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CONSTRUCTING ULTRAPOWERS FROM ELEMENTARY

EXTENSIONS OF FULL CLONES

JOSEPH VAN NAME

Abstract. Let A be an infinite set. Let Ω(A) be the algebra over A where
every constant is a fundamental constant and every finitary function is a fun-

damental operation. We shall give a method of representing any algebra L in
the variety generated by Ω(A) as limit reduced powers and even direct limits of
limit reduced powers of L. If the algebra L is elementarily equivalent to Ω(A),
then this construction represents Ω(A) as a limit ultrapower and also as direct
limits of limit ultrapowers of Ω(A). This method therefore gives a method of
representing Boolean ultrapowers and other generalizations of the ultrapower
construction as limit ultrapowers and direct limits of limit ultrapowers.

1. Motivation

For this paper, let A be a fixed infinite set. If a ∈ A, then let â be a constant

symbol, and if f : An → A, then let f̂ be an n-ary function symbol. Let

F = {f̂ |f : An → A for somen ≥ 1} ∪ {â|a ∈ A}.

Let Ω(A) be the algebra of type F with universe A and where âΩ(A) = a for all

a ∈ A and where f̂Ω(A) = f for each function f of finite arity. We shall now study
the variety V (Ω(A)) generated by Ω(A).

It is well known that V (Ω(A)) = HPS(Ω(A)) = HSP (Ω(A)). Therefore every
algebra in V (Ω(A)) is isomorphic to a quotient of a subdirect power of Ω(A). We
shall soon see that the quotients of the subdirect powers of Ω(A) are simply the
limit reduced powers of Ω(A).

If I is a set, then we shall write Π(I) for the lattice of partitions of I. If f : I → X
is a function, then we shall write Π(f) for the partition {f−1({x})|x ∈ X} \ {∅}.

Theorem 1.1. Let I be a set, and let B ⊆ Ω(A)I be a subalgebra. Then there is a

filter F on Π(I) such that f ∈ B if and only if Π(f) ∈ F .

Proof. Let F = {Π(f)|f ∈ B}. We shall now show that F is a filter. Let f, g ∈ B,
and let i : A2 → A be an injective function. Then îB(f, g) : I → A is a function

with îB(f, g) ∈ B and Π(̂iB(f, g)) = Π(f) ∧ Π(g). If f ∈ B and Π(f) � P , then

there is a function L : A→ A such that Π(L̂B(f)) = Π(L ◦ f) = P . Therefore F is
a filter.

We now claim that B = {f ∈ Ω(A)I |Π(f) ∈ F}. If Π(f) ∈ F , then there is a
function g ∈ B with Π(f) = Π(g). Therefore there is a function i : A → A such

that f = i ◦ g = îB(g). Therefore f ∈ B. �
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In other words, every subalgebra of Ω(A)I is of the form {f ∈ Ω(A)I |Π(f) ∈ F}
for some filter F ⊆ Π(I). We shall write Ω(A)F for the algebra {f ∈ Ω(A)I |Π(f) ∈
F}. One can easily show that {∅} ∪

⋃

F is a Boolean algebra. We shall now give
a one-to-one correspondence between the filters on {∅} ∪

⋃

F and the congruences
on Ω(A)F .

If Z ⊆ {∅} ∪
⋃

F is a filter, then let θ ⊆ Ω(A)F × Ω(A)F be the relation where
we have (f, g) ∈ θ if and only if {i ∈ I|f(i) = g(i)} ∈ Z. One can easily show
that θ is a congruence on Z. We shall let Ω(A)F /Z denote the quotient algebra
Ω(A)F /θ, and we shall call Ω(A)F /Z a limit reduced power of Ω(A). If Z is an
ultrafilter, then we shall call Ω(A)F /Z a limit ultrapower of Ω(A). If Z is a filter on
the set I, then we shall write Ω(A)I/Z for Ω(A)Π(I)/Z, and we shall call Ω(A)I/Z
a reduced power of A, and if Z is an ultrafilter, then we shall simply call Ω(A)I/Z
an ultrapower of A. The following theorem shows that every quotient of Ω(A)F is
a limit reduced power of Ω(A).

