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Abstract. Several advances have extended the power and versatility of coherent

state theory to the extent that it has become a vital tool in the representation theory

of Lie groups and their Lie algebras. Representative applications are reviewed and

some new developments are introduced. The examples given are chosen to illustrate

special features of the scalar and vector coherent state constructions and how they

work in practical situations. Comparisons are made with Mackey’s theory of induced

representations. For simplicity, we focus on square integrable (discrete series) unitary

representations although many of the techniques apply more generally, with minor ad-

justment.

PACS numbers: 02.20.–a, 02.20.Sv, 21.60.Fw, 21.60.Ev

1. Introduction

Coherent state theory is known to reveal classical behaviour in quantum mechanics.

Thus, it has been used extensively in studying the relationship between classical and

quantum mechanics and in the development of quantization techniques [1–5]. The

applications of coherent state theory outlined in this paper facilitate the quantisation

of an algebraic system by construction of the unitary representations of its spectrum

generating algebra.

Standard coherent state representations, which we refer to as scalar coherent state

representations, were introduced by Bargmann [6] and Segal [7] and defined more

generally by Perelomov [8], Onofri [9], and others. They were subsequently extended

to vector-valued coherent state (VCS) representations [10–12] and used widely in the

construction of explicit representations of many Lie algebras and Lie groups [13–17].

Early applications were reviewed in a book by Hecht [18]. A new class of representations

was introduced for representations on functions of SO(3) [19–22] which were later used

in the construction of shift tensors [23], and for the computation of Clebsch-Gordan

coefficients for reducing tensor product representations [24–26]. VCS theory was, in fact,

designed for the specific purpose of inducing the harmonic series of irreps (irrreducible

representations) of the non-compact symplectic Lie algebra sp(3,R) from those of its

http://arxiv.org/abs/1207.0126v1
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maximal compact u(3) subalgebra [10–12, 27]. These irreps are needed in applications

of the microscopic nuclear collective model [28–30].

It has been shown [31] that VCS theory is a physically intuitive theory of

induced representations [32] with the advantage that the representations it induces are

irreducible. It is also known [33, 34] that scalar and VCS representations relate closely

to those of geometric quantization [35–37] and, in some respects, extend them.

In this review, we restrict consideration to applications of scalar and VCS theory

to the construction of unitary irreps of Lie algebras. Several examples are used to

illustrate the different ways and the much larger variety of representations that can

be induced by the extension to vector-valued wave functions. The construction of a

VCS representation is straightforward. The more challenging part is to determine an

orthonormal basis for its Hilbert space and calculate the matrix elements required for

the application of spectrum generating algebras in quantum physics. For this purpose,

VCS theory relies on K-matrix theory [10, 31, 38]. K-matrix theory (distinct from K-

theory as used in mathematics) provides practical procedures for determining the inner

products of coherent state and VCS representations as shown, in the context in which

it is used, in this review. It is an essential component of VCS theory, although it can

be used more generally. It could be used, for example, to compute matrix elements of

a unitary representation from those obtained by the partial-coherent-state methods of

Deenen and Quesne [39]. K-matrix theory is developed in Sect. 6.

In approaching coherent-state representation theory as a theory of quantisation,

it is useful to recognise that a Schrödinger representation of state vectors in quantum

mechanics by wave functions is, in fact, a coherent state representation. This is explained

in Section 7.

2. Scalar coherent state representation

Many definitions of coherent states and coherent state representations have been given

[8, 40, 41] and are described in several reviews [1, 42, 43]. Following Perelomov [42], we

start with a basic definition but quickly adjust it to one that is more useful.

2.1. Basic coherent state representations

Let T̂ denote a unitary irrep of a Lie group G on a Hilbert space H with inner product

of two vectors |ψ〉 and |ϕ〉 denoted by 〈ψ|ϕ〉. Then, for any normalised vector |φ〉 ∈ H

(known as a fiducial vector), a system of coherent state vectors for the irrep is defined

as the set

Mφ := {|φ(g)〉 = T̂ (g)|φ〉; g ∈ G}. (1)

The vectors in Mφ span the Hilbert space H. Thus, in a coherent-state representation,

an arbitrary vector |ψ〉 ∈ H can be assigned a wave function, Ψ, defined on the group

G by the overlaps

Ψ(g) := 〈φ|T̂ (g)|ψ〉, g ∈ G. (2)



Vector coherent state representations and their inner products 3

The space spanned by these wave functions, H, carries a coherent-state irrep Γ̂, that is

isomorphic to T̂ and defined by

Γ̂(g)Ψ(g′) := 〈φ|T̂ (g′)T̂ (g)|ψ〉 = Ψ(g′g), ∀ g, g′ ∈ G. (3)

Thus, H is a Hilbert space with inner product inherited from the map H → H; |ψ〉 7→ Ψ.

When G is compact, and for some (e.g., discrete series) representations when G

is non-compact, the inner product for H is is defined by the so-called resolution of the

identity operator

Î :=

∫

G

T †(g)|φ〉〈φ|T (g) dV (g), (4)

where dV (g) is a right G-invariant volume element. Because T̂ is unitary, we have the

equality

Î T̂ (α) = T̂ (α) Î, ∀α ∈ G. (5)

Therefore, by Schur’s lemma, Î is a multiple of the identity and, with a suitable

normalisation of the volume element dV ,
∫

G

Ψ∗(g)Φ(g) dV (g) =

∫

G

〈φ|T̂ †(g)|φ〉〈φ|T̂(g)|ψ〉 dV (g) = 〈ψ|ϕ〉. (6)

2.2. More general coherent state representations

The above coherent state representations are defined on Hilbert spaces of complex-

valued functions for any choice of fiducial vector, |φ〉. However, a judicious choice

of |φ〉 can result in major simplifications. In particular, it is known [1, 42] that, for

some choices, it is possible to identify systems of coherent states vectors with simpler

properties, that also span the Hilbert space and give rise to more useful coherent state

realisations of a given irrep. Moreover, as we illustrate, evaluation of the inner products

for the corresponding coherent state wave functions by algebraic K-matrix methods

can also become much easier and apply more generally (particularly for irreps of non-

compact groups for which the above resolution of the identity does not satisfy the

required convergence conditions).

Assume that the representation T̂ has an extension to a representation of GC, the

complex extension of G, defined by the natural complex extension of the Lie algebra of

G. Let |φ〉 be a fiducial vector and let N be a subset of Gc such that the coherent-state

vectors

{T̂ †(z)|φ〉; z ∈ N} (7)

span H. Then, any vector |ψ〉 ∈ H is uniquely defined by the coherent state wave

functions

Ψ(z) := 〈φ|T̂ (z)|ψ〉, ∀ z ∈ N, (8)

and a coherent state representation of G is defined by

Γ̂(g)Ψ(z) := 〈φ|T̂ (z)T̂ (g)|ψ〉, ∀ g ∈ G. (9)
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Such a coherent state representation is an induced representation. For, if H ⊂ G

denotes the isotropy subgroup of all elements h ∈ G for which

T̂ (h)|φ〉 = σ(h)|φ〉, with σ(h) ∈ C. (10)

the map σ : H → C; h 7→ σ(h) is the one-dimensional unitary representation of H from

which the coherent state irrep Γ̂ is induced. And, as in standard induced representation

theory [32], the wave functions of the induced representation satisfy the symmetry

condition

Ψ(hz) := 〈φ|T̂ (h)T̂ (z)|ψ〉 = σ(h)Ψ(z), ∀ z ∈ N, h ∈ H. (11)

2.3. Holomorphic coherent state representations of su(1,1)

Holomorphic coherent state representations can be constructed for both compact and

non-compact semi-simple Lie groups and their Lie algebras. However, the unitary irreps

of non-compact groups are usually of infinite dimension, for which extra considerations

apply. For example, whereas the irreps of compact semi-simple and reductive Lie groups

have both highest and lowest weights, those of a non-compact group may have a highest

or a lowest weight but, generally, not both. A more essential distinction is that if

{X̂+
i } is a set of raising operators, relative to a lowest weight state |φ〉 for an irrep of

a non-compact Lie group, the values of {zi} required to define a set of coherent state

vectors

{|φ(z)〉 := exp(
∑

i

z∗i X̂
+
i )|φ〉, zi ∈ C}, (12)

that span the Hilbert space for the irrep, can be restricted to a subset. For a compact Lie

group no such restriction is necessary because the expansion of the exponential for |φ(z)〉
in this set terminates when a highest weight vector is reached. However, when there

is no highest weight state, the expansion does not terminate. Then, for some values of

the zi variables, |φ(z)〉 may not converge to a normalisable vector in the Hilbert space.

Thus, the domains of the complex variables {zi} are appropriately restricted to give

subsets of normalisable vectors, i.e., subsets for which

〈φ(z)|φ(z)〉 <∞. (13)

As we now find, this complication is not much in evidence in the construction of the

coherent state representation of the Lie algebra, but it has important consequences for

the inner product for the Hilbert space of coherent state wave functions and their inner

products (see Sect. 6).

