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Abstract

The convergence property of the discrete Laplace-Beltrami operators is the foundation of conver-
gence analysis of the numerical simulation process of some geometric partial differential equations
which involve the operator. In this paper we propose several simple discretization schemes of Laplace-
Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace-Beltrami
operators are established under various conditions. Numerical results that support the theoretical
analysis are given. Application examples of the proposed discrete Laplace-Beltrami operators in
surface processing and modelling are also presented.
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1 Introduction

Laplace-Beltrami operator, abbreviated as LBO in this paper, is a generalization of the Laplacian from flat
spaces to manifolds. LBO plays a central role in many areas, such as image processing (see [4, 13, 20, 27]),
signal processing (see [25, 26]), surface processing (see [2, 7, 8, 9, 21, 22]), and the study of geometric
partial differential equations (PDE) (see [18, 4, 15, 20]). For instance, the mathematical formulation of
the mean curvature flow, surface diffusion flow (see [15]) and Willmore flow (see [23]) etc. involves the
first and second order LBOs. In solving numerically PDE which involves the classical Laplacian on flat
spaces, a standard technique is to approximate the Laplacian by a finite divided difference. Likewise, the
LBO needs to be discretized in solving the geometric PDEs numerically on surfaces. However, due to the
complexity and the diversity of the discretized surfaces, the discretization of the LBO is not as simple
as the Laplacian over the flat space. In the literature, several discretizations of LBO over surfaces have
been proposed and used. However, to the best of author’s knowledge, none of these discretizations has
been proved to be convergent as the size of surface mesh goes to zero.

The convergence of the discrete LBOs is the foundation for the convergence of some numerical simu-
lation process of PDE which involves the LBO. In this paper we propose several discretization schemes
of the LBOs over triangulated surfaces. Convergence results for these discrete LBOs are obtained under
various special conditions. We also review several already used discrete LB operators including Taubin’s
discretization (see [25], 1995; [26], 2000), Fujiwara’s discretization (see [10], 1995), Desbrun et al’s dis-
cretization (see [8], 1999), Mayer’s discretization (see [15], 2001), Meyer et al’s discretization (see [16],
2002), and Desbrun et al’s discretization (see [9], 2000).

It is well known that LB operator relates closely to the mean curvature normal (see (2.6)). Hence, an
approximation of mean curvature normal may lead to a discretization of the LBO. On the approximation
of curvatures, there exist also many approaches, such as the ones proposed by Chen, Hamann and Taubin
to name a few [6, 12, 24]. However, these approaches do not yield the linear form as (2.7).

The remaining of the paper is organized as follows. In Section 2, we introduce some basic material
on LBO and then review several existing discretizations of the operator. In Section 3, we propose

∗Support in part by NSFC grants 10241004, 10371130, National Innovation Fund 1770900, Chinese Academy of Sciences.

1



several alternatives of the discretization and establish some convergence results. Numerical examples for
comparing these discrete operators are given in Section 5. Possible applications of these discrete operators
are described in Section 6. Section 7 concludes the paper. Some proofs of the theoretical results are put
into Appendix.

2 LBO and its Discretization

To describe the Laplace-Beltrami operator over surfaces precisely, let us introduce some terminology and
notations. Let M ⊂ IR3 be a two-dimensional manifold, and {Uα, xα} be the differentiable structure.
The mapping xα with x ∈ xα(Uα) is called a parameterization of M at x. Denoting the coordinate
Uα as (ξ1, ξ2), then the tangent space TxM at x ∈ M is spanned by { ∂

∂ξ1
, ∂

∂ξ2
}. For a given point

x ∈ xα(Uα) ⊂M, the tangent vector components ∂
∂ξ1

and ∂
∂ξ2

depend upon α, but TxM does not. The
set TM = {(x, v); x ∈M, v ∈ TxM} is called a tangent bundle. Let f ∈ C2(M). The Laplace-Beltrami
operator ∆M applying to f is defined by the duality

(∆Mf, φ)M = −(∇Mf,∇Mφ)TM (2.1)

for all φ ∈ C∞(M), where ∇M is the gradient operator, which is given by (see [5], page 102)

∇Mf = [ t1, t2 ]G−1∇f ∈ IR3, (2.2)

where ∇f =
[

∂f(x(ξ1,ξ2))
∂ξ1

, ∂f(x(ξ1,ξ2))
∂ξ2

]T

∈ IR2, G = [t1, t2]T [t1, t2] =
[

g11 g12

g21 g22

]
, gij = 〈ti, tj〉 and

ti = ∂x
∂ξi

are the tangent vectors. The gradient ∇Mf is geometric intrinsic, though the expression (2.2)
depends on a local surface parameterization. That is we have the following lemma:

Lemma 2.1 Let S ∈ IR2×2 be a nonsingular matrix, and

[t̃1, t̃2] = [t1, t2]S, ∇̃f = ∇f S.