Theorem 1.2. Let F ⊆ Π(I) be a filter. Let θ be a congruence on Ω(A)F . Then

define Z ⊆ {∅} ∪
⋃

F to be the set where we have R ∈ Z if and only if whenever

f, g ∈ Ω(A)F and f |R = g|R, we have (f, g) ∈ θ. Then Z is a filter on {∅} ∪
⋃

F .

Furthermore, we have (f, g) ∈ θ if and only if {i ∈ I|f(i) = g(i)} ∈ Z.

Proof. We shall first show that Z is a filter. If R,S ∈ {∅} ∪
⋃

F,R ⊆ S,R ∈ Z,
then whenever f |S = g|S, we have f |R = g|R, so (f, g) ∈ θ. Therefore S ∈ Z as
well. We conclude that Z is an upper set. Now assume that R,S ∈ Z. Assume
that f |R∩S = g|R∩S . Then there is a function h ∈ Ω(A)F where h|R = f |R and
h|S = g|S . Therefore (h, f) ∈ θ, (h, g) ∈ θ, so (f, g) ∈ θ. Therefore Z is a filter.

Now assume that (f, g) ∈ θ. Then let R = {i ∈ I|f(i) = g(i)}. Now let f ♯, g♯ be
functions where f ♯|R = g♯|R. Let P = Π(f)∧Π(g)∧Π(f ♯)∧Π(g♯) and let h : I → A
be a function such that Π(h) = P . One can easily show that there is a function
α : A2 → A such that α(h(i), f(i)) = f ♯(i) for i ∈ I and α(h(i), g(i)) = g♯(i)

for i ∈ I. In other words, there is a function α where α̂Ω(A)F (h, f) = f ♯ and

α̂Ω(A)F (h, g) = g♯. Therefore since (f, g) ∈ θ, we have (f ♯, g♯) ∈ θ as well. Therefore
R ∈ Z. Similarly, if {i ∈ I|f(i) = g(i)} ∈ Z, then clearly (f, g) ∈ θ. We conclude
that (f, g) ∈ θ if and only if {i ∈ I|f(i) = g(i)} ∈ Z. �

It is now clear that the elements of the variety V (Ω(A)) are simply the algebras
isomorphic to the limit reduced powers of Ω(A). We also conclude that the lattice of
congruences on Ω(A)F is isomorphic to the lattice of filters on the Boolean algebra
{∅} ∪

⋃

F . Furthermore, if Ω(A)F /Z is a limit reduced power, then the lattice
of congruences on Ω(A)F /Z is isomorphic to the lattice of filters on the Boolean
algebra ({∅} ∪

⋃

F )/Z.
Let L ∈ V (Ω(A)). Then define a function e : Ω(A) → L by letting e(a) = âL

for a ∈ A. One can easily show that e is the only homomorphisms from Ω(A)
to L. The following theorem shows that every elementary extension L of Ω(A)
is isomorphic to a limit ultrapower of Ω(A). In the following theorem, one needs
to take note that the variety V (Ω(A)) is congruence permutable(congruence per-
mutable means that θ1 ◦ θ2 = θ2 ◦ θ1 whenever θ1 and θ2 are congruences in some
algebra L ∈ V (Ω(A))). Congruence permutability follows from the limit reduced
power representation of algebras or from Mal’Cev’s characterization of congruence
permutable varieties [1][Sec. 2.12].
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Theorem 1.3. Let L ∈ V (Ω(A)) be an algebra with more than one element. Then

the following are equivalent.

1. L is simple.

2. L is subdirectly irreducible.

3. L is directly indecomposable.

4. The mapping e : Ω(A)→ L is an elementary embedding.

If L = Ω(A)F /Z is a limit reduced power of Ω(A), then the above four statements

are equivalent to the following statement.