We consider a unitary irrep T̂ of su(1,1) with lowest weight. The su(1,1)C Lie

algebra, is spanned by a Cartan element S0 and a pair of raising and lowering operators

S± that satisfy the commutation relations

[S0, S±] = ±S±, [S−, S+] = 2S0. (14)
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Let |λ0〉 denote a lowest weight state for an su(1,1) irrep that is annihilated by

Ŝ− := T̂ (S−) and is an eigenstate of Ŝ0 := T̂ (S0), so that

Ŝ−|λ0〉 = 0, 2Ŝ0|λ0〉 = λ|λ0〉. (15)

A state |ψ〉 in the Hilbert space of this irrep then has a holomorphic coherent state wave

function with values

Ψ(λ)(z) = 〈λ0|ezŜ−|ψ〉, (16)

with z restricted to values for which Eqn. (13) is satisfied. The coherent state

representation Γ̂(λ) of the su(1,1) algebra on these wave functions is then defined by

Γ̂(λ)(X)Ψ(λ)(z) := 〈λ0|ezŜ−X̂|ψ〉, for X ∈ su(1, 1)C. (17)

Thus, if Ŝ(λ)
0 := Γ̂(λ)(S0) and Ŝ(λ)

± := Γ̂(λ)(S±), we obtain

Ŝ(λ)
− Ψ(z) = 〈λ0|ezŜ−Ŝ−|ψ〉 = 〈λ0|Ŝ−e

zŜ−|ψ〉, (18)

Ŝ(λ)
0 Ψ(z) = 〈λ0|ezŜ−Ŝ0|ψ〉 = 〈λ0|[Ŝ0 + zŜ−]e

zŜ−|ψ〉, (19)

Ŝ(λ)
+ Ψ(z) = 〈λ0|ezŜ−Ŝ+|ψ〉 = 〈λ0|[Ŝ+ + 2zŜ0 + z2Ŝ−]e

zŜ−|ψ〉, (20)

and the coherent state representation

Ŝ(λ)
− =

∂

∂z
, Ŝ(λ)

0 =
1

2
λ+ z

∂

∂z
, Ŝ(λ)

+ = z
(

λ+ z
∂

∂z

)

. (21)

It is seen that the coherent state wave function for the lowest weight state is the

constant function Ψλ0(z) = 1 and that the raising operator increases the degree of a

wave function by one. Thus, in an elementary application of K-matrix methods, an

orthonormal basis of coherent-state wave functions, {Ψλn}, is given for the irrep T (λ) by

Ψλn(z) := Kλn z
n, n = 0, 1, 2, . . . (22)

with norm factors that remain to be determined. It follows that

Ŝ(λ)
+ Ψλn(z) = Kλn(λ+ n)zn+1 = (λ+ n)

Kλn

Kλ,n+1
Ψλ,n+1(z), (23)

Ŝλ)
− Ψλ,n+1(z) = (n+ 1)

Kλ,n+1

Kλn
Ψλn(z), (24)

Ŝ(λ)
0 Ψλn(z) = (1

2
λ+ n)Ψλn(z). (25)

The norm factors are then determined in K-matrix theory by requiring the matrices of

the su(1,1) representation to satisfy the Hermiticity relationships,

〈λ, n+ 1|Ŝ+|λn〉 = 〈λn|Ŝ−|λ, n+ 1)∗, (26)

〈λn|Ŝ0|λn〉 = 〈λn|Ŝ0|λn〉∗, (27)

required of a unitary irrep. To satisfy Eqn. (26), it is required that
∣

∣

∣

∣

Kλ,n+1

Kλn

∣

∣

∣

∣

2

=
λ+ n

n+ 1
. (28)



Vector coherent state representations and their inner products 6

Equation (27) is then also satisfied and we obtain the standard expressions

Ŝ0Ψλn(z) = (1
2
λ+ n)Ψλn(z), (29)

Ŝ+Ψλn =
√

(λ+ n)(n+ 1)Ψλ,n+1, (30)

Ŝ−Ψλ,n+1 =
√

(λ+ n)(n+ 1))Ψλn. (31)

If needed, the recursion relation (28) for Kλn is easily solved with Kλ0 = 1 to give

Kλn =

√

(λ+ n− 1)!

(λ− 1)!n!
(32)

and the orthonormal basis of coherent-state wave functions

Ψλn(z) =

√

(λ+ n− 1)!

(λ− 1)!n!
zn, n = 0, 1, 2, . . . . (33)

2.4. An SO(3) coherent state representations of su(3)

The scalar holomorphic coherent state representations of reductive and semi-simple

Lie groups and algebras, considered above, have proved to be useful and insightful

in numerous applications. However, there are other possibilities and, for practical

purposes, some that are more useful. For SU(3), for example, the scalar holomorphic

representations are limited to a subset of irreps in a canonical SU(2) basis, whereas in

physical applications, especially in nuclear physics, one needs the full set of irreps in

an SO(3)-coupled basis. Such coherent state irreps are readily constructed [19, 20] from

the observation that, provided a highest weight state |λµ〉 for the desired SU(3) irrep

T̂ (λµ) is not an eigenstate of any component of the so(3) angular momentum algebra, a

complete set of SO(3) coherent states, i.e., a set that spans the SU(3) irrep of highest

weight (λµ), is given by the set

{T̂ (λµ)(Ω)|λµ〉, Ω ∈ SO(3)}. (34)

We show in the following sections that complete sets of SU(3) irreps, in both canonical

SU(2) and SO(3) bases, are given more usefully in VCS theory.

3. Vector coherent state (VCS) representation

A VCS irrep is an irrep of a Lie group G that is induced from a multi-dimensional

irrep of a subgroup by generalising the coherent state construction to vector-valued

wave functions. Vector-valued coherent state methods [10, 11, 27] and related partial

coherent-state methods [39] were introduced for the non-compact Sp(n,R) symplectic

groups in 1984. In fact, holomorphic vector-valued representations of the Sp(n,R)

groups had been constructed many years previously by Harish-Chandra [44]. However,

they were not used in physics because of the intractable nature of their inner products.

This obstacle was resolved, within the framework of VCS theory, by algebraic K-matrix

methods [10, 38] which by-pass the need for carrying out the computationally intensive

integrals of the Harish-Chandra inner products [45, 46]. They were nevertheless shown
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[12] to give the same results. An early review of VCS theory and its applications was

given by Hecht [18].

Basic VCS irreps are defined as follows. Let σ̂ denote a unitary irrep of a subgroup

H ⊂ G and suppose that this irrep is realised in the restriction of a unitary irrep T̂ of G

to H . This means that the Hilbert space, H, for the irrep T̂ of G, contains a subspace

H0 ⊂ H that is H-invariant, i.e.,

T̂ (h)|φ〉 ∈ H0, ∀h ∈ H and ∀|φ〉 ∈ H0, (35)

and that this subspace is irreducible and equivalent to σ̂ under the restriction of T̂ to

H . Moreover, it is possible to choose an orthonormal basis, {|ν〉} for H0 in such a way

that the operator

Π̂ :=
∑

ν

ξν〈ν| (36)

intertwines the representation σ̂ and the irrep T̂ (H) on H0, i.e.,

Π̂T̂ (h) = σ̂(h)Π̂, ∀h ∈ H, (37)

A vector |ψ〉 ∈ H can now be represented by a vector-valued wave function

Ψ(g) := Π̂T̂ (g)|ψ〉 =
∑

ν

ξν〈ν|T̂ (g)|ψ〉, g ∈ G, (38)

which satisfies the identity

Ψ(hg) = σ̂(h)Ψ(g), ∀h ∈ H, and ∀ g ∈ G. (39)

The Hilbert space of such VCS wave functions, H, carries a coherent-state irrep Γ̂,

induced from the irrep σ̂ of H , which is isomorphic to T̂ and defined by

Γ̂(g)Ψ(g′) := Ψ(g′g), ∀ g, g′ ∈ G. (40)

Thus, H has an inner product inherited from the map H → H; |ψ〉 7→ Ψ. When G is

compact, and for some (e.g., discrete series) representations when G is non-compact,

the inner product for H is defined by the resolution of the identity operator

Î :=

∫

G

∑

µν

T †(g)|µ〉ξ†µ · ξν〈ν|T (g) dV (g), (41)

where dV (g) is a right G-invariant volume element. Because T̂ is unitary, we then have

the equality

Î T̂ (α) = T̂ (α) Î, ∀α ∈ G. (42)

Therefore, by Schur’s lemma, Î is a multiple of the identity. Thus, if Ψ and Φ are,

respectively, VCS wave functions for vectors |ψ〉 and |φ〉 in H, defined as vector-valued

functions over G by Eqn. (38), it follows that, with a suitable normalisation of the

volume element dV ,
∫

G

Ψ†(g) · Φ(g) dV (g) =
∫

G

∑

µν

〈ψ|T †(g)|µ〉ξ†µ · ξν〈ν|T (g)|φ〉 dV (g)

= 〈ψ|ϕ〉. (43)
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The above definition of a VCS irrep is useful for formal purposes, but in practice

VCS wave function are defined more usefully and more generally in terms of a subgroup

or subset N ⊂ GC such that, if the subspace H0 ⊂ H is of dimension d, the coherent

state vectors

{T̂ †(z)|νi〉; z ∈ N, i = 1, . . . , d} (44)

spanH. The construction then parallels that given above except that K-matrix methods

are required, as for scalar coherent state representations, to evaluate inner products.