Then [t̃1, t̃2]G̃−1∇̃f = ∇Mf , where G̃ = [t̃1, t̃2]T [t̃1, t̃2].

The inner products in (2.1) are given by

(f, g)M =
∫

M
fgdx, f, g ∈ C0(M),

(φ, ψ)TM =
∫

M
〈φ, ψ〉dx, φ, ψ ∈ TM.

A simple computation leads to the following representations of ∆Mf :

∆Mf =
1√
g

∑

ij

∂

∂ξi

(√
g gij ∂f

∂ξj

)

=
1
2g

[
∂g

∂ξ1
,

∂g

∂ξ2

]
G−1∇f +

[
∂

∂ξ1
,

∂

∂ξ2

] (
G−1∇f

)
(2.3)

=
1
2g

[
∂g

∂ξ1
,

∂g

∂ξ2

]
G−1∇f +

([
∂

∂ξ1
,

∂

∂ξ2

]
G−1

)
∇f

+ g11 ∂2f

∂ξ2
1

+ 2g12 ∂2f

∂ξ1∂ξ2
+ g22 ∂2f

∂ξ2
2

, (2.4)

where gij is defined by G−1 = (gij)ij and g = det(G). Let tij = ∂2x
∂ξi∂ξj

, gijk = 〈ti, tjk〉. Then (2.3) could
be written as

∆Mf =
1
g

[
g11g212 + g22g111 − g12(g211 + g112)
g11g222 + g22g112 − g12(g212 + g122)

]T

G−1∇f +
[

∂

∂ξ1
,

∂

∂ξ2

] (
G−1∇f

)
. (2.5)
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Fig 2.1: Left: The definition of the angles αij and βij . Right: The definition of the area AM (pi).

Let divMψ denote the divergence for a vector field ψ ∈ TM, which is defined as the dual operator of
the gradient (see [19]):

(divMv, φ)M = −(v,∇Mφ)TM, ∀φ ∈ C∞0 (M),

where C∞0 (M) is a subspace of C∞(M), whose elements have compact support. Then it is easy to see
that divM∇M = ∆M. Let p be a surface point of M. Then it is known that (see [28], page 151)

∆Mp = 2H(p) ∈ IR3, (2.6)

where H(p) is the mean curvature normal at p. i.e., ‖H(p)‖ is the mean curvature, H(p)/‖H(p)‖ is the
unit surface normal.

Now we consider the discretization of ∆Mp. Let M be a triangulation of surface M. Let {pi}N
i=1

be the vertex set of M . For vertex pi with valence n, denote by N1(i) = {i1, i2, · · · , in} the set of the
vertex indices of one-ring neighbors of pi. We assume in the following that these i1, · · · , in are arranged
such that the triangles [pipik

pik−1 ] and [pipik
pik+1 ] are in M , and pik

, pik+1 opposite to the edge [pipik
].

For j = ik ∈ N1(i), we use j+ and j− to denote ik+1 and ik−1, respectively, for simplifying the notation.
Furthermore, we use the following convention:

in+1 = i1, i0 = in.

Now we review several existing discretizations of LBO over triangular surfaces.

1. Taubin et al’s Discretization (see [25], 1995; [8], 1999; [26], 2000; [17], 2002).
This is a class of discretizations in the following form

∆(1)
M f(pi) =

∑

j∈N1(i)

wij(f(pj)− f(pi)), (2.7)

where the weights wij are positive numbers and
∑

j∈N1(i)
wij = 1. There are several ways to determine

the weights. A simple way is to take wij = 1/|N1(i)|, where | · | denotes the cardinality of a set. A more
general way is to define them by a positive function φ: wij = φ(pi, pj)/

∑
k∈N1(i)

φ(pi, pk), and function
φ(pi, pj) can be the surface area of the two faces that share the edge [pipj ], or some power of the length
of the edge: φ(pi, pj) = ‖pi − pj‖α. Fujiwara take α = −1 (see [10]). Desbrun et al’s (see [8], 1999)
define wij as wij = cot αij + cot βij/

∑
k∈N1(i)

cot αik + cot βik, where αij and βij are the triangle angles
as shown in Fig 2.1 (left). Polthier’s discretization (see [17]) is similar to the one given by Desbrun et al
(see [8]). He takes wij = 1

2 (cot αij + cot βij), without imposing the normalization condition
∑

wij = 1.
It is easy to see that the discretization (2.7) could not be an approximation of ∆M, since ∆Mpi → 0

as the size of the surface mesh goes to zero.