5. Z is an ultrafilter on the Boolean algebra {∅} ∪
⋃

F .

Proof. Since every algebra in V (Ω(A)) is isomorphic to some limit reduced power
of A, we may assume that L = Ω(A)F /Z.

1→ 2, 2→ 3 These directions are trivial.
5→ 4 This is a consequence of Los’s theorem for limit ultrapowers [4][Sec. 6.4].
5 → 1. If Z is an ultrafilter, then since Con(Ω(A)F /Z) is isomorphic to the

lattice of congruences on ({∅}∪
⋃

F )/Z, there are only 2 congruences on Ω(A)F /Z.
4→ 3 We shall prove this direction by contrapositive. Assume that L = L1×L2

where L1 and L2 are non-trivial algebras. Let a, b ∈ A be distinct elements, and
let i : A→ A be a function with i′′(A) = {a, b} and where i(a) = a, i(b) = b. Then

Ω(A) satisfies the sentence ∀x(̂i(x) = â∨î(x) = b̂). However, we have îL(âL1 , b̂L2) =

(̂iL1(âL1), îL2(b̂L2)) = (âL1 , b̂L2), but (âL1 , b̂L2) 6= âL and (âL1 , b̂L2) 6= b̂L. There-

fore L 6|= ∀x(̂i(x) = â ∨ î(x) = b̂). Therefore the mapping e is not an elementary
embedding.

3→ 5 If Z is not an ultrafilter on {∅}∪
⋃

F , then since the lattice of congruences
on Ω(A)F /Z is isomorphic to Con(({∅}∪

⋃

F )/Z), there is a pair θ1, θ2 of non-trivial
congruences such that θ1 ∩ θ2 = {(x, x)|x ∈ X} and θ1 ∨ θ2 = X2. Clearly, we have
θ1 ◦ θ2 = θ2 ◦ θ1 since variety V (Ω(A)F )/Z is congruence permutable. Therefore,
we have

Ω(A)F /Z ≃ (Ω(A)F /Z)/θ1 × (Ω(A)F /Z)/θ2

by [1][Sec. 2.7], so Ω(A)F /Z is not direct indecomposable. �

See [4][Sec. 6.4] for a similar but more model theoretic proof that every elemen-
tary extension of Ω(A) is a limit ultrapower of Ω(A), and see [2] for an algebraic
proof of this result. We shall now represent the free algebras in V (Ω(A)) as algebras
of the form Ω(A)F . Since every algebra in V (Ω(A)) can easily be represented as
a quotient of a free algebra, one can easily represent any algebra in V (Ω(A)) as a
quotient of Ω(A)F , so the algebras in V (Ω(A)) are representable as limit reduced
powers and limit ultrapowers of Ω(A).

If P is a partition of a set X , then we shall write x = y(P ) if x and y are
contained in the same block of the partition P . Let I be a set. If i1, . . . , in ∈
I, then let Pi1,...,in be the partition of AI where f = g(Pi1,...,in) if and only if
f(i1) = g(i1), . . . , f(in) = g(in). Clearly {Pi1,...,in |n ∈ N, i1, . . . , in ∈ I} is a
filterbase on Π(AI). We shall write P(A, I) for the filter generated by the filterbase
{Pi1,...,in |n ∈ N, i1, . . . , in ∈ I}. Let F(A, I) = Ω(A)P(A,I).

We shall now show that F(A, I) is a free algebra. Let πi : AI → A be the
projection function where πi(f) = f(i) for each f : I → A. Clearly Π(πi) = Pi

since πi(f) = πi(g) if and only if f(i) = g(i) if and only if f = g(Pi). Therefore
πi ∈ F(A, I) for all i ∈ I.

Theorem 1.4. The functions (πi)i∈I freely generate F(A, I).
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Proof. For each i ∈ I, we have Π(πi) = Pi. Therefore we have 〈{πi|i ∈ I}〉 =
Ω(A)P(A,I) = F(A, I), so {πi|i ∈ I} generates F(A, I).