4. Holomorphic VCS irreps of the u(3) Lie algebra

The construction of holomorphic irreps of the u(3) Lie algebra by VCS methods serves as

a prototype for parallel constructions for other semi-simple and reductive Lie algebras.

A simple application of the holomorphic VCS construction to a Lie algebra g, requires

that the complex extension, gC, of g can be expressed as a vector space sum of the

complex extension of a compact subalgebra h ⊂ g plus Abelian subalgebras, n±, of

raising and lowering operators, i.e.,

gC = hC ⊕ n+ ⊕ n−. (45)

The only classical Lie algebras for which this is not always possible are those of the

odd orthogonal groups SO(2n + 1), for which more general VCS constructions [14] are

required. A practical limitation in the application of holomorphic VCS irreps arises

because the expressions it gives for orthonormal bases and matrix elements are in terms

of Clebsch-Gordan and Racah coefficients of the subalgebra h; these are currently only

available for the semi-simple Lie algebras su(2), su(3) and so(4), and their reductive

extensions, e.g., u(2) and u(3). Fortunately, this limitation did not exclude their

application to the discrete series irreps of the non-compact symplectic Lie algebra

sp(3,R), induced from those of its maximal compact subalgebra u(3) [10, 11, 27].

The complex extension, u(3)C, of u(3) is the Lie algebra of all complex 3×3 matrices.

It is spanned by 9 matrices {Cij} with elements

(Cij)kl = δi,kδj,l (46)

and commutation relations

[Cij, Ckl] = δk,jCil − δi,lCkj. (47)

The subset {Cii; i = 1, 2, 3} spans a Cartan subalgebra and the subsets {Cik; i < k} and

{Cik; i > k} are, respectively, raising and lowering operators.

We consider a generic u(3) irrep, T̂ (λ), in which the matrices {Cij} are represented

by operators, {Ĉij}, on a Hilbert space, H(λ), with highest-weight λ := {λ1λ2λ3}, where
λ1, λ2, and λ3 differ by integers and satisfy the inequality λ1 ≥ λ2 ≥ λ3. We then define

a subspace H
(λ)
0 ⊂ H(λ) of so-called highest-grade states, defined by

H
(λ)
0 := {|ψ〉 ∈ H(λ) | Ĉ12|ψ〉 = Ĉ13|ψ〉 = 0}. (48)
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The isotropy subgroup, H , of all U(3) elements that leave H
(λ)
0 invariant is then a group

with Lie algebra, h = u(1) ⊕ u(2), for which the complex extension is spanned by the

zero and horizontal root vectors, {C11, Cik, i, k = 2, 3}, of the u(3) root diagram, shown

in Fig. 1(a).

C12

C32 C23

C21C31

u(1) + u(2)

C13 RAISING

LOWERING

highest-grade weights

{C11,C22,C33}

(a) (b)

Figure 1. The root diagram for u(3), Fig. (a), and the boundary of the weight diagram

for an irrep λ := {λ1λ2λ3}, Fig. (b). The Hermitian combinations of the horizontal

root vectors span the isotropy subalgebra, h = u(1) ⊕ u(2) ⊂ u(3), of elements that

leave invariant the space, H
(λ)
0 , spanned by the highest-grade vectors whose weights

are shown.

The Hilbert space, H
(λ)
0 , carries a known irrep of the Lie algebra h. The elements

2S0 := C22 − C33, S+ := C23, S− := C32, (49)

are standard basis elements for the complex extension of an su(2) subalgebra of h. Thus,

H
(λ)
0 is spanned by orthonormal basis vectors, {|(λ)sm〉}, for which

Ĉ11|(λ)sm〉 = λ1|(λ)sm〉, (Ĉ22 + Ĉ33)|(λ)sm〉 = (λ2 + λ3)|(λ)sm〉, (50)

Ŝ0|(λ)sm〉 = m|(λ)sm〉, (51)

Ŝ±|(λ)sm〉 =
√

(s∓m)(s±m+ 1)|(λ)s,m± 1〉, (52)

s = 1
2
(λ2 − λ3), m = −s,−s + 1, . . . , s. (53)

Thus, the irrep of h carried by the highest-grade subspace H
(λ)
0 ⊂ H(λ) is completely

defined by the highest-weight λ.

In accordance with the principles outlined in Sect. 3, we now introduce intrinsic

wave functions, {ξ(λ)sm}, for the states {|(λ)sm〉} and a corresponding irrep, σ̂, of the

operators of h by intrinsic operators {σ̂11, σ̂ik, i, k = 2, 3}. Eqns. (50) - (53) then define

corresponding transformations of these intrinsic wave functions:

σ̂11ξ
(λ)
sm = λ1ξ

(λ)
sm , (σ̂22 + σ̂33)ξ

(λ)
sm = (λ2 + λ3)ξ

(λ)
sm , (54)

ŝ0ξ
(λ)
sm = mξ(λ)sm , ŝ±ξ

(λ)
sm =

√

(s∓m)(s±m+ 1)ξ
(λ)
s,m±1, (55)

where

2ŝ0 := σ̂22 − σ̂33, ŝ+ := σ̂23, ŝ− := σ̂32, (56)

A VCS irrep of u(3) of highest weight λ is now induced from the irrep σ̂ of h in

parallel with the construction of a holomorphic scalar coherent state irrep. In this irrep,
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a vector |ψ〉 ∈ H(λ) is represented by a holomorphic vector-valued wave function

Ψ(z) :=
∑

m

ξ(λ)sm〈(λ)sm|eẐ |ψ〉, Ẑ :=
∑

k

zkĈ1k. (57)

The corresponding representation, Cµν → Ĉ(λ)
µν ≡ Γ̂(λ)(Cµν), of the u(3) Lie algebra, is

then defined in the standard way by

Ĉ(λ)
µν Ψ(z) :=

∑

m

ξ(λ)sm〈(λ)sm|eẐĈ(λ)
µν |ψ〉. (58)

Thus, with i, k > 1 and the expansions

Ĉ(λ)
1i Ψ(z) =

∑

m

ξ(λ)sm〈(λ)sm|Ĉ1ie
Ẑ|ψ〉, (59)

Ĉ(λ)
11 Ψ(z) =

∑

m

ξ(λ)sm〈(λ)sm|[Ĉ11 −
3

∑

k=2

zkĈ1k]e
Ẑ |ψ〉, (60)

Ĉ(λ)
ik Ψ(z) =

∑

m

ξ(λ)sm〈(λ)sm|[Ĉik + ziĈ1k]e
Ẑ|ψ〉, (61)

Ĉ(λ)
i1 Ψ(z) =

∑

m

ξ(λ)sm〈(λ)sm|[ziĈ11 −
3

∑

k=2

zkĈik − zi

3
∑

k=2

zkĈ1k]e
Ẑ |ψ〉, (62)

we obtain

Ĉ(λ)
1i = ∂i := ∂/∂zi, (63)

Ĉ(λ)
11 = λ1 −

3
∑

k=2

zk∂k, Ĉ(λ)
ik = σ̂ik + zi∂k, (64)

Ĉ(λ)
i1 = λ1zi −

3
∑

k=2

σ̂ikzk − zi

3
∑

k=2

zk∂k. (65)

Derivation of the operators of a VCS representation of any classical Lie algebra, except

for the odd orthogonal algebras, is equally straightforward.

We now consider the determination of u(3) matrix elements in an orthonormal

basis. This is simplified by use of SU(2) tensorial methods. With su(2) spin operators

defined in terms of the VCS operators of Eqn. (64) by

2Ŝ(λ)
0 = Ĉ(λ)

22 − Ĉ(λ)
33 , Ŝ(λ)

+ = Ĉ(λ)
23 , Ŝ(λ)

− = Ĉ(λ)
32 , (66)

it is determined that the z2 and z3 variables obey the commutation relations

[Ŝ(λ)
0 , z2] =

1
2
z2, [Ŝ(λ)

0 , z3] = −1
2
z3, (67)

[Ŝ(λ)
+ , z3] =

1
2
z2, [Ŝ(λ)

− , z2] =
1
2
z3, . (68)

Thus, they transform, respectively, as the ±1/2 components of an SU(2) spin-1/2 tensor.