2. Mayer’s Discretization (see [15], 2001).
Discretizing (3.4) at pi over the triangular surface mesh M , Mayer got the following approximation.

∆(2)
M f(pi) =

1
A(pi)

∑

j∈N1(i)

‖pj− − pj‖+ ‖pj+ − pj‖
2

f(pj)− f(pi)
‖pj − pi‖ , (2.8)
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where A(pi) is the sum of areas of triangles around pi.

3. Desbrun et al’s discretization (see [8], 1999, [9], 2000).
From a differential geometry definition of mean curvature normal, one has

lim
diam(A)→0

3∇A
2A = −H(p), (2.9)

where A is the area of a small region around the point p where the curvature is needed, and ∇ is
the gradient with respect to the (x, y, z) coordinates of p. From (2.9), Desbrun et al get the following
discretization

∆(3)
M f(pi)=

3
A(pi)

∑

j∈N1(i)

cot αij + cot βij

2
[f(pj)− f(pi)], (2.10)

where αij and βij are defined as before. (2.10) could be easily derived from (2.9) by writing A(pi) in the
following form

A(pi) =
∑

j∈N1(i)

1
2

√
‖pj − pi‖2‖pj+ − pi‖2 − (pj − pi, pj+ − pi)2,

and then taking partials of A(pi) with respect to the coordinates of pi.

4. Meyer et al’s discretization (see [16],2002).

∆(4)
M f(pi)=

1
AM (pi)

∑

j∈N1(i)

cot αij + cot βij

2
[f(pj)− f(pi)],

where AM (pi) is an area for vertex pi as shown in Fig 2.1 (right), where qj is the circumcenter point
for the triangle [pj−pjpi] if the triangle is non-obtuse. If the triangle is obtuse, qj is chosen to be the
midpoint of the edge opposite to the obtuse angle.

The discretizations ∆(k)
M f , k = 1, · · · , 4 have been reviewed in [29]. It has been shown that all of

these discretizations are not convergent in the general cases. Only two of them, which are proposed by
Desbrun et al and Meyer et al, converge for some special cases. Now we repeat the convergent results as
follows:

Theorem 2.1 Let M be a triangulation of surface M. Let pi be a vertex of M with valence six, and
let pj be its neighbor vertices for j ∈ N1(i). Suppose pi and pj are on a sufficiently smooth parametric
surface G(ξ1, ξ2) ∈ IR3, and there exist qi, qj such that

pi = G(qi) pj = G(qj) and qj = qj− + qj+ − qi, j ∈ N1(i).

Let f be a sufficiently smooth function over surface M. Then we have

lim
h→0

3
A(pi, h)

∑

j∈N1(i)

cot αij(h) + cot βij(h)
2

[f(pj(h))− f(p)] = ∆Mf(p),

lim
h→0

1
AM (pi, h)

∑

j∈N1(i)

cot αij(h) + cot βij(h)
2

[f(pj(h))− f(p)] = ∆Mf(p),

where pj(h) = G(qj(h)), qj(h) = q + h(qj − q), j ∈ N1(i), and A(pi, h), AM (pi, h), αij(h) and βij(h) are
defined as before from vertices pj(h).

Note that if the domain of the surface G(ξ1, ξ2) is triangulated by the three directional partition (see
Fig. 5.1(a)), then the condition of the theorem is satisfied.
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3 Our Discretization of LBOs

In this section we propose several other alternatives of the discretization of LBO. Let M be a Riemannian
manifold. Let ∂M be the the C∞ boundary of M. Let n be the unit outward normal vector field to the
boundary, and X be a C1 vector field on M with compact support. Then (see [14], page 330)

∫

M
(divMX)dvM =

∫

∂M
〈X, n〉dv∂M, (3.1)

where dvM and dv∂M denote the canonical metric on M and ∂M, respectively. Let f be a C2 smooth
function on M, then ∇Mf is a C1 vector field on M. Let X = ∇Mf in (3.1). Then, since ∆Mf =
divM∇Mf , we have

∫

M
∆MfdvM =

∫

∂M
〈∇Mf, n〉dv∂M. (3.2)