We shall now show that (πi)i∈I freely generates F(A, I). It suffices to show that

whenever f : An → A, g : Am → A and f̂F(A,I)(πi1 , . . . , πin) = ĝF(A,I)(πj1 , . . . , πjm),

then the identity f̂(xi1 , . . . , xin) = ĝ(xj1 , . . . , xjm) holds. If (ai)i∈I ∈ AI , then we
have

f(ai1 , . . . , ain) = f(πi1(ai)i∈I , . . . , πin(ai)i∈I) = f̂F(A,I)(πi1 , . . . , πin)(ai)i∈I

= ĝF(A,I)(πj1 , . . . , πjn)(ai)i∈I = g(aj1 , . . . , ajm).

Therefore the identity f̂(xi1 , . . . , xin) = ĝ(xj1 , . . . , xjm) holds in the variety V (Ω(A)).
�

If α : I → L, then let φα : F(A, I)→ L be the unique homomorphism where we
have φα(πi) = α(i) for i ∈ I. One can clearly see that

φα(f̂
F(A,I)(πi1 , . . . , πin)) = f̂L(φα(πi1), . . . , φα(πin)) = f̂L(α(i1), . . . , α(in)).

Let Zα be the filter on {∅} ∪
⋃

P(A, I) where

Ω(A)P(A,I)/Zα = Ω(A)P(A,I)/ ker(φα) ≃ 〈α
′′(I)〉.

Clearly Zα is an ultrafilter if and only if 〈α′′(I)〉 is simple. If L is simple, then Zα

is always an ultrafilter for each α : I → L. Let

ια : Ω(A)P(A,I)/Zα → 〈α
′′(I)〉

be the canonical isomorphism. In other words, we have ια([ℓ]) = φα(ℓ) where [ℓ]
denotes the equivalence class of ℓ. Take note that if α′′(I) generates L, then ια is an
isomorphism from Ω(A)P(A,I)/Zα to L. We therefore have a method of representing
any algebra in V (Ω(A)) as a limit reduced power of Ω(A). In particular, if the
mapping e : Ω(A)→ L is an elementary embedding, then we can construct a limit
ultrapower of Ω(A) isomorphic to L.

If L is finitely generated, then one can easily show that L is generated by a single
element. Furthermore, if α : {1, . . . , n} → L is a function such that α(1), . . . , α(n)
generates L, then since ια : Ω(A)A

n

/Zα = F(A, {1, . . . , n})/Zα → L is an isomor-
phism, the algebra L is representable as a reduced power of Ω(A). In particular,
if L is simple and finitely generated, then L is representable as an ultrapower of
Ω(A). Conversely, if |I| ≤ |A|, then every reduced power and ultrapower of Ω(A)
of the form Ω(A)I/Z is finitely generated.

In the remainder of this paper, we shall discuss a method of representing every
algebra L ∈ V (Ω(A)) as a direct limit of limit reduced powers of Ω(A). By repre-
senting algebras L as direct limits of limit reduced powers of Ω(A), one may be able
to represent L as a limit reduced power besides the quotients of the algebra F(A, I).
Furthermore, one may also represent L in terms of Boolean reduced powers and
other generalizations of the reduced power and ultrapower constructions.

If X is a set and F is a filter on Π(X), then the covers F generate a uniformity on
X , so we may shall regard (X,F ) as a uniform space. We shall call the partitions in
the filter F uniform partitions. One may refer to [3] for information about uniform
spaces, but no prior knowledge of uniform spaces is necessary to finish reading this
paper.
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If f : X → Y is a function and P is a partition of Y , then we shall write [f ]−1(P )
for the partition {f−1(R)|R ∈ P} \ {∅}. One can easily show that the following
properties hold.

