第30卷第20期	中 国 电 机 工 程 学 报	Vol.30 No.20 Jul.15, 2010
2010年7月15日	Proceedings of the CSEE	©2010 Chin.Soc.for Elec.Eng. 33

文章编号: 0258-8013 (2010) 20-0033-06 中图分类号: TM 85 文献标志码: A 学科分类号: 470-20

燃煤烟气 NO/SO2 对 CI/CI2 形成过程的影响机制

王帅¹,高继慧¹,吴燕燕¹,汪细河²,吴少华¹

(1. 哈尔滨工业大学能源科学与工程学院,黑龙江省 哈尔滨市 150001;

2. 武汉锅炉股份有限公司,湖北省 武汉市 430070)

Effect Mechanism of NO/SO2 on Cl/Cl2 Formation in Coal-fired Flue Gas

WANG Shuai¹, GAO Ji-hui¹, WU Yan-yan¹, WANG Xi-he², WU Shao-hua¹

(1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang Province, China;

2. Wuhan Boiler Co. Ltd., Wuhan 430070, Hubei Province, China)

ABSTRACT: Cl/Cl₂ formation plays a significant role in Hg⁰ conversion process in coal-fired flue gas. This paper presented data taken by kinetic calculations based on a packet of CHEMKIN. The calculations were executed at a typical quench rate of coal-fired flue gas. Effects of NO/SO2 on Cl/Cl2 formation were researched. The results showed that OH was an important reactant during Cl atom formation. A part of NO react with OH, and compete with Cl-atom formation reactions for OH. Thus, NO has an inhibitory effect on Cl atom formation. Furthermore, the product of NO and OH, HONO, may react with Cl atom to form HCl and NO₂. These reactions promote the consumption of Cl atom and finally cause a decrease in Cl₂ concentration. Reaction of SO₂ and O atom promotes the formation of O atom that is obtained by the conversion of OH, and the effect of OH on Cl formation is weakened. These reactions lead SO₂ to inhibit the Cl formation process. Cl₂ is formed mainly through the conversion of Cl atom, so the inhibition to Cl formation also causes an inhibition effect to Cl₂ formation.

KEY WORDS: coal-fired flue gas; Cl/Cl₂; CHEMKIN; chemical kinetics

摘要: 燃煤烟气中 Cl/Cl₂的形成过程对 Hg⁰的转化有重要影响。应用 CHEMKIN 软件包,在典型燃煤烟气温降速率下,通过化学动力学模拟的方法,研究了 NO/SO₂ 对 Cl/Cl₂ 形成 过程的影响,主要得出以下结论: Cl 原子形成过程中 OH 是重要反应物,NO 抑制 Cl 原子形成的原因是由于 NO 会与 Cl 原子生成反应竞争反应物 OH。另外,NO 与 OH 反应 后的产物 HONO 会与 Cl 原子反应生成 HCl 和 NO₂,从而进

一步降低烟气中的 Cl 原子浓度。SO₂ 会大量消耗反应体系中的 O 原子,而 O 原子主要通过 OH 转化生成,O 原子的大量消耗促进了 OH 转化为 O 原子,使得 OH 在 Cl 原子形成过程中的作用被削弱,从而使 SO₂抑制了 Cl 原子形成。 Cl₂主要通过 Cl 原子转化形成,因此 Cl 原子的形成受到抑制将同时导致 Cl₂形成过程受到抑制。

关键词: 燃煤烟气; Cl/Cl₂; CHEMKIN; 化学动力学

0 引言

燃煤电站释放的大量汞元素给环境带来了严 重污染,并对人类健康构成潜在威胁,因而受到广 泛重视,控制燃煤汞的排放则成为近年来燃煤污染 物控制技术领域的热点问题。烟气中汞的形态分布 会直接影响燃煤电站的汞排放量,因此将难以净化 处理的 Hg⁰转化为其他价态汞化合物是主要控制技 术路线。影响 Hg⁰转化的因素比较复杂,而烟气组 分是重要的影响因素。众多研究已证实,烟气中含 Cl 组分是形成 Hg²⁺最主要的氧化剂,烟气中绝大 多数 Hg²⁺以 HgCl₂的形式存在。这表明,研究烟气 中含 Cl 组分的形成过程是研究 Hg⁰形态转化特性 的基础,具有重要价值。