3.1 Indirect discretization

Suppose M be a triangular discretization of M. Let pi be the i-th vertex of M . Then (3.2) could be
approximately discretized as

∆Mf(pi) =
1

2A(pi)

∑

j∈N1(i)

nT
j

[∇Mf(pj) +∇Mf(pj+)
] ‖pj − pj+‖, (3.3)

where Ai is the sum of the areas of the triangles surrounding to pi and nj is the unit outward normal of
the edge [pjpj+ ]. Let n̄j := nj‖pj − pj+‖. Then it is easy to verify that

n̄j =
ñj

2Aj
with ñj = −[(pi − pj , pj − pj+)(pj+ − pi) + (pi − pj+ , pj+ − pj)(pj − pi)],

where Aj is the area of the triangle [pipjpj+ ]. In discretization (3.3), gradient vectors are used. These
gradients need to be discretized further (see Section 4). We therefore call (3.3) as indirect discretization.
For this discretization, we have the following convergent result.

Theorem 3.1 Let pi be a vertex of M with valence n. Suppose pi and pj are on a sufficiently smooth
parametric surface G(ξ1, ξ2) ∈ IR3, for all j ∈ N1(i), and there exist qi, qj ∈ IR2 such that

det[qj− − qi, qj − qi] ∗ det[qj+ − qi, qj − qi] < 0, j ∈ N1(i),

pi = G(qi), pj = G(qj), j ∈ N1(i).

Let f be a smooth function on surface G. Then

lim
h→0

1
2A(pi, h)

∑

j∈N1(i)

nj(h)T
[∇Mf(pj(h)) +∇Mf(pj+(h))

] ‖pj(h)− pj+(h)‖ = ∆Mf(pi),

where pj(h) = G(qj(h)), qj(h) = qi + h(qj − qi) for j ∈ N1(i).

The proof of the theorem is meticulous, we put it into the Appendix. Let ∇Mf be a discretization of
∇Mf . Then it is easy from the proof of Theorem 3.1 to obtain the following conclusion:

Corollary 3.1 Under the condition of Theorem 3.1, if

∇Mf(pj(h)) = ∇Mf(pj(h)) + O(h2), j ∈ N1(i),

then

lim
h→0

1
2A(pi, h)

∑

j∈N1(i)

nj(h)T
[∇Mf(pj(h)) +∇Mf(pj+(h))

] ‖pj(h)− pj+(h)‖ = ∆Mf(pi).
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3.2 Direct Discretization

A. Discretization via Gauss Formula
Since (3.2) could be written as

∫

M
∆MfdvM =

∫

∂M
∂nfdv∂M, (3.4)

we can derive the following discretization

∆(D)
M f(pi) =

1
A(pi)

∑

j∈N1(i)

f̄j − f̄ ′j
‖n̄j − n̄′j‖

‖pj − pj+‖, (3.5)

where

n̄j = − (pi − pj , pj − pj+)(pj+ − pi) + (pi − pj+ , pj+ − pj)(pj − pi)
2Aj

, (3.6)

n̄′j = − (p′j − pj , pj − pj+)(pj+ − p′j) + (p′j − pj+ , pj+ − pj)(pj − p′j)
2A′j

, (3.7)

f̄j = − (pi − pj , pj − pj+)(fj+ − fi) + (pi − pj+ , pj+ − pj)(fj − fi)
2Aj

, (3.8)

f̄ ′j = − (p′j − pj , pj − pj+)(fj+ − f ′j) + (p′j − pj+ , pj+ − pj)(fj − f ′j)
2A′j

, (3.9)

Aj and A′j are the areas of the triangles [pipjpj+ ] and [p′jpjpj+ ], respectively, fj = f(pj), p′j is the opposite
vertex of pi to the edge [pjpj+ ], and f ′j = f(p′j). Note that nj and n′j are vectors perpendicular to the
edge [pjpj+ ] with length ‖pj − pj+‖, and in the triangles [pipjpj+ ] and [p′jpjpj+ ], respectively. Hence,

f̄j−f̄ ′j
‖n̄j−n̄′j‖ is an approximation of ∂nf on the edge [pjpj+ ].

Theorem 3.2 Let pi be a vertex of M with valence n. Suppose pi, pj and p′j are on a sufficiently smooth
parametric surface G(ξ1, ξ2) ∈ IR3, for all j ∈ N1(i), and there exist qi, qj and q′j in IR2 such that

qj + qj+ = qi + q′j j ∈ N1(i),

pi = G(qi), pj = G(qj), p′j = G(q′j) j ∈ N1(i).