1. [f ]−1(P1 ∧ · · · ∧ Pn) = [f ]−1(P1) ∧ · · · ∧ [f ]−1(Pn), and
2. [f ◦ g]−1(P ) = [g]−1[f ]−1(P ).
If X,Y are sets and F ⊆ Π(X), G ⊆ Π(Y ) are filters, then a function f : X → Y

is said to be uniformly continuous if whenever P ∈ G, then [f ]−1(P ) ∈ F . If G is
generated by a filterbase G, then f is uniformly continuous if and only if whenever
P ∈ G we have [f ]−1(P ) ∈ F . Clearly the composition of uniformly continuous
maps is uniformly continuous.

The sets AI shall always be given the uniformity generated by the filter P(A, I).
Furthermore, the set A shall always have the uniformity generated by Π(A).

Theorem 1.5. A function f : AI → AJ is uniformly continuous if and only if for

each projection πj : A
J → A, we have πj ◦ f be uniformly continuous.

Proof. → The projections πj are all uniformly continuous, so the mappings πj ◦ f
are uniformly continuous as well being the composition of two uniformly continuous
functions.
← Assume that each πj ◦f is uniformly continuous. If j1, . . . , jn ∈ J are distinct

elements, then we have Pj1,...,jn = Pj1 ∧ · · · ∧ Pjn . However, if P = {{a}|a ∈ A},
then we have

Pj1 = [πj1 ]−1(P ), . . . ,Pjn = [πjn ]−1(P ).

Therefore

[f ]−1(Pj1,...,jn) = [f ]−1(Pj1 ∧ · · · ∧ Pjn) = [f ]−1(Pj1) ∧ · · · ∧ [f ]−1(Pjn)

= [f ]−1[πj1 ]−1(P ) ∧ · · · ∧ [f ]−1[πjn ]−1(P ) = [πj1 ◦ f ]−1(P ) ∧ · · · ∧ [πjn ◦ f ]−1(P )

is a uniform partition since each πj ◦ f is uniformly continuous. �

Let f ∈ F(A, I), and let L ∈ V (Ω(A)). Then let f
L
: LI → L be the mapping de-

fined as follows. If f = ĝF(A,I)(πi1 , . . . , πin), then let f
L
((ℓi)i∈I) = ĝL(ℓi1 , . . . , ℓin).

We now show that f
L

is well defined. Assume that f = ĝF(A,I)(πi1 , . . . , πin) =

ĥF(A,I)(πj1 , . . . , πjm). Then since (πi)i∈I freely generates F(A, I), the identity

f̂(xi1 , . . . , xin) = ĝ(xj1 , . . . , xjn) holds in the variety V (Ω(A)), so ĝL(ℓi1 , . . . , ℓin) =

ĥL(ℓj1 , . . . , ℓjm). Therefore, the mapping f
L

is well defined. If f : AI → AJ is

uniformly continuous, then let f
L

: LI → LJ be the mapping where f
L
(α) =

(πj ◦ f
L
(α))j∈J .

Theorem 1.6. Let f : AI → AJ , g : AJ → AK be uniformly continuous. Then

gL ◦ f
L
= g ◦ f

L
.

Proof. Assume k ∈ K. Then πk ◦ g : AJ → A is uniformly continuous. Therefore
there are j1, . . . , jn ∈ J and some r : An → A such that πk◦g = r̂F(A,J)(πj1 , . . . , πjn).
Furthermore, since πj1 ◦f, . . . , πjn ◦f : AI → A are uniformly continuous, there are
indices i1, . . . , im ∈ I and mappings s1, . . . , sn : Am → A such that

πj1 ◦ f = ŝ1
F(A,I)(πi1 , . . . , πim), . . . , πjn ◦ f = ŝn

F(A,I)(πi1 , . . . , πim).