The intrinsic vectors {ξ(λ)sm} transform as basis vectors of a spin-s irrep. Thus, it is

appropriate to define an orthonormal SU(2)-coupled basis of VCS wave functions in the

form

Ψ
(λ)
jSM(z) := K

(λ)
jS [ϕj(z)⊗ ξs]SM , (69)
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where

ϕjm(z) :=
zj+m
2 zj−m

3
√

(j +m)!(j −m)!
, m = −j,−j + 1, . . . ,+j, (70)

[ϕj(z) ⊗ ξs]SM :=
∑

mν(sν, jm|SM)ϕjm(z) ⊗ ξsν, where (sν, jm|SM) is an SU(2)

Clebsch-Gordan coefficient, and {K(λ)
jS } is a set of norm factors to be determined. These

basis wave functions then span subsets of su(2) irreps for which

Ŝ(λ)
0 Ψ

(λ)
jSM =MΨ

(λ)
jSM , (71)

Ŝ(λ)
± Ψ

(λ)
jSM =

√

(S ∓M)(S ±M + 1)Ψ
(λ)
jS,M±1. (72)

The actions of elements of h are similarly given by

Ĉ(λ)
11 Ψ

(λ)
jSM = (λ1 − 2j)Ψ

(λ)
jSM , (73)

(Ĉ(λ)
22 + Ĉ(λ)

33 )Ψ
(λ)
jSM ,= (λ2 + λ3 + 2j)Ψ

(λ)
jSM . (74)

It remains to determine the matrix elements of the raising and lowering operators,

{Ĉ1i} and {Ĉi1}, between bases of different j and S. These operators are components

of SU(2) spin-1/2 tensors:

ê 1/2 := Ĉ13, ê− 1/2 := −Ĉ12, (75)

f̂ 1/2 := Ĉ21, f̂− 1/2 := Ĉ31, (76)

consistent with the relationship (êm)
† = (−1) 1/2−mf̂−m. In the VCS representation, given

by Eqns. (63) - (65), the raising operators are mapped to spin-1/2 differential operators:

ê±1/2 → d̂±1/2, (77)

where d̂ 1/2 := ∂3 and d̂− 1/2 := −∂2. Thus, their SU(2)-reduced matrix elements are

easily derived. The VCS expressions for the lowering operators, given by Eqn. (65), are

seemingly more complicated. In fact, their VCS representation is expressed almost as

simply in the form

f̂±1/2 → [Λ̂, ẑ±1/2], (78)

where ẑ 1/2 := z2, ẑ−1/2 := z3, and Λ̂ is the U(2)-scalar operator

Λ̂ := λ1

3
∑

i=2

zi∂i −
3

∑

i,k=2

σ̂ikzk∂i − 1
2

3
∑

i,k=2

zizk∂k∂i. (79)

Expressing the lowering operators in this way (which is standard in VCS theory [10])

greatly facilitates the calculation of their matrix elements because the operator Λ̂ is a

multiple of the identity within a U(2) irrep. Consequently, it is diagonal in the above-

defined SU(2)-coupled VCS basis, i.e.,

Λ̂Ψ
(λ)
jSM = Ω

(λ)
jS Ψ

(λ)
jSM , (80)

with eigenvalues given for an irrep with highest weight λ ≡ {λ1λ2λ3} by

Ω
(λ)
jS = (2λ1 − λ2 − λ3)j − S(S + 1) + s(s+ 1)− j(j − 2). (81)
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Matrix elements of the f̂ operators are now calculated as follows. With Ψ
(λ)
jSM

defined by Eqn. (69), it follows that

[ẑ ⊗Ψ
(λ)
jS ]S′M ′ = K

(λ)
jS [ẑ ⊗ [ϕj ⊗ ξs]S]S′M ′ (82)

and, with some Racah recoupling, we obtain

[ẑ ⊗Ψ
(λ)
jS ]S′M ′ =

∑

j′

K
(λ)
jS U(sjS ′ 1/2 : Sj

′)[[ẑ ⊗ ϕj]j′ ⊗ ξs]S′M ′. (83)

From the explicit expression for ϕjm, given by Eqn. (70), it is then determined that

[ẑ ⊗ ϕj ]j′m′ = δj′,j+1/2

√

2j + 1ϕj+1/2,m′ (84)

and, hence, that

[ẑ ⊗Ψ
(λ)
jS ]S′M ′ =

K
(λ)
jS

K
(λ)
j+1/2,S′

√

2j + 1U(sjS ′ 1/2 : S, j + 1/2)Ψ
(λ)
j+1/2,S′M ′. (85)

Now, from the expression of the Wigner-Eckart theorem, in the form

[ẑ ⊗Ψ
(λ)
jS ]S′M ′ =

∑

j′

Ψ
(λ)
j′S′M ′

〈Ψ(λ)
j′S′‖ẑ‖Ψ(λ)

jS 〉√
2S ′ + 1

, (86)

it follows that

〈Ψ(λ)
j′S′‖ẑ‖Ψ(λ)

jS 〉 = δj′,j+ 1/2

K
(λ)
jS

K
(λ)
j+ 1/2,S′

√

(2j + 1)(2S ′ + 1)

× U(sjS ′ 1/2 : S, j+ 1/2) (87)

and that

〈(λ)j′S ′‖f̂‖(λ)jS) = 〈Ψ(λ)
j′S′‖[Λ̂, ẑ]‖Ψ(λ)

jS 〉
= (Ωj′S′ − ΩjS)〈Ψ(λ)

j′S′‖ẑ‖Ψ(λ)
jS 〉. (88)

Thus, we obtain the reduced matrix elements

〈(λ)j′S ′‖f̂‖(λ)jS〉 = δj′,j+1/2

K
(λ)
jS

K
(λ)
j+1/2,S′

(Ωj+1/2,S′ − ΩjS)

×
√

(2j + 1)(2S ′ + 1) U(sjS ′ 1/2 : S, j+ 1/2). (89)

Starting from the equation

(d̂⊗ ϕj)j′ = −δj′,j−1/2

√

2j + 1ϕj−1/2, (90)

reduced matrix elements of the raising operator tensor, ê, are similarly determined to

be given by

〈(λ)jS‖ê‖(λ)j′S ′〉 = (−1)S
′−S+ 1/2

K
(λ)
j+1/2,S′

K
(λ)
jS

δj′,j+1/2

×
√

(2j + 1)(2S ′ + 1) U(sjS ′ 1/2 : S, j+ 1/2). (91)
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Finally, the norm ratios are determined from the Hermiticity condition

〈(λ)j+ 1/2,S
′,M+ 1/2|f̂1/2|(λ)jSM〉∗

= −〈(λ)jSM |ê−1/2|(λ)j+ 1/2,S
′,M+ 1/2) (92)

which must be satisfied for the irrep to be unitary. In terms of reduced matrix elements,

this condition becomes

〈(λ)j+ 1/2,S
′‖f̂‖(λ)jS〉∗ = (−1)S

′−S+1/2〈(λ)jS‖ê‖(λ)j+ 1/2,S
′). (93)

Together with Eqns. (78), (89), and (91), this condition implies that the norm factors

must satisfy the identity
∣

∣

∣

∣

∣

K
(λ)
j+1/2,S′

K
(λ)
jS

∣

∣

∣

∣

∣

2

= (Ω
(λ)
j+1/2,S′ − Ω

(λ)
jS )

= 1
2
(2λ1 − λ2 − λ3) + S(S + 1)− S ′(S ′ + 1)− j + 3

4
. (94)

Thus, we obtain the explicit expression for the matrix elements of a generic su(3) irrep:

〈(λ)j+ 1/2,S
′‖f̂‖(λ)jS〉 = (−1)S

′−S+1/2 〈(λ)jS‖ê‖(λ)j + 1/2,S
′〉

=
√

(2j + 1)(2S ′ + 1)U(sjS ′ 1/2 : S,j+ 1/2)

×
[

1
2
(2λ1 − λ2 − λ3) + S(S + 1)− S ′(S ′ + 1)− j + 3

4

]
1

2 , (95)

with s = 1
2
(λ2 − λ3).

Note that the above VCS construction gives analytical expressions for the matrix

elements of the u(3) Lie algebra in a basis for any U(3) irrep that reduces the subgroup

chain with the associated representation labels

U(3) ⊃ SU(3) ⊃ U(2) ⊃ U(1)

{λ1λ2λ3} (λµ) j S M
, (96)

where the SU(3) irrep labels are given by λ = λ1−λ2, µ = λ2−λ3 = 2s. The irreps of the

subgroup U(2) ⊂ SU(3) in the chain are labelled by the eigenvalues of the U(1) operator

2Ĉ11− Ĉ22− Ĉ33 which in the VCS representation are given by (2λ1−λ2−λ3−6j), and

by the SU(2) spin quantum number S. A notable property of this construction is that

the extra label j is algebraically defined and, because of Eqn. (74), it defines a canonical

basis for U(3) labelled by well-defined quantum numbers that take integer, or half-odd

integer, values. Such a basis is, in fact, a Gelfand-Tsetlin basis [47].