Let f be a smooth function on surface G. Then

lim
h→0

1
A(pi, h)

∑

j∈N1(i)

f̄j(h)− f̄ ′j(h)
‖n̄j(h)− n̄′j(h)‖‖pj(h)− pj+(h)‖ = ∆Mf(pi), (3.10)

where n̄j(h), n̄′j(h), f̄j(h) and f̄ ′j(h) are defined as (3.6)–(3.9) using pj(h) = G(qj(h)), p′j(h) = G(q′j(h))
with qj(h) = qi + h(qj − qi), q′j(h) = qi + h(q′j − qi) for j ∈ N1(i).

Proof. We can derive that under the condition of the theorem

f̄j(h)− f̄ ′j(h)
‖n̄j(h)− n̄′j(h)‖‖pj(h)− pj+(h)‖ = n̄j(h)T ∇Mf(pj(h)) +∇Mf(pj+(h))

2
+ O(h3).

Then the convergence result (3.10) follows from the proof of Theorem 3.1.

B. Discretization via Quadratic Fitting
Now we use a biquadratic fit of the surface data and function data to calculate the approximate LBO.

Let pi be a vertex of M with valence n, pj be its neighbor vertices for j ∈ N1(i), and assume that [pipjpj+ ]
are the neighbor triangles of pi. Then the biquadratic fit is computed as follows:
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1. Compute angles

αk = cos−1[(pik
− pi, pik+1 − pi)/‖pik

− pi‖‖pik+1 − pi‖], k = 1, · · · , n,

and then compute the angles βk = 2παk/
∑n

j=1 αj

2. Set q0 = (0, 0) and

qk = ‖pik
− pi‖(cosθk, sinθk), θk = β1 + · · ·+ βk−1, k = 1, · · · , n (θ1 = 0).

3. Take the basis functions {Bl(ξ1, ξ2)}5l=0 = {1, ξ1, ξ2,
1
2ξ2

1 , ξ1ξ2,
1
2ξ2

2}, and determine the coefficient
cl ∈ IR3 so that

5∑

l=0

clBl(qk) = pik
, k = 0, · · · , n (assume i0 = i)

in the lease square sense. This system is solved by solving the normal equation. Let A =
(Bl(qk))n,5

k=0,l=0 ∈ IR(n+1)×6, and let C = (AT A)−1AT ∈ IR6×(n+1), then

[c0, · · · , c5]T = C[pi0 , · · · , pin
]T .

4. Let

[d0, · · · , d5]T = C[f(pi0), · · · , f(pin
)]T .

Then compute LBO of f̃ =
∑5

l=0 dlBk(ξ1, ξ2) over the surface G̃ =
∑5

l=0 clBl(ξ1, ξ2) at (0, 0), using
the formula (2.4). We denote this approximate LBO as ∆(F )

M f(pi), where the superscript “F” stands
for “fitting”. It is easy to see that

t1 = c1, t2 = c1, t11 = c3, t12 = c4, t22 = c5.

Denote the second, third, fourth, fifth and sixth rows of C as C1, C2, C20, C11 and C02, respectively,
then we can see that

∂f
∂ξj

= Cj [f(pi0), · · · , f(pin
)]T , j = 1, 2,

∂2f
∂ξjξk

= Cjk[f(pi0), · · · , f(pin
)]T , j + k = 2.

Substituting these quantities into (2.4), we will get an approximation of LBO as

∆(F )
M f(pi) =

n∑

k=0

wkf(pik
). (3.11)

Note that the coefficients wk depend only on the geometric data of the mesh M .

The construction algorithm above may fail in the following two cases. a. The system is under-
determined in the case n = 3 or n = 4. b. The coefficient matrix of the normal equation is singular or
nearly singular. For case a, we will replace the basis functions by {Bl(ξ1, ξ2)}5l=1 = {1, ξ1, ξ2,

1
2 (ξ2

1 + ξ2
2)},

and solve the fitting problem in a lower dimensional space. For case b, we look for a least square solution
with minimal normal. Let AT Ax = b be the linear system in the matrix form. We find a least square
solution such that ‖x‖2 = min. Such a solution could be computed by the SVD decomposition of AT A
(see [11], Chapter 5).