Now let t : Am → A be the mapping where

t(a1, . . . , am) = r(s1(ai1 , . . . , aim), . . . , sn(ai1 , . . . , aim)).
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Then we have

πk◦g◦f(ai)i∈I = r̂F(A,I)(πj1 , . . . , πjn)(f(ai)i∈I) = r(πj1◦f(ai)i∈I , . . . , πjn◦f(ai)i∈I)

= r(ŝ1
F(A,I)(πi1 , . . . , πim)(ai)i∈I , . . . , ŝn

F(A,I)(πi1 , . . . , πim)(ai)i∈I)

= r(s1(ai1 , . . . , aim), . . . , sn(ai1 , . . . , aim)) = t(ai1 , . . . , aim) = t̂F(A,I)(πi1 , . . . , πim)(ai)i∈I ,

so πk ◦ g ◦ f = t̂F(A,I)(πi1 , . . . , πim).
We also have

πk ◦ g
L ◦ f

L
(ℓi)i∈I = πk ◦ g

L(πj ◦ f
L
(ℓi)i∈I)j∈J

= πk ◦ g
L(πj ◦ f

L
(ℓi)i∈I)j∈J = r̂L(πj1 ◦ f

L
(ℓi)i∈I , . . . , πjn ◦ f

L
(ℓi)i∈I)

= r̂L(ŝ1
L(ℓi1 , . . . , ℓim), . . . , ŝn

L(ℓi1 , . . . , ℓim)) = t̂(ℓi1 , . . . , ℓim)

= πk ◦ g ◦ f
L
(ℓi)i∈I = πk ◦ g ◦ f

L
(ℓi)i∈I .

Therefore, we have πk ◦ g
L ◦ f

L
= πk ◦ g ◦ f

L
for all k. We conclude that

gL ◦ f
L
= g ◦ f

L
. �

If f : AI → AJ is uniformly continuous, then define a mapping f⋆ : F(A, J) →
F(A, I) by f⋆(g) = g ◦ f whenever g ∈ F(A, J).

Theorem 1.7. If f : AI → AJ , α : I → L, β : J → L and β = f
L
(α), then

1. φβ = φαf
⋆, and

2. Whenever R ∈ {∅} ∪
⋃

P(A, J), we have R ∈ Zβ if and only if f−1(R) ∈ Zα

Proof. 1. Let ℓ ∈ F(A, J). Then there are j1, . . . , jn ∈ J along with some map
r : An → A such that ℓ = r̂F(A,J)(πj1 , . . . , πjn). Since πj1 ◦ f, . . . , πjn ◦ f ∈ F (A, I)
there are i1, . . . , im ∈ I and functions s1, . . . , sn : Am → A where

πj1 ◦ f = ŝ1
F(A,I)(πi1 , . . . , πim), . . . , πjn ◦ f = ŝn

F(A,I)(πi1 , . . . , πim).

Let t : Am → A be the function where

t(a1, . . . , am) = r(s1(a1, . . . , am), . . . , sn(a1, . . . , am)).

Then we have
φβ(ℓ) = φβ(r̂

F(A,J)(πj1 , . . . , πjn))

= r̂L(β(j1), . . . , β(jn)) = r̂L(f
L
(α)(j1), . . . , f

L
(α)(jn))

= r̂L(πj1 ◦ f
L
(α), . . . , πjn ◦ f

L
(α))

= r̂L(ŝ1
L(α(i1), . . . , α(im)), . . . , ŝn

L(α(i1), . . . , α(im)))

= t̂L(α(i1), . . . , α(im)).

Now assume that (ai)i∈I ∈ AI . Then

f∗(ℓ)(ai)i∈I = ℓ ◦ f(ai)i∈I = r̂F(A,J)(πj1 , . . . , πjn)(f(ai)i∈I)

= r(πj1 ◦ f(ai)i∈I , . . . , πjn ◦ f(ai)i∈I)

= r(ŝ1
F(A,I)(πi1 , . . . , πim)(ai)i∈I , . . . , ŝn

F(A,I)(πi1 , . . . , πim)(ai)i∈I)

= r(s1(ai1 , . . . , aim), . . . , sn(ai1 , . . . , aim)) = t(ai1 , . . . , aim)

= t̂F(A,I)(πi1 , . . . πim)(ai)i∈I .