5. VCS irreps of su(3) in an SO(3) basis

A different class of coherent state representation to those of the holomorphic kind was

introduced in 1989 [19, 20]. Its purpose was to construct the irreps of su(3) in an SO(3)-

coupled basis, which is the basis appropriate for application to rotationally-invariant

systems such as nuclei. A secondary purpose was to elucidate the relationship of Elliott’s

SU(3) model [48, 49] to the non-compact nuclear rotor model that is obtained from the

SU(3) model in a contraction limit.
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The algebraic structure underlying the rotor model [50] is that of a semi-direct

product group with an Abelian normal subgroup. The irreps of such a group can be

induced, in an SO(3) basis, from one-dimensional irreps of the normal subgroup by scalar

coherent state methods that parallel those of Mackey’s theory of induced representations

[32]. Thus, it was natural to induce scalar coherent state representations of su(3) in an

SO(3) basis. Such a construction was subsequently applied to induce a subset of irreps

of SO(5) in an SO(3) basis [21] and later extended to generic VCS irreps of SO(5) [22].

In this section we give the VCS irreps of su(3) in an SO(3) basis which are, in many

respects, simpler than their scalar counterparts and raise the possibility of other similar

constructions. In particular, we give a construction in a canonical SO(3) basis; i.e., a

basis labelled by a complete set of well-defined quantum numbers.

In an SO(3) angular-momentum coupled basis, the su(3)C algebra is spanned by

three components of angular momentum

L0 = −i(C23 − C32), L± = i(C13 − C31)± (C12 − C21), (97)

and five quadrupole moments

Q(2)
0 = 2h1 + h2, (98)

Q(2)
±1 = ∓

√

3
2
[C12 + C21 ± i(C13 + C31)], (99)

Q(2)
±2 =

√

3
2
[h2 ± i(C23 + C32)], (100)

where h1 = C11 − C22 and h2 = C22 − C33.

5.1. Irreps of an intrinsic u(2) subalgebra

The above expressions show that the su(3) elements L0 and Q(2)
±2 involve only

{C23, C32, C22 − C33}. It follows that they span an su(2)C ⊂ su(3)C subalgebra with

commutation relations

[L0,Q(2)
±2] = ±2Q(2)

±2, [Q(2)
2 ,Q(2)

−2] = 6L0. (101)

In addition, Q(2)
0 = 2h1 + h2 commutes with all elements of this su(2)C subalgebra

and with them spans a u(2)C subalgebra of su(3)C and a corresponding su(2) ⊂ su(3)

subalgebra.

The following will show that a desired su(3) irrep T̂ (λµ), of highest weight (λµ), can

be induced from an irrep σ̂ of this u(2) subalgebra, provided σ̂ is the irrep carried by a

space of highest grade states, e.g., states, in the Hilbert space of the irrep T̂ (λµ), that

are annihilated by the Ĉ12 and Ĉ13 raising operators, where Ĉij := T̂ (λµ)(Cij). Thus, we

seek a basis of highest grade states that satisfy the equations

Ĉ12|(λµ)K〉 = Ĉ13|(λµ)K〉 = 0, L̂0|(λµ)K〉 = K|(λµ)K〉, (102)

Q̂(2)
0 |(λµ)K〉 = (2ĥ1 + ĥ2)|(λµ)K〉 = (2λ+ µ)|(λµ)K〉. (103)

Comparison of the commutation relations of Eqn. (101) with the standard su(2)

relations

[σ̂0, σ̂±] = ±σ̂±, [σ̂+, σ̂−] = 2σ̂0. (104)
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and a knowledge of the su(2) representations, implies that

Q̂(2)
±2|(λµ)K〉 =

√

3
2
(µ∓K)(µ±K + 2) |(λµ)K ± 2〉 (105)

with K running over the range −µ,−µ + 2, . . . ,+µ. Thus, it is convenient to define

wave functions {ξ(λµ)K } for the highest grade states {|(λµ)K〉} and a corresponding

representation of the su(2) algebra

L0 → σ̂(L0) := 2ŝ0, Q(2)
±2 → σ̂(Q

(2)
±2) :=

√
6 ŝ± (106)

such that

ŝ0ξ
(λµ)
K = 1

2
K ξ

(λµ)
K , ŝ±ξ

(λµ)
K = 1

2

√

(µ∓K)(µ±K + 2) ξ
(λµ)
K±2. (107)

We refer to the wave functions {ξ(λµ)K } as intrinsic spin wave functions and to {ŝk} as

intrinsic spin operators.

5.2. The VCS irrep of su(3)

The VCS irrep under construction depends critically on the following observation.

Because the angular momentum operators L̂± are linear combinations of Ĉ13 − Ĉ31

and Ĉ12 − Ĉ21, their repeated application to the highest grade vectors of an su(3) irrep,

as defined above, generates a complete basis for the irrep. Thus, if R̂(Ω) = T̂ (λµ)(Ω)

denotes the representation of an SO(3) element Ω ∈ SU(3), the set of SO(3) coherent

states

{R̂(Ω)|(λµ)K〉,Ω ∈ SO(3), K = −µ,−µ+ 2, . . . ,+µ} (108)

spans the Hilbert space for the SU(3) irrep T̂ (λµ).

It follows that, ifH(λµ) is the Hilbert space for the irrep T̂ (λµ), any vector |ψ〉 ∈ H(λµ)

is defined by the overlaps {〈(λµ)K|R̂(Ω)|ψ〉,Ω ∈ SO(3)}. Also a VCS wave function Ψ

for the vector |ψ〉 is defined by

Ψ(Ω) :=
∑

K

ξ
(λµ)
K 〈(λµ)K|R̂(Ω)|ψ〉, Ω ∈ SO(3). (109)

The representation of an element X of the su(3) algebra as an operator on these wave

functions is then defined by

[Γ̂(X)Ψ](Ω) :=
∑

K

ξ
(λµ)
K 〈(λµ)K|R̂(Ω)X̂|ψ〉, Ω ∈ SO(3). (110)

The transformation of an angular-momentum coupled vector under a rotation is

expressed in the standard way by

R̂(Ω)|(λµ)αLM〉 =
∑

N

|(λµ)αLN〉DL
NM(Ω), Ω ∈ SO(3). (111)

where DL
NM(Ω) is a Wigner rotation matrix. Thus, the VCS wave function of the vector

|(λµ)αLM〉 is given by

Ψ
(λµ)
αLM(Ω) =

∑

K

ξ
(λµ)
K 〈(λµ)K|(λµ)αLK〉D

L
KM(Ω), Ω ∈ SO(3). (112)
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The angular momentum operators of the VCS representation act on such wave

functions in the standard way

[Γ(L0)Ψ
(λµ)
αLM ](Ω) =MΨ

(λµ)
αLM (Ω), (113)

[Γ(L±)Ψ
(λµ)
αLM ](Ω) =

√

(L∓M)(L±M + 1)Ψ
(λµ)
αL,M±1(Ω). (114)

For the quadrupole operators,

[Γ(Q(2)
ν )Ψ

(λµ)
αLM ](Ω) =

∑

K

ξ
(λµ)
K 〈(λµ)K|R̂(Ω)Q̂(2)

ν |(λµ)αLM〉,

=
∑

Kν′

ξ
(λµ)
K 〈(λµ)K|Q̂(2)

ν′ R̂(Ω)|(λµ)αLK〉D
2
ν′ν(Ω). (115)

Equations (97)-(103) and (106) then let us make the substitutions

〈(λµ)K|Q̂(2)
0 = 〈(λµ)K|(2ĥi + ĥ2) = (2λ+ µ)〈(λµ)K|, (116)

〈(λµ)K|Q̂(2)
±1 = −

√

3
2
〈(λµ)K|L̂±, (117)

∑

K

ξ
(λµ)
K 〈(λµ)K|Q̂(2)

±2 =
√
6 σ̂±

∑

K

ξ
(λµ)
K 〈(λµ)K|, (118)

and obtain
∑

K

ξ
(λµ)
K 〈(λµ)K|Q̂(2)

0 R̂(Ω)|(λµ)αLM〉 = (2λ+ µ)ΨαLM(Ω), (119)

∑

K

ξ
(λµ)
K 〈(λµ)K|Q̂(2)

±1R̂(Ω)|(λµ)αLM〉 = −
√

3
2
[L̄±ΨαLM ](Ω), (120)

∑

K

ξ
(λµ)
K 〈(λµ)K|Q̂(2)

±2R̂(Ω)|αLM〉 =
√
6 σ̂±ΨαLM(Ω), (121)

where L̄± are infinitesimal generators of left rotations. Their actions, defined by

[L̄kD
L
KM ](Ω) = 〈LK|L̂kR̂(Ω)|LM〉 =

∑

N

〈LK|L̂k|LN〉DL
NM(Ω) (122)

give the expressions, familiar in the nuclear rotor model,

L̄0D
L
KM = KD

L
KM , (123)

L̄±D
L
KM =

√

(L±K)(L∓K + 1)D
L
K∓1,M . (124)

We conclude from Eqns. (115) and (119)-(121) that Γ̂(Q(2)
ν ) can be expressed

Γ̂(Q(2)
ν ) = (2λ+ µ)D̂2

0ν −
√

3
2
(D̂2

1νL̄+ + D̂2
−1νL̄−)

