma 2.2, we have

exp(iAt)u,v = exp(iBt){u},{v}.

The result follows.

4.5 Lemma. Let Sk,k be a double star graph. Then there is no perfect state
transfer from one vertex of degree k + 1 to the other.

Proof. Note that 2β = 2k
1+4k+

√
1+4k

and so we have 0 < β < 1. Hence

| exp(iAt)u,v|| = |(1− 2β) sin(αt) + 2β sin((1− α)t)|
≤ |1− 2β|+ |2β|
= 1.
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Equality holds if and only sinαt = sin(1 − α)t = ±1. Without loss of
generality, assume that sinαt = sin(1− α)t = 1. Then

αt =
π

2
+ 2mπ, (4.1)

(1− α)t =
π

2
+ 2nπ. (4.2)

It follows that α = 4m+1
4(m+n)+2

. This implies that α is not an integer.

On the other hand, suppose δ = 1 + 4k and α = 1+
√
δ

2
. Then we can

rewrite equations (4.1) and (4.2) in the following form:

1 +
√
δ

2
t =

π

2
+ 2mπ,

1−
√
δ

2
t =

π

2
+ 2nπ

and hence
1 +

√
δ

1−
√
δ
=

1 + 4m

1 + 4n
∈ Q.

Note that on the other hand,

1 +
√
δ

1−
√
δ
=

1 + δ + 2
√
δ

1− δ
,

which implies that δ is a perfect square. Since δ = 1 + 4k is odd, we can

assume that δ = (2s + 1)2, thus α = 1+
√
δ

2
= s + 1 is an integer. Contradic-

tion.

In the rest, we will investigate pretty good state transfer on the symmet-
ric double star graph. We say we have pretty good state transfer from u
to v if there is a sequence {tk} of real numbers and a scalar γ such that
limk→∞ U(tk) = γev, where ‖γ‖ = 1.

4.6 Lemma. Let X be a graph and π is an equitable partition with {u} and
{v} are singletons. Then there is pretty good state transfer from vertex u to
vertex v if and only if there is pretty good state transfer from {u} to {v} in
the symmetrized quotient graph with adjacency matrix B.

Proof. By Lemma 2.2, we have exp(iBtk){u},{v} = exp(iAtk)u,v. Hence

lim
t→∞

exp(iAtk)u,v = γ
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if and only if
lim
t→∞

exp(iBtk){u},{v} = γ.

4.7 Theorem. Let Sk,k be a symmetric double star graph. Then either

(a) 1+4k is not a perfect square and there is pretty good state transfer from
vertex u to vertex v, or

(b) 1+4k is a perfect square and there is not pretty good state transfer from
vertex u to vertex v.

Proof. If 4k+1 is a perfect square then the eigenvalues of S(k, k) are rational
and hence integers. So in this case S(k, k) is periodic and since we know that
perfect state transfer does not occur, pretty good state transfer does not
occur either.

Assume then that 4k + 1 is not a perfect square. By Lemma 4.4 we see
that there is pretty good state transfer from u to v if and only if there is a
sequence of times (tℓ)ℓ≥0 such that

lim
ℓ→∞

sinαtℓ = lim
ℓ→∞

sin(1− α)tℓ = ±1. (4.3)

Note that if limℓ→∞ sinαtℓ = ±1 then limℓ→∞ cosαtℓ = 0. Since

cos tℓ = cosαtℓ cos(1− α)tℓ − sinαtℓ sin(1− α)tℓ

we see that if (4.3) holds then limℓ→∞ cos tℓ = −1.
This implies that tℓ ≈ (2m + 1)π and αtℓ ≈ nπ + π

2
for m,n ∈ Z. The

question becomes whether we can choose integers m,n such that (2m+1)α−
n ≈ 1

2
.

As 1 + 4k is not a perfect square, α is a irrational number. So α and
1
2
are linearly independent over the rationals, and hence by Kronecker’s ap-

proximation theorem the set

{mα− n : m,n ∈ Z}

is dense in R. Therefore we can chose m,n ∈ Z, such that

mα− n ≈ 1

4
− 1

2
α.

This implies we can choose a series {tℓ} such that both limℓ→∞ sinαtℓ = ±1
and limℓ→∞ cos tℓ = −1.
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5 Recurrence

If A is the adjacency matrix of a graph X then the set

{U(t) : t ∈ R}

is an abelian group, which we denote by G. In fact G is a 1-parameter
subgroup of the unitary group on Cn, where n = |V (X)|, and so its closure
G is an abelian Lie group. Since G is connected, so is its closure and therefore
G is isomorphic to a direct product of some number of copies of R/Z. Asking
whether there is perfect state transfer from u to v is equivalent to asking
whether there is a matrix M in G such that

Mu,u = Mv,v = 0, Mu,v = Mv,u = γ (5.1)

where |γ| = 1. Asking whether there is pretty good state transfer is asking
whether there is a matrix M in G such that these conditions hold.

If we prove that pretty good state transfer does occur, we have shown
that there is a sequence of times tℓ such that tℓ → ∞ and, for each ǫ > 0
there is time tℓ such that U(tℓ) is within ǫ of a solution to the conditions of
(5.1). However we can say something more concrete, using the following.

5.1 Lemma. If ǫ > 0, there is a time T such that each element of G lies
within ǫ of an element of {U(s + t) : 0 ≤ t ≤ T}, for any s.

Proof. Define
S = {M ∈ G : ‖M − I‖ < ǫ}

Then S is open and its translates under the action of G cover G. Since G is
compact, some finite set of translates of S cover G. Hence there is a time T
such that all elements of G lie within ǫ of an element of {U(t) : 0 ≤ t ≤ T}.
Since U(t) is unitary it follows that each element of G lies within ǫ of an
element of

{U(t + s) : 0 ≤ t ≤ T},
for any s. We conclude that any element of G lies within ǫ of an element of
{U(t + s) : 0 ≤ t ≤ T}, for any s.

5.2 Corollary. If we have pretty good state transfer from u to v in X then
for each positive ǫ there is a real number T such that, for each s, the set
{U(t + s) : 0 ≤ t ≤ T} contains an element within ǫ of a solution to (5.1).
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Since U(0) = I, the arguments above also yield the conclusion that, if
ǫ > 0 then there is a time T such that in each real interval of length T there
is a time t such that ‖U(t) − I‖ < ǫ. Thus we can say that any graph is
approximately periodic. (We recall that a graph is periodic if there is a time
T such that U(t) = γI, for some complex number γ with norm 1. Periodic
graphs are studied, and characterized, in [5]; their eigenvalues must be square
roots of integers, and consequently these graphs are rare.)
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