在炉膛内的高温环境中,煤中汞元素将以 Hg⁰ 的形态存在。热力学计算表明,随着烟气温度不断 下降,当烟气温度降低至 975 K 时,烟气中的 Hg⁰ 开始发生形态转化^[1]。在汞均相氧化动力学机制的 研究方面,Sliger、Widmer、Niksa、徐明厚等^[2-5] 先后提出一系列基元反应来描述 Hg⁰的形态转化过 程,这些模型认为 Cl/Cl₂ 分别是 Hg⁰向 HgCl 转化 以及 HgCl 向 HgCl₂转化的主要氧化剂。NO 与 SO₂ 是燃煤烟气中的主要气态污染物,虽然在燃煤烟气

基金项目:国家重点基础研究发展计划项目(973项目) (2006CB200303);国家863高技术基金项目(2007AA05Z307)。

The National Basic Research Program of China (973 Program) (2006CB200303); The National High Technology Research and Development of China 863 Program (2007AA05Z307).

环境下尚未发现其与 Hg 存在直接的化学反应,但 已有研究表明 NO/SO₂ 可通过与 Cl/Cl₂发生反应从 而间接影响 Hg 的转化过程^[6],然而 NO/SO₂ 对 Cl/Cl₂ 形成过程的影响机制尚存在争议。Qiu 等^[7] 认为含 S物质通过式(1)与式(2)影响Cl原子的形成, Zhao 等^[8]则认为 NO/SO₂ 可以与 Cl/Cl₂ 直接反应使 其浓度降低,且 H₂O 会促进这些反应发生。

$$SO + OCl = SO_2 + Cl \tag{1}$$

$$SC1 + O = SO + C1$$
 (2)

针对 Cl/Cl₂ 形成过程的实验研究受实验与测量 方法的限制,实践难度较大,而采用化学动力学模 拟的方法进行研究则成为一种更便捷的有效途径。 本文应用 CHEMKIN 软件包^[9],在典型燃煤烟气温 降速率条件下,通过化学动力学模拟的方法,分析 了 NO/SO₂ 对 Cl/Cl₂ 形成过程的影响机制。

1 研究方法

1.1 机制模型

本文应用的动力学机制直接引自己发表的文献,其中 Hg/Cl 反应机制引自文献[10], SO_x 的影响机制引自文献[11], C/H/O/N/S/Cl 间的机制引自文献[11-16], S/Cl 间的反应参考了文献[17],基元反应速率常数遵循阿雷尼乌斯定律,计算过程中的热力学数据库^[9]。

1.2 组分浓度及温度分布

在本研究中,燃煤烟气组分浓度的设置参考了 文献[2]中的实验条件,如表1所示。高温条件下反 应体系内化学反应速率较快,活性基团的浓度将接 近反应体系在平衡状态下的浓度。因此,当反应体 系温度较高时,平衡状态下的组分浓度近似等于降 温条件下相同温度的烟气组分浓度。本文选择 1200K 作为计算的初始温度,并首先使反应体系达 到1200K 下平衡状态,这主要基于2方面的考虑: 在1200K 的温度条件下使初始烟气组分达到热力 学平衡状态,可以模拟烟气中各种活性组分的产生 过程;通常认为 Hg⁰的转化发生在温度低于 975 K 的烟气中,这一温度范围具有充分性。随后,反应

	表1	烟气组分浓度
bh 1	Cummons	formmoments and commositi

Tab. 1 Summary	of components and composition
组分	浓度
O2	7.43%
CO_2	6.15%
Hg^0	$53 \mu\text{g/m}^3$
HC1	453 µL/L
H_2O	12.3%
N_2	平衡气体

体系的温度从 1 200 K 以 500 K/s 的温降速率下降 至 300 K。整个过程历时 1.8 s,模拟的压力条件为 1.013 25×10⁵ Pa。

1.3 敏感性分析

敏感性分析可以研究计算结果对反应参数变 化的敏感程度,通过敏感性分析可考察各元反应对 整体反应效果影响的大小^[18]。敏感性系数为正,则 该基元反应有利于此组分浓度增大,敏感性系数为 负,则该基元反应有利于此组分浓度减小。敏感性 系数越大的基元反应,对此组分的影响也就越大。