+
√
6[σ̂+D̂

2
2ν + σ̂−D̂

2
−2ν ], (125)

with the understanding that, as an operator D̂
2
µν acts multiplicatively;

[D̂2
µνΨ](Ω) = D

2
µν(Ω)Ψ(Ω). (126)

Equation (125) can be simplified by means of the identity

[L̂2, D̂2
0ν ] = 6D̂2

0ν + 2
√

3
2
[D̂2

1νL̄+ + D̂2
−1νL̄−] (127)

to the more useful expression

Γ̂(Q(2)
ν ) = (2λ+ µ+ 3)D̂2

0ν − 1
2
[L̂2, D̂2

0ν ] +
√
6[σ̂+D̂

2
2ν + σ̂−D̂

2
−2ν ]. (128)
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5.3. Basis wave functions

Equation (112) shows that a basis of VCS wave functions for the su(3) irrep is

given by linear combinations of the vector-valued functions ξ
(λµ)
K DL

KM , with K =

−µ,−µ+2, . . . , µ. The allowed combinations are further restricted by the constraint of

Eqn. (39) which requires that VCS wave functions should satisfy the equality

Ψ
(λµ)
αLM(Ω) =

∑

K

σ̂(ω)ξ
(λµ)
K 〈(λµ)K|R̂(ω−1)R̂(Ω)|(λµ)αLK〉, (129)

for all ω ∈ SO(3) that leave the highest-grade subspace, spanned by the vectors

{|(λµ)K〉}, invariant. The isotropy subgroup of such ω ∈ SO(3) clearly includes the

SO(2) subgroup with infinitesimal generator L0, for which

σ̂(e−iφL0)ξ
(λµ)
K = e−iKφξ

(λµ)
K , R̂(eiφL0)|(λµ)K〉 = eiKφ|(λµ)K〉, (130)

and for which the constraint condition is automatically satisfied. However, it also

contains the rotation through angle π generated by the angular momentum operator

Ly = −1
2
i(L+ − L−), for which

exp(−iπLy)L0 exp(iπLy) = −L0, (131)

exp(−iπLy)Q
(2)
±2 exp(iπLy) = Q±2. (132)

By explicit construction of the vectors {ξ(λµ)K } in the space of a two-dimensional

harmonic oscilator, it is determined that, with ω = exp(−iπLy),

σ̂(ω)ξ
(λµ)
K = (−1)λξ

(λµ)
−K . (133)

It is also known that

D
L
KM(ω−1Ω) = (−1)L+K

D
L
−K,M(Ω). (134)

Thus, it is determined that a basis of VCS wave functions for an su(3) irrep is given by

linear combinations of the vector-valued functions

ϕ
(λµ)
KLM =

1
√

2(1 + δK0)
(ξ

(λµ)
K D

L
KM + (−1)λ+L+Kξ

(λµ)
−K D

L
−K,M), (135)

with K ≥ 0 in the range µ, µ−2, . . . , 1 or 0. Such wave functions are familiar in nuclear

physics in the context of the rotor model.

5.4. Matrix elements in an orthonormal basis

By construction, the representation of the SO(3) subgroup of the above-defined VCS

representation, with matrix elements of the so(3) angular momentum operators given

by Eqns. (113) and (114), is already unitary. However, the matrices of the Γ̂(Q(2)
ν )

operators do not, in general, satisfy the Hermiticity relationships required of a unitary

representation. Thus, we focus on the matrices of these operators.

With a coupled product of SO(3) tensors defined by

[AL2
⊗BL1

]LM :=
∑

M1M2

(L1M1, L2M2|LM)AL2M2
⊗ BL1M1

, (136)
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where (L1M1, L2M2|LM) is an SO(3) Clebsch-Gordan coupling coefficient, and the well-

known expression [51] for rotation matrices
[

D
L2

K2
(Ω)⊗ D

L1

K1
(Ω)

]

LM
=

∑

K

(L1K1, L2K2|LK)DL
KM(Ω), (137)

it is determined from Eqn. (128) and the definition (135) that

[Γ(Q(2))⊗ ϕ
(λµ)
KL ]L′M ′ =

∑

K ′

ϕ
(λµ)
K ′L′ M

L′L
K ′K , (138)

with

ML′L
KK =

[

(2λ+µ+ 3)− 1
2
L′(L′ + 1) + 1

2
L(L+ 1)

]

(LK, 20|L′K)

+ δK,1 (−1)λ+L+1
√

3
2
(µ+ 1)(L,−1, 22)L′1), (139)

ML′L
K±2,K =

√

3
2
(µ∓K)(µ±K + 2)(1 + δK,0) (LK, 2,±2|L′, K±2),

It is then seen that
√
2L+ 1ML′L

K ′K is only equal to (−1)L−L′
√
2L′ + 1(MLL′

KK ′)
∗ when

L = L′, as it should be for all L and L′, for a unitary representation. Thus, it is

profitable to initiate progression towards the construction of an orthonormal basis by a

unitary transformation of the functions {ϕ(λµ)
KLM} to a new set

Φ
(λµ)
αLM :=

∑

K>0

ϕ
(λµ)
KLMU

(L)
Kα (140)

such that the corresponding transformed matrices

ML′L
βα :=

∑

0≤K,K ′≤µ

U
(L′)∗
K ′β ML′L

K ′KU
(L)
Kα (141)

are diagonal when L′ = L, i.e., MLL
βα = δβ,αMLL

αα .

We now claim that it remains only to make scale transformations of the wave

functions, i.e.,

Φ
(λµ)
αLM → Ψ

(λµ)
αLM = k(L)α Φ

(λµ)
αLM , (142)

to obtain an orthonormal basis for the Hilbert space of the VCS irrep. This claim

is substantiated by the observation that, in addition to reducing the subgroup chain

SU(3) ⊃ SO(3) ⊃ SO(2), the wave functions {Φ(λµ)
αLM} are also eigenfunctions of the

Hermitian SO(3)-invariant operator X̂ := [L̂ ⊗ Q̂(2) ⊗ L̂]0, as the following will show.

In fact, as observed by Racah [52], (to within norm factors) they are the unique

simultaneous eigenfunctions of the SO(3) and SO(2) Casimir invariants and the SO(3)-

invariant operator X̂ and, as such, form an orthogonal basis for the finite-dimensional

SU(3) irrep (λµ).

According to the Wigner-Eckart theorem (given in any book on angular momentum

theory, e.g. [51]), the coupled action of the spherical tensor operator Γ̂(Q(2)
ν ) on the wave

functions of an orthonormal basis {Ψ(λµ)
αLM}, is expressed in terms of reduced matrix

elements by

[Γ̂(Q(2))⊗Ψ
(λµ)
αL ]L′M =

∑

β

Ψ
(λµ)
βL′M

〈(λµ)βL′‖Q̂(2)‖(λµ)αL〉√
2L′ + 1

. (143)
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The parallel equation for the operator X̂ , which is a coupled SO(3) tensor of angular

momentum zero, is then

Γ̂(X)Ψ
(λµ)
αLM =

∑

β

Ψ
(λµ
βLM

〈(λµ)βL‖[L̂⊗ Q̂(2) ⊗ L̂]0‖(λµ)αL〉√
2L+ 1

. (144)

Now, the reduced matrix elements on the right side of this expression can be factored

and determined to be proportional to the product of reduced matrix elements

〈L‖L̂‖L〉 〈(λµ)αL‖Q(2)‖(λµ)αL〉 〈L‖L̂‖L〉, (145)

with a proportionality factor that depends only on L. It follows that Eqn. (144) can be

re-expressed

Γ̂(X)Ψ
(λµ)
αLM =

∑

β

Ψ
(λµ)
βLM f(L) 〈(λµ)βL‖Q̂(2)‖(λµ)αL〉, (146)

=
√
2L+ 1 f(L) [Γ̂(Q(2))⊗Ψ

(λµ)
αL ]LM , (147)

where f(L) is some function of L. This implies that Ψ
(λµ)
αLM is an eigenfunction of Γ̂(X)

if and only if [Γ̂(Q(2)) ⊗ Ψ
(λµ)
αL ]LM is proportional to Ψ

(λµ)
αLM . From this result, it follows

that if we want Ψ
(λµ)
αLM to be proportional to Φ

(λµ)
αLM , we must similarly require that

Γ̂(X)Φ
(λµ)
αLM =

√
2L+ 1 f(L) [Γ̂(Q(2))⊗ Φ

(λµ)
αL ]LM

= (2L+ 1) f(L)MLL
αα Φ

(λµ)
αLM (148)

which means that Φ
(λµ)
αLM is to be obtained by the unitary transformation of MLL to a

diagonal matrix
√
2L+ 1MLL.

To obtain an orthonormal basis for the irreducible Hilbert space H(λµ) of VCS wave

functions, it now remains to determine the k
(L)
α norm factors appearing in Eqn. (142),

with the understanding that any function Φ
(λµ)
αLM that does not belong inside the space

H(λµ) of the su(3) irrep is to be assigned a zero norm factor.