4 Discretization of Gradient

The discretization (3.3) of the LBO in the last section requires the gradient vector of f at each vertex.
Hence we need to discretize the gradient further. In this section, we propose two simple approaches for
discretizing the gradient.
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4.1 Discretization via Linear Approximation

Let Tj = [pipjpj+ ] be a triangle adjacent to vertex pi. Then by a linear interpolation of the surface and
function on the surface, we can derive that the gradient can be approximated on the triangle by

∇Tj f =
1

4A2
j

{
fi[(pi − pj , pj − pj+)(pj+ − pi) + (pi − pj+ , pj+ − pj)(pj − pi)]

+ fj [(pj − pi, pi − pj+)(pj+ − pj) + (pj − pj+ , pj+ − pi)(pi − pj)] (4.1)
+fj+ [(pj+ − pj , pj − pi)(pi − pj+) + (pj+ − pi, pi − pj)(pj − pj+)]

}
,

where Aj denotes the area of Tj . Having approximate gradients on triangles, the gradient at a vertex pi

can be approximated by a weighted average of the gradients on the surrounding triangles of pi:

∇(A)
M f(pi) =

1
A(pi)

∑

j∈N1(i)

Aj∇Tj f, (4.2)

where A(pi) =
∑

j∈N1(i)
Aj . The superscript “A” of ∇(A)

M stands for “averaging”.

Theorem 4.1 Under the conditions of Theorem 3.1, we have

∇(A)
M f(pi) = ∇Mf(pi) + O(h). (4.3)

Furthermore, if

n = 2m, qik+m
(h) = qi − h(qik

− qi) for k = 1, 2, · · · ,m, (4.4)

then

∇(A)
M f(pi) = ∇Mf(pi) + O(h2). (4.5)

See Appendix for the proof of the theorem.

4.2 Discretization via Loop’s Subdivision

It follows from (2.2) that, the computation of gradient involves the computation of the surface tangents
t1, t2 and partials ∂f

∂ξ1
, ∂f

∂ξ2
under a local parameterization of the surface. Now we compute these quantities

from the limit surface G̃ and the limit function f̃ of the Loop’s subdivision for the triangular surface
mesh M and the function f on the surface. We denote these tangents and partials by t̃1, t̃2, ∂f̃

∂ξ1
, ∂f̃

∂ξ2
. At

a vertex pi with surrounding vertices pij , ij ∈ N1(i), the tangent directions corresponding to the edge
[pipij ] is given by (see [3])

t̃k = cos
2π(k − 1)

n
a0
1 + sin

2π(k − 1)
n

a0
n−1

=
2
n

n∑

j=1

cos
2π(j − k)

n
pij

, k = 1, 2, · · · , n,

where

a0
1 =

2
n

n∑

j=1

cos
2π(j − 1)

n
pij

, a0
n−1 =

2
n

n∑

j=1

sin
2π(j − 1)

n
pij

.

Similarly, partials of f̃ corresponding to the edge [pipij ] is given by

∂f

∂ξk
=

2
n

n∑

j=1

cos
2π(j − k)

n
f(pij

), k = 1, 2, · · · , n.
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Therefore, we get an approximation of ∇M as follows

∇(L)
M f(pi) = [pi1 , · · · , pin

][V1, V2]G−1
M [V1, V2]T [f(pi1), · · · , f(pin

)]T ,

where

Vk =
2
n

[
cos

2π(1− k)
n

, cos
2π(2− k)

n
, · · · , cos

2π(n− k)
n

]T

∈ IRn, k = 1, 2,

and GM = [t̃1, t̃2]T [t̃1, t̃2]. Note that

n∑

j=1

cos
2π(j − k)

n
= 0, k = 1, · · · , n, (4.6)

and ∇(L)
M f(pi) does not depend on vertex pi and function value f(pi).

Theorem 4.2 Under the conditions of Theorem 3.1, we have

∇(L)
M f(pi) = ∇Mf(pi) + O(h). (4.7)

Furthermore, if n = 2m, and the condition (4.4) holds, then

∇(L)
M f(pi) = ∇Mf(pi) + O(h2) (4.8)

Again, we put the proof of this theorem into the Appendix.

4.3 Remarks on the Discretizations of gradient and LBO

We have proposed two simple schemes for computing the approximate gradient. Both the average gradient
∇(A)

M f(pi) from linear interpolation and the gradient ∇(L)
M f(pi) from Loop’s subdivision have close forms,

therefore they are easy to use and easy to compute.
Both the approximate gradients have linear convergent rate. For a special case, where the valence of

a vertex pi is an even number and the domain triangulation has certain symmetric property (see (4.4)),
∇(A)

M f(pi) and ∇(L)
M f(pi) have quadratic convergent rate, and therefore the resulting discrete LBOs,

denoted as ∆(A)
M f(pi) and ∆(L)

M f(pi), are convergent. In many applications, the condition (4.4) could be
satisfied. For instance, suppose we have a sequence of hierarchical triangular surface mesh generated by
Loop’s subdivision, conditions for quadratic convergence are satisfied at each regular vertex.