2 计算结果与分析

2.1 NO 对 Cl/Cl₂形成过程的影响机制

敏感度分析的结果表明,式(3)~(7)是影响 Cl/Cl₂形成的主要反应,式(5)~(10)是影响 OH 形成 的主要反应,对这些反应的促进或抑制将直接影响 Cl/Cl₂的形成过程。

$Cl+Cl+M=Cl_2+M$	(3)
Cl+HOCl=HCl+ClO	(4)
$HCl + OH = Cl + H_2O$	(5)
$Cl + HO_2 = OH + ClO$	(6)
$Cl_2 + OH = Cl + HOCl$	(7)
$H_2O + O = OH + OH$	(8)
$HO_2 + OH = H_2O + O_2$	(9)
$OH + HOCl = H_2O + ClO$	(10)

煤粉炉燃煤烟气中 NO_x 的含量通常在 100~ 1000 μL/L 之间^[18],主要以 NO 的形式存在,烟气 中 NO 的存在会影响 Cl/Cl₂形成过程,敏感度分析 表明 NO 影响 Cl 转化的主要反应如式(11)~(12)。

$$NO + OH + M = HONO + M$$
 (11)

(12)

图 1 是在降温反应条件下 NO 对 Cl/Cl₂/OH 含量的影响。可以看出,反应体系中存在 200 μL/L NO 后, Cl 原子、Cl₂、OH 含量在降温过程中均有所降低。图 2 是反应体系中加入 NO 前后 Cl 原子的产率,

 $HONO + Cl = HCl + NO_2$

图 1 降温反应条件下 NO 对 Cl/Cl₂/OH 含量的影响

Fig. 1 Effect of NO on Cl/Cl₂/OH during quench stage

其中负的产率表示 Cl 原子作为反应物被消耗。从 图 2(a)中可以看到,加入 NO 前后反应体系中 Cl 原子的总消耗速率变化微弱,反应体系存在 NO 后, 式(12)在整个降温过程中消耗的 Cl 原子量约占 Cl 原子总量的 40%。从图 2(b)~(f)可以看到,反应体 系中存在 NO 后,式(3)~(7)的反应速率均显著下降。 这表明 NO 通过式(12)消耗 Cl 原子的反应抑制了 Cl 原子参与的其他反应,由于 Cl₂主要通过 Cl 原子 形成,因而其形成过程受到抑制。图 3 是反应体系

内加入 NO 前后的 OH 消耗速率对比。从图 3(a)可 以看出,加入 NO 后,反应体系总的 OH 消耗速率 变化不大,NO 与 OH 通过式(11)的反应在 OH 消耗 过程中有显著影响。从图 3(b)~(d)可以看出,式(5) 作为 Cl 原子生成的主要反应,其消耗 OH 的速率降 低显著,其他反应中,大部分反应的 OH 消耗速率 随着反应体系加入 NO 而降低,这表明 NO 会与其 他反应竞争反应物 OH,从而削弱了这些反应的影响。综上所述,反应体系中存在 NO 后,会与 Cl 原子的生成过程竞争反应物 OH,因而抑制 Cl 原子的形成。NO 与 OH 的生成物 HONO 会与 Cl 原子反应生成 HCl 和 NO₂,进一步降低了烟气中 Cl 原子的浓度,并最终减少 Cl₂ 的生成量。

2.2 SO₂对 Cl/Cl₂形成过程的影响

燃煤电厂烟气中 SO₂ 的浓度通常在 100~2000 μ L/L 之间^[19],已有研究认为,燃煤烟气中的 SO₂ 并不能与 Hg 发生反应^[18],但 SO₂ 会抑制 Hg⁰ 的氧化过程,其对 Hg⁰ 氧化过程的影响是通过与 Cl/Cl₂ 发生的总包反应来实现的^[20]。然而,由于缺 少相关动力学参数,SO₂ 与 Cl/Cl₂ 的反应机制尚不 明确。