To derive these norm factors, we make the substitution Ψ
(λµ)
αLM = k

(L)
α Φ

(λµ)
αLM in the

equation

[Γ(Q(2))⊗ Φ
(λµ)
αL ]L′M ′ =

∑

β

Φ
(λµ)
βL′

√
2L′ + 1ML′L

βα (149)

to obtain

[Γ(Q(2))⊗Ψ
(λµ)
αL ]L′M ′ =

∑

β

Ψ
(λµ)
βL′

k
(L)
α

k
(L′)
β

√
2L′ + 1ML′L

βα . (150)

Comparing with Eqn. (143) then gives the identity

〈(λµ)βL′‖Q̂(2)‖(λµ)αL〉 = (2L′ + 1)ML′L
βα

k
(L)
α

k
(L′)
β

. (151)

For a unitary representation, these reduced matrix elements should satisfy the

Hermiticity condition

〈(λµ)βL′‖Q̂(2)‖(λµ)αL〉 = (−1)L−L′〈(λµ)αL‖Q̂(2)‖(λµ)βL′〉∗. (152)
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Thus, for unitarity, the ratios of the norm factors are given by
∣

∣

∣

∣

∣

k
(L)
α

k
(L′)
β

∣

∣

∣

∣

∣

2

= (−1)L−L′ 2L+ 1

2L′ + 1

MLL′∗
αβ

ML′L
βα

(153)

and we obtain the explicit result

〈(λµ)βL′‖Q̂(2)‖(λµ)αL〉
√

(2L+ 1)(2L′ + 1)
= ML′L

βα

√

(−1)L−L′
MLL′∗

αβ

ML′L
βα

. (154)

It will be noted that the only numerical calculation needed in the evaluation of this

expression is the diagonalization of the MLL matrices, given explicitly by Eqn. (139).

6. The fundamentals of K-matrix theory

The construction of a reducible unitary irrep of a Lie algebra g (or Lie group G) from

a known finite-dimensional unitary irrep of a subalgebra h ⊂ g (or subgroup H ⊂ G)

was achieved in the standard theory of induced representations [32]. In contrast, the

VCS methods induce irreducible unitary representations. This was enabled by the

introduction of K-matrix theory [10, 38], which determines the Hilbert space of the

desired irrep by the construction of an orthonormal basis and the determination of its

inner product..

The above examples have shown that renormalising an orthogonal set of wave

functions for a unitary irrep to obtain an orthonormal set is easy. Thus, the primary

task of K-matrix theory is to determine an orthogonal basis for a VCS irrep. As noted

in Sect. 5, any two eigenfunctions of a Hermitian operator are necessarily orthogonal if

they have different eigenvalues. Thus, a set of orthogonal wave functions is derived if

one has sufficient Hermitian operators to resolve any multiplicities. We now show that

K-matrix methods are simplified by the observation that the product Ŝ := K̂K̂† is a

Hermitian operator.

6.1. The S-matrix equations

Let Γ̂ denote a VCS representation of a Lie group G and its Lie algebra g that is

irreducible and unitary with respect to an orthonormal basis for the Hilbert space of

VCS wave functions, H. In proceeding to identity H and such a basis, we start with

some larger space of wave functions, F , that is invariant under the action of Γ̂ and

contains the space of VCS wave functions for the irrep Γ̂ as an irreducible subspace. In

practice there are natural ways to select the space F , based simply on the requirement

that it should be invariant under the action Γ̂ of the Lie algebra g, as the examples

considered in this review illustrate. For example, for a scalar irrep Γ̂ of SU(3) defined

on a Hilbert space of functions of Ω ∈ SO(3), it would be appropriate to select F to be

the space spanned by a basis for the regular representation of SO(3). Thus, the concern

of K-matrix theory is to identify the subspace, H ⊂ F and the inner product for which

it becomes the desired Hilbert space for the unitary VCS irrep.
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Let {Ψν} denote an, as yet undetermined, orthonormal basis of VCS wave functions

for H and let {ϕn} denote a convenient basis for F . The basis {ϕn} should have the

property that the representation matrices, Γ(X), defined by

Γ̂(X)ϕn =
∑

m

ϕmΓmn(X), ∀X ∈ g, (155)

are easily calculated. This criterion is easily met if {ϕn} is an orthonormal basis for

F with respect to some convenient Hermitian inner product. The objective is then to

determine K matrices such that the desired orthonormal basis functions for H have

expansions

Ψα =
∑

n

ϕnKnα, (156)

and facilitate calculation of the matrices γ(X) of the unitary irrep on H, defined by

Γ̂(X)Ψα =
∑

β

Ψβ γβα(X), ∀X ∈ g. (157)

The matrix representation Γ, defined in terms of the convenient, but fundamentally

arbitrary basis, {ϕn}, for F , is generally neither unitary nor irreducible. However, if we

determine a K matrix that maps the arbitrary basis for F to an orthonormal basis for

H we also determine the γ(X) matrices.

For a unitary irrep, the γ matrices are required to satisfy the identity γ†(X) = γ(X)

for X ∈ g.‡ It then follows that

Γ(X)K = Kγ(X) and K†Γ†(X) = γ(X)K†, ∀X ∈ g. (158)

It also follows that Kγ(X)K† is equal to both Γ(X)KK† and KK†Γ†(X) and, hence,

that

SΓ†(X) = Γ(X)S, ∀X ∈ g, (159)

where S := KK† is the matrix with elements

Smn =
∑

α

KmαK
∗
nα. (160)

The objective is now to find systematic ways to solve Eqn. (159) for the S matrices.

6.2. Making use of good quantum numbers

In solving Eqn. (159), it is advantageous to make use of the fact that, when the desired

orthonormal basis wave functions for H reduce some specified chain of subgroups of

G, they are partially defined and labelled by the unitary irreps of the subgroups in

this chain, which we assume to be known. The subgroup labels then provide a set of

what we shall refer to as good quantum numbers. By this terminology we mean that

‡ We follow the convention of quantum mechanics, most commonly used in physics, in which the

elements of a Lie algebra of observables, in a unitary representation, are represented as Hermitian

operators, e.g., position and momenum observables of a particle are represented by the Hermitian

operators {x̂j = xj} and {p̂ = −i~∂/∂xj}, which satisfy commutation relations [x̂j , p̂k] = i~δj,k.
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functions labelled by different good quantum numbers are automatically orthogonal to

one another.

Let κ denote collectively a set of such good quantum numbers and let α be the

additional multiplicity label required to distinguish different wave functions with the

same κ. Thus, we replace the label α, as used above, by the double label κα so that the

orthonormal basis for H is a set {Ψκα}. Similarly, we can choose a basis for F by a set

{ϕκn}. Because functions in F with different values of the good quantum numbers of κ

are automatically orthogonal with respect to the inner product of H, it follows that the

K and, hence, also the S matrices, become block diagonal. Thus, the basic K-matrix

equations become

Ψκα =
∑

n

ϕκnK
(κ)
nα , (161)

and

S(κ)Γ†
κ,κ′(X) = Γκ,κ′(X)S(κ′), ∀X ∈ g, (162)

where S(κ) := K(κ)K(κ)† and Γκ,κ′(X) are, respectively, the submatrices with elements

S(κ)
mn =

∑

α

K(κ)
mαK

(κ)∗
nα , Γκm,κ′n(X). (163)

Equation (162) is particularly useful because it gives recursion relations for the

determination of the matrices S(κ). Moreover, because these matrices are Hermitian,

they can be diagonalised by a unitary transformation of the {ϕ(κ)
n } basis and brought

to the form S
(κ)
mn = δm,n(k

(κ)
n )2. It follows that a solution of the above equations for the

K(κ) matrices are then given by K
(κ)
nα = δα,nk

(κ)
n , where it is noted that because F is

generally bigger than H many of the k
(κ)
n are zero.

6.3. A more fundamental perspective on K-matrix theory

The above K-matrix methods focus on determining an orthonormal basis of VCS wave

functions. The following approach gives an explicit expression for the above-defined S

matrices and an integral expression for the VCS inner product.