The direct discretization ∆(D)
M f(pi) is also simple and has a close form, and it converges under another

condition. This discretization as well as ∇(A)
M f(pi) and ∇(L)

M f(pi) involve two-ring neighbor vertices of
pi. We call the collection of the involved vertices of a discrete LBO as its support. Hence, ∇(A)

M f(pi),
∇(L)

M f(pi) and ∆(D)
M f(pi) have larger supports.

The discrete LBO ∆(F )
M f(pi) obtained from the biquadratic fitting requires to solve a 6×6 linear system

in the least square sense at each vertex. Hence it is not as simple as the other three. However, ∆(F )
M f(pi)

converges in general, except for the vertices with valence n = 3, 4. Furthermore, this discretization
involves one-ring neighbor vertices rather than two-ring. If two-ring vertices are used, the convergence is
guaranteed even for n = 3, 4.

Comparing these discrete LBOs, we can see that from approximation power point of view, ∆(F )
M is the

best, ∆(2)
M is the worst. From simplicity point of view ∆(3)

M and ∆(4)
M are the best, while ∆(F )

M is the worst.
Others are good under some special conditions. Depending on the natural of the application problem to
be solved, one may choose a proper convergent discrete LBO to achieve one’s goal. If none of the ∆(3)

M ,
∆(4)

M , ∆(A)
M , ∆(L)

M and ∆(D)
M satisfy the required convergent condition, we at least have ∆(F )

M in hand.
The convergence results are established under various special conditions. However, these special

cases are very useful and important, because many numerical simulations of geometric partial differential
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Fig 5.1: The triangulation of the domain. (a) Three directional triangular partition. (b). Four directional
triangular partition. (c) Unstructured triangular partition.

equations are conducted over a triangulated domain formed by a uniform three-directional partition
or four-directional partition (see Fig. 5.1) (a) and (b)). The three-directional partition satisfies the
conditions of all the convergence theorems. The four-directional partition satisfies the conditions of
Theorem 4.1 and 4.2.

Finally, we point out that the given conditions in each of the convergence theorems are sufficient only.
This means that there may be other conditions under which the discrete LBOs converge. The problem
searching for necessary and sufficient conditions for the convergence of these discrete LBOs is left open.

5 Numerical Experiments

The aim of this section is to exhibit the numerical behaviors of the discrete LBOs defined in Section 2
and 3. To show the numerical convergence of the discrete LBOs, we take several two variable functions:

F1(x, y) =
√

4− (x− 0.5)2 − (y − 0.5)2,
F2(x, y) = tanh(9y − 9x),

F3(x, y) =
1.25 + cos(5.4y)
6 + 6(3x− 1)2

,

F4(x, y) = exp
(
−81

16
[
(x− 0.5)2 + (y − 0.5)2

])
.

over xy-plane as three dimensional surfaces so that the exact mean curvatures can be easily com-
puted. Both the exact and approximated mean curvatures are computed at some selected domain points
qij = (xi, yj). As a first case, these points are chosen as (xi, yj) = ( i

20 , j
20 ) for i = 1, · · · , 19, j = 1, · · · , 19.

The surfaces are triangulated around qij by triangulating the domain first, and then mapping the planner
triangulation onto the surfaces by the selected bivariate functions. The domain around qij is triangulated
locally in two different ways as shown in Fig. 5.1(a), 5.1(b), to illustrate how the domain triangula-
tion affect the convergence. The second case we consider is that we choose an unstructured domain
triangulation as shown in Fig. 5.1(c). For observing the convergence/non-convergence property, finer
and finer domain triangulations are generated. For case (a) and (b) in Fig. 5.1, h are taken to be
2−3, 2−5, 2−7, · · · . For case (c), the domain is recursively subdivided by the bisection linear subdivi-
sion. Hence, h = h0, h0/2, h0/4, · · · , where h0 = 0.3354 is the maximal value of the edge lengths of the
triangulation as shown in Fig. 5.1(c).