We conclude that

φa(f
∗(ℓ)) = φa(t̂

F(A,I)(πi1 , . . . πim)) = t̂L(α(i1), . . . , α(im)) = φβ(ℓ).
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2. Let ℓ1, ℓ2 : AJ → A be two functions such that {a ∈ AJ |ℓ1(a) = ℓ2(a)} = R.
Then a ∈ f−1(R) if and only if f(a) ∈ R if and only if ℓ1 ◦ f(a) = ℓ2 ◦ f(a). Thus

f−1(R) = {a ∈ AI |ℓ1 ◦ f(a) = ℓ2 ◦ f(a)} = {a ∈ AI |f⋆(ℓ1)(a) = f⋆(ℓ2)(a)}.

Therefore, we have R ∈ Zβ if and only if φβ(ℓ1) = φβ(ℓ2) if and only if φαf
∗(ℓ1) =

φαf
∗(ℓ2) if and only if (f⋆(ℓ1), f

⋆(ℓ2)) ∈ ker(φα) if and only if

f−1(R) = {a ∈ AI |f⋆(ℓ1)(a) = f⋆(ℓ2)(a)} ∈ Zα.

�

In particular, for ℓ,m ∈ F(A, J), if {a ∈ AJ |ℓ(a) = m(a)} ∈ Zβ, then

{a ∈ AI |ℓ(f(a)) = m(f(a))} = f−1({a ∈ AJ |ℓ(a) = m(a)}) ∈ Zα.

Therefore define a mapping fβ,α : F(A, J)/Zβ → F(A, I)/Zα by fβ,α([ℓ]) = [ℓ◦f ] =
[f⋆(ℓ)]. Let ιβ,α : 〈β′′(J)〉 → 〈α′′(I)〉 be the inclusion mapping.

Theorem 1.8. We have ιβ,αιβ = ιαf
β,α.

F(A, J)/Zβ
fβ,α

−−−−→ F(A, I)/Zα




y

ιβ





y

ια

〈β′′(J)〉
ιβ,α

−−−−→ 〈α′′(I)〉

Proof. Let ℓ ∈ F(A, J). Then ιβ,αιβ [ℓ] = ιβ [ℓ] = φβ(ℓ) = φα(f
⋆(ℓ)) = ια[f

⋆(ℓ)] =
ιαf

β,α[ℓ]. Therefore ιβ,αιβ = ιαf
β,α. �

Since ια is bijective, we have fβ,α = ι−1
α ιβ,αιβ , and in particular, the function

fβ,α does not depend on f . We shall therefore write Eβ,α for the mapping fβ,α =
ι−1
α ιβ,αιβ .
If α : I → L, β : J → L, then we shall write β ≤ α if 〈β′′(J)〉 ⊆ 〈α′′(I)〉. Clearly,

the relation ≤ is a preordering on the class of all functions with range L. One can
clearly see that β ≤ α if and only if for each j ∈ J there is a f : An → A and

i1, . . . , in ∈ I such that β(j) = f̂L(α(i1), . . . , α(in)). Furthermore, using theorem
1.5, one may show that β ≤ α if and only if there is a uniformly continuous mapping

f : AI → AJ such that β = f
L
(α).

Assume D is a directed set, and for d ∈ D there is a set Id and a func-
tion αd : Id → L, and also assume αd ≤ αe whenever d ≤ e, and that L =
⋃

d∈D〈α
′′
d(Id)〉. Then we have L =Lim

−→ (〈α′′
d(Id)〉, ιαd,αe

)d≤e. However, since each

ιαd
: Ω(A)P(A,Id)/Zd → 〈α′′

d(Id)〉 is an isomorphism and ιαd,αe
ιαd

= ιαe
Eαd,αe , we

have

L ≃Lim
−→ (F(A, Id)/Zd, Ed,e)d≤e.

In fact, if we can find a directed system of mappings (fd,e)d,e∈D,d≤e such that

fd,e(αe) = αd whenever d ≤ e, then we can represent L as a generalization of
the Boolean reduced power construction called a Boolean partition algebra reduced
power.
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