图 4 为降温反应条件下 SO₂ 对 Cl/OH/Cl₂ 含量 的影响。从图中可以看出,当烟气中 SO₂浓度增大

时, Cl/Cl₂/OH 含量均呈现降低趋势,表明反应体 系中的 SO₂ 会抑制这 3 种组分的形成。

图 5 为降温过程中 Cl 原子参与的各基元反应的 Cl 原子产率。敏感度分析表明,无论反应体系中是否含有 SO₂, Cl 原子转化过程均主要由式(3)~(7)控制。从图中可以看到,反应体系中加入1000 µL/L SO₂后,总的 Cl 原子产率变化较小,而式(3)~(7)的反应速率均显著降低,表明 SO₂会削弱Cl/Cl₂的形成反应。

图 6 是反应体系中加入 SO₂ 前后,降温过程 OH 的总消耗速率及消耗 OH 主要反应的 OH 消耗 速率。从图 6(a)中可以看出,加入 1000 µL/L SO₂ 后,总的 OH 消耗速率变化微弱,可以忽略。当反 应体系中存在 SO₂时,除式(8)外的其他反应的 OH 消耗速率均有明显下降,而式(8)逆向反应消耗的 OH 却显著增加,这表明 SO₂的存在强化了式(8)的 逆向反应,进而抑制 OH 参与其他反应。

在被削弱的反应中,式(3)是生成 Cl 原子的主要反应,而 OH 作为式(3)的反应物,也将直接影响 Cl 原子的形成过程。从图 6 (b)中可以看出,反应体系中加入 SO₂ 后,式(3)消耗的 OH 量显著下降,这导致 Cl 原子的生成量也随之下降。由于式(8)的逆向反应消耗了更多的 OH,因此式(3)的反应在反应体系中受到抑制。

生成物浓度的降低可以促进反应进行,而反应

Fig. 5 Effect of SO₂ on Cl atom production rate during quench stage

体系 OH 的总消耗速率没有明显变化,因此式(8) 逆向反应得到加强的原因可能是由于反应体系中O 原子被大量消耗所导致。经敏感度分析可知,式(13) 是含 S 组分中消耗 O 原子的主要反应,其反应速率 如图 7 所示。在反应体系中无 SO₂时,式(13)的反 应无法进行,但当反应体系中存在 1000 µL/L SO₂ 后,式(13)的反应速率与图 6 中各反应的速率处于 同一数量级,进而验证了上述推论。

图 7 SO₂ 马 O 原于的反应选举 Fig. 7 Reaction rate between SO₂ and O atom

SO₂+O+M=SO₃+M (13) 综上所述, SO₂与O原子的反应消耗了反应体 系中的O原子,进而强化了式(8)的逆向过程,这使 得式(8)逆反应消耗的OH增加,并导致其他OH参 与的反应均被不同程度的削弱,这其中包括生成 CI原子的关键反应,因此SO₂抑制了CI原子的形成,进而抑制了Cl₂的形成。

3 结论

应用 CHEMKIN 软件包,在典型燃煤烟气温 降速率下,通过化学动力学模拟的方法,研究了 NO 和 SO₂对 Cl/Cl₂形成过程的影响,主要得出以 下结论:

1) Cl 原子形成过程中 OH 是重要反应物, NO 抑制 Cl 原子形成的原因是由于 NO 会与 Cl 原子生 成反应竞争反应物 OH; 另外, NO 与 OH 反应后的 产物 HONO 会与 Cl 原子反应生成 HCl 和 NO₂, 从 而进一步降低烟气中的 Cl 原子浓度。

2) SO₂ 会大量消耗反应体系中的 O 原子,而 O 原子主要通过 OH 转化生成,O 原子的大量消耗促 进了 OH 转化为 O 原子的反应,使得 OH 在 Cl 原 子形成过程中的作用被削弱,从而使 SO₂抑制了 Cl 原子形成。Cl₂主要通过 Cl 原子转化形成,因此 Cl 原子的形成受到抑制将同时导致 Cl₂形成过程受 到抑制。

参考文献

- Senior C L, Sarofim A F, Zeng T F, et al. Gas-phase transformations of mercury in coal-fired power plants[J]. Fuel Process Technol, 2000, 63(2-3): 197-213.
- [2] Sliger R N, Kramlich J C, Marinov N M. Towards the development of a chemical kinetic model for the homogeous oxidation of mercury by chlorine specices[J]. Fuel Processing Technology, 2000, 65-66(6): 423-424.
- [3] Widmer N C, West J, Cole J A. Thermochemical study of mercury oxidation in utility boiler flue gases[C]. 93rd Air & Waste Management Association (A&WMA) Annual Conference and

Exhibition, Salt Lake City, Utah, 2000.