Recall that a VCS wave function for a state |α〉 in the Hilbert space, H, for a given

unitary irrep, T̂ , is defined by the overlap function

Ψα(z) :=
∑

ν

ξν〈ν|T̂ (z)|α〉, for z ∈ Z, (164)

where {|ν〉} is an orthonormal set of basis vectors for an intrinsic subspace H0 ⊂ H,

{ξν} are wave functions for this set, and Z ⊂ GC is chosen such that the Hilbert space,

H, is spanned by the set of states {T̂ †(z)|ν〉, z ∈ Z}.§
§ The intrinsic states can also be functionals on a dense subspace of states in H . The overlaps of

Eqn. (164) are then well-defined for suitably chosen basis vectors, {|α〉} that span this dense subspace.
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Now the fact that the Hilbert space H is spanned by the states {T̂ †(z)|ν〉, z ∈ Z},
means that a complementary set of similar wave functions, with vector values {ψα(z) =
∑

ν ξνψνα(z)}, can be defined such that a vector |α〉 ∈ H has expansion

|α〉 =
∑

ν

∫

Z

T †(x)|ν〉ξ†ν · ψα(x) dv(x), (165)

where dv(z) is a convenient volume element for Z and ξ†µ · ξν = δµ,ν . Thus, the VCS

wave function Ψα is related to the function ψα by the equation

Ψα(x) := Ŝψα(x) =

∫

Z

S(x, y∗) · ψα(y) dv(y), (166)

where Ŝ is the operator with kernel

S(x, y∗) :=
∑

µν

ξµ〈µ|T̂ (x)T †(y)|ν〉ξ†ν. (167)

Moreover, an inner product for the Hilbert space H and a corresponding inner product

for the space of {ψα} functions is now given by

〈α|β〉 =
∫

Z

∫

Z

ψ†
α(x) · S(x, y∗) · ψβ(y) dv(x) dv(y), (168)

Thus, the vectors {|α〉} generated by the functions {ψα}, in accordance with Eqn. (165),

form an orthonormal basis for the Hilbert space H if they satisfy the orthogonalilty

relationship

(ψα, Ŝψβ) :=

∫

Z

∫

Z

ψ†
α(x) · S(x, y∗) · ψβ(y) dv(x) dv(y) = δα,β , (169)

We then obtain the notable result that the functions {ψα} and the VCS wave function

{Ψα = Ŝψα} satisfy the relationship

(ψα,Ψβ) =

∫

Z

ψ†
α(x) ·Ψβ(y) dv(x) = δα,β. (170)

Thus, they are bi-orthogonal duals of each other relative to the inner product (·, ·).
We now consider the construction of an orthonormal basis of VCS wave functions

{Ψα} and their dual counterparts {ψα}. First observe that inserting the identity

operator Î :=
∑

α |α〉〈α| between the operators T̂ (x) and T̂ †(y) in Eqn. (167), reveals

that

S(x, y∗) =
∑

α

Ψα(x)Ψ
†
α(y). (171)

Assuming we can derive the function S(x, y∗), defined by Eqn. (167), the determination

of an orthonormal basis of VCS wave functions {Ψα} from this expression is

straightforward as follows.

Consider the S matrix with elements

Smn := (ϕm, Ŝϕn). (172)
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It is Hermitian and, by Eqn. (171), positive definite. Thus, by a unitary transformation

to a new basis

Φα =
∑

n

ϕnUnα, (173)

it can be brought to the diagonal form

Sαβ =
∑

mn

U∗
mαSmnUnβ = δα,βk

2
α. (174)

The VCS wave functions {Ψα} and their {ψα} counterparts are then defined, for

the non-zero values of kα, by

Ψα := kαΦα, ψα =
1

kα
Φα. (175)

Finally, matrix elements of the VCS representation in an orthonormal basis are

determined from

〈α|T̂ (g)|β〉 = (ψα,Γ(g)Ψβ) =
kβ
kα

(Φα, Γ̂(g)Φβ), g ∈ G. (176)

The above algorithm simplifies considerably when there are good quantum numbers

(as defined in Sect. 6.2). If α is replaced by a double index κα, where κ denotes

collectively a set of good quantum, then S is expressible as the sum

S(x, y∗) =
∑

κα

Ψκα(x)Ψ
†
κα(y). (177)

Then, with an expansion of an orthonormal basis of VCS wave functions

Ψκα(x) =
∑

n

ϕκn(x)K
(κ)
nα , (178)

in a basis, {ϕκα}, for F that is orthonormal with respect to the inner product

(ϕκm, ϕκn) :=

∫

Z

ϕ†
κm(z) · ϕκ′m(z) dv(z) = δκ′,κδm,n, (179)

we obtain S as a sum S =
∑

κ S
(κ) with

S(κ)(x, y∗) =
∑

mnα

ϕκm(x)K
(κ)
mαK

(κ)∗
nα ϕ†

κn(y)

=
∑

mn

ϕκm(x)S
(κ)
mnϕ

†
κn(y). (180)

Thus, a unitary transformation that brings the submatrices S(κ) to the diagonal form

S
(κ)
αβ = δα,β(k

(κ)
α )2, (181)

defines the orthonormal wave functions for the non-zero values of k
(κ)
α

Ψκα := k(κ)α Φκα, ψκα =
1

k
(κ)
α

Φκα, with Φκα =
∑

n

ϕκnU
(κ)
nα , (182)

and we can proceed as above.
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The usefulness of the above are illustrated by their application to scalar coherent

state representations [53]. For example, for the holomorphic SU(1,1) irreps considered

in Sect. 2.3, it is determined that

S(x, y∗) = 〈λ0|exŜ−ey
∗Ŝ+ |λ0〉 = (1− xy∗)−λ, (183)

which, for |x| and |y| < 1, has the Taylor expansion

S(x, y∗) =
∑

ν

(λ+ ν − 1)!

(λ− 1)!ν!
(xy∗)ν =

∑

ν

Ψν(x)Ψ
∗
ν(y), (184)

and gives

Ψν(z) =

√

(λ+ ν − 1)!

(λ− 1)!ν!
xν , ν = 0, 1, 2, . . . ; (185)

cf. Eqn. (33). Thus, an orthonormal basis of scalar coherent state wave functions for

the SU(1,1) irrep with lowest weight λ is given by the set {Ψν , ν = 0, 1, 2, . . .}.

7. Concluding remarks

This article has given representative examples of a few uses of scalar and vector coherent

state representations of Lie algebras. A much greater diversity of representations could

have been given. For example, the standard Schrödinger representation of the Hilbert

space L2(R3) for a particle moving in the Euclidean space R3 can be seen as a coherent

state representation [54] with wave functions expressed, for all vectors |ψ〉 in the dense

subspace of continuously differentiable functions in L2(R3), by

ψ(r) := 〈0| exp (− i

~
r · p̂)|ψ〉, (186)

where p̂ = −i~∇ and 〈0| is the Dirac delta functional defined by

〈0|ψ〉 =
∫

δ(r)ψ(r) dr = ψ(0). (187)

The Schödinger representation of a particle with intrinsic spin can likewise be seen as

a VCS representation [54]. The use of such functionals to define dense subspaces of

scalar and VCS wave functions can also be used profitably to construct representations

other than those of a discrete series (i.e., other than those that appear in the regular

representation). Example of such representations occur widely in physics for systems

whose dynamical groups are semi-direct products with Abelian normal subgroups, e.g.,

Euclidean groups, space groups, the Poincaré group, and rotor model groups.

The examples considered here have been restricted to the unitary irreps of Lie

algebras. However, they have natural extensions to non-unitary representations of

Lie groups and their Lie algebras, such as carried by the finite tensor operator

representations of non-compact Lie algebras. They also have natural extensions to

super-algebras [16, 17].

Another application is to the calculation of the Clebsch-Gordan coefficients needed

to derive the decomposition of a tensor product of two representations of a Lie group
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into a sum of irreps [25, 26]. These coefficients appear in the construction of the irreps

of the direct product of two copies of a group, G × G. If we denote an element

of this product by a pair (g1, g2). then the required Clebsch-Gordan coefficients are

obtained by the construction of the irreps of G×G in a basis that reduces the subgroup

G̃ := {(g, g), g ∈ G} isomorphic to G.

Yet another application is to obtain accurate contraction limits to Lie groups and

their Lie algebras. Such contraction limits occur when some parameter in the definition

of a Lie group or its representation goes to zero or to infinity. This happens, for example,

for large-dimensional representations and for large values of some component of a highest

or lowest weight. Contractions of this kind are important in physics because they

often lead to classical insights and to simple but highly accurate approximations to an

otherwise complex system. Familiar contraction limits occur in non-relativisitic limits

and, in quantum mechanics, when the scales of interest are large compared to those

imposed by the uncertainty principle. Contraction limits are realised, for example, when

the low-energy states of a system behave as though the spectrum generating algebra for

the system were a simple Heisenberg or boson algebra, as in a normal-mode theory of

small amplitude vibrations. Other contraction limits are realised when the low-energy

states of a system behave like those of a rotor. For example, holomorphic representation

in which a Lie algebra of observables is expressed in terms of a set of complex variables

{zi} and their derivatives {∂/∂zi}, with commutation relations

[∂/∂zi , zj ] = δi,j . (188)

can clearly be expressed as boson expansions by the substitution zi → c†i and ∂/∂zi → ci
wtih [ci, c

†
j] = δi,j. The construction given above for the VCS irreps of SU(3) in a basis

of rotor model wave functions, likewise enables a contraction of SU(3) to a semi-direct

product rotor model group.

These many applications demonstrates the power of VCS representation theory as a

tool in the application of symmetry methods in physics. It would therefore be surprising

if it were not also useful in mathematics, at least as a unifying theory that naturally

incorporates the theories of induced representations and geometric quantisation.
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