- [4] Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: The importance of NO and H₂O in predicting oxidation in coal-derived systems[J]. Environmental Science & Technology, 2001, 35(18): 3701-3706.
- [5] Xu M H, Qiao Y, Zheng C G, et al. Modeling of homogeneous mercury speciation using detailed chemical kinetics[J]. Combustion and Flame, 2003, 132(1-2): 208-218.
- [6] Agarwal H, Romero C E, Stenger H G. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species[J]. Fuel Processing Technology, 2007, 88(7): 723-730.
- [7] Qiu J R, Sterling R O, Helble J J. Development of an improved model for determining the effects of SO₂ on homogeneous mercury oxidation[C]. 28th International Technical Conference on Coal Utilization and Fuel Systems, Clear Water, Florida, 2003: 187-198.
- [8] Zhao Y X, Mann M D, Olson E S, et al. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions[J]. Journal of the Air & Waste Management Association, 2006, 56(5): 628-635.
- [9] Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.1[M]. San Diego, CA: Reaction Design, 2006: 15-18.
- [10] Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H₂O in predicting oxidation in coal-derived systems[J]. Environmental Science & Technology, 2001, 35(18): 3701-3706.
- [11] Mueller M A, Yetter R A, Dryer F L. Kinetic modeling of the CO/H₂O/O₂/NO/SO₂ system: Implications for high pressure fall-off in the SO₂+O(+M)=SO₃(+M) reaction[J]. International Journal of Chemical Kinetics, 2000, 32(6): 317-339.
- [12] Roesler J F, Yetter R A, Dryer F L. Detailed Kinetic Modeling of Moist CO Oxidation Inhibited by Trace Quantities of HCl[J]. Combustion Science and Technology, 1992, 85(1-6): 1-22.
- [13] Roesler J F, Yetter R A, Dryer F L. Kinetic interactions of CO, NO_x, and HCl emissions in postcombustion gases[J]. Combustion and Flame, 1995, 100(3): 495-504.
- [14] Mueller MA, Yetter RA, Dryer FL. Flow reactor studies and kinetic

modeling of the $H_2/O_2/NO_x$ and $CO/H_2O/O_2/NO_x$ reactions[J]. International Journal of Chemical Kinetics, 1999, 31(10): 705-724.

- [15] Mueller M A, Kim T J, Yetter R A, et al. Flow reactor studies and kinetic modeling of the H₂/O₂ reaction[J]. International Journal of Chemical Kinetics, 1999, 31(2): 113-125.
- [16] Allen M T, Yetter R A, Dryer F L. High pressure studies of moist carbon monoxide nitrous oxide kinetics[J]. Combustion and Flame, 1997, 109(3): 449-470.
- [17] 徐晓光,徐明厚,乔瑜.反应动力学机理简化的研究现状及进展
 [J].煤炭转化,2004,27(4):1-6.
 Xu Xiaoguang, Xu Minghou, Qiao Yu. Overview and progress in the reduction of detailed kinetics mechanism[J]. Coal Conversion, 2004, 27(4):1-6(in Chinese).
- [18] Hall B, Sehager P, Lindqvis O. Chemical reactions of mercury on combustion flue gases[J]. Water Air and Soil Pollution, 1991, 56(4): 3-14.
- [19] 杨立国,段钰锋,王运军,等.新式整体半干法烟气脱硫技术的 脱汞实验研究[J].中国电机工程学报,2008,28(2):66-71.
 Yang Liguo, Duan Yufeng, Wang Yunjun, et al. Investigation on depriving of mercury during novel integrating semi-dry flue gas desulfurization[J]. Proceedings of the CSEE, 2008, 28(2): 66-71(in Chinese).
- [20] Agarwal H, Stenger H G, Wu S, et al. Effects of H₂O, SO₂, and NO on Homogeneous Hg Oxidation by Cl₂[J]. Energy and Fuels, 2006, 20(3): 1068-1075.

收稿日期:2009-11-06。 作者简介:

王帅(1982一),男,博士研究生,研究方向为 燃煤烟气净化技术,wangshuai.hit@gmail.com。

(责任编辑 车德竞)