The experiments show that as h → 0, the maximal error of the approximated mean curvature ap-
proaches to Chk for a constant C and a certain k. For example, for the domain triangulation as shown in
Fig 5.1(a) and function F1, the maximal error of the approximated mean curvature computed by (2.8) and
the exact mean curvature computed from the continuous surfaces is as follows: 0.36362, 0.36356, 0.36356,
0.36355, 0.36355, 0.36355, 0.36355, 0.36355, 0.36355, 0.36355 for h = 2−3, 2−5, 2−7, · · · , 2−21. Table
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5.1 shows the asymptotic values of the maximal error of the approximated mean curvature computed
by discrete LBOs and the exact mean curvature computed from the continuous surfaces for the domain
triangulation as shown in Fig. 5.1(a). This domain triangulation satisfies the conditions of Theorem 2.1,
3.2, 4.1 and 4.2. Hence convergence property is observed for ∆(3), ∆(4), ∆(A), ∆(L), ∆(D) and, of course,
∆(F ). Furthermore, the convergence rates are quadratic.

Table 5.1: The maximal Errors for domain (a)
Fi ∆(2) ∆(3) ∆(4) ∆(A) ∆(L) ∆(F ) ∆(D)

F1 3.64e–1 1.23e–1*h2 1.19e–1*h2 4.35e–2*h2 1.63e–1*h2 9.30e–2*h2 8.99e–2*h2

F2 4.66e+0 4.34e+2*h2 4.34e+2*h2 1.16e+3*h2 9.59e+2*h2 2.85e+2*h2 8.92e+2*h2

F3 3.68e+0 2.03e+2*h2 1.38e+2*h2 7.12e+2*h2 5.77e+2*h2 4.90e+1*h2 5.07e+2*h2

F4 6.13e+0 7.19e+2*h2 6.79e+2*h2 2.14e+3*h2 1.51e+3*h2 1.37e+2*h2 1.42e+3*h2

Table 5.2 shows the asymptotic value of the maximal error for the domain triangulation as shown in
Fig. 5.1(b). This domain triangulation satisfies the conditions of Theorem 4.1 and 4.2. Hence convergence
property is observed for ∆(A), ∆(L) and ∆(F ). An exceptional case is that ∆(4) converges for the surface
defined by F2. Though the conditions of Theorem 3.2 is not satisfied directly, ∆(D) converges, the reason
is that if we merge the two triangles near qij in each quadrant into one, then we can see that the condition
of Theorem 3.2 is really satisfied.

Table 5.2: The maximal Errors for domain (b)
Fi ∆(2) ∆(3) ∆(4) ∆(A) ∆(L) ∆(F ) ∆(D)

F1 3.96e–1 2.51e–1 1.64e–2 3.12e–2*h2 5.55e–2*h2 5.57e–2*h2 1.56e–2*h2

F2 4.23e+0 2.11e+0 4.34e+2*h2 1.18e+3*h2 9.60e+2*h2 2.85e+2*h2 1.12e+3*h2

F3 4.07e+0 2.58e+0 5.49e–1 3.90e+2*h2 3.16e+2*h2 9.86e+1*h2 2.42e+2*h2

F4 6.68e+0 4.39e+0 1.06e+0 1.19e+3*h2 8.26e+2*h2 1.59e+2*h2 7.75e+2*h2

Table 5.3 shows the asymptotic value of the maximal error for the domain triangulation as shown
in Fig. 5.1(c). This domain triangulation does not satisfy the conditions of Theorem 2.1, 4.1 and 4.2.
Hence no convergence property is observed for ∆(3), ∆(4), ∆(A) and ∆(L). But approximation property
is observed for these discrete operators. However, ∆(2) has no approximation property (error increase in
the rate O(h−1)). The linear subdivision of the domain makes the conditions of Theorem 3.2 be satisfied,
hence convergent property is observed for ∆(D). This is an interesting case, because for Loop’s surface
subdivision scheme, the domain of the Loop’s surface is undergoing linear subdivision. Therefore, ∆(D)

over the Loop’s subdivision surface mesh will converge at the each ordinary vertex as the subdivision
process is repeated. In computing the maximal error of ∆(F ) we have excluded a vertex which is near
the origin, because this vertex has valence 4. ∆(F ) will not converge at this point.

Table 5.3: The maximal Errors for domain (c)
Fi ∆(2) ∆(3) ∆(4) ∆(A) ∆(L) ∆(F ) ∆(D)

F1 1.01e+0*h−1 4.23e–1 9.81e–2 1.78e–1 1.91e–1 2.26e–2*h2 9.11e–3*h
F2 1.01e+0*h−1 5.07e+0 4.80e+0 7.82e–1 1.21e+0 8.99e+0*h 1.46e+1*h
F3 1.02e+0*h−1 9.60e–1 3.72e–1 4.13e–1 4.55e–1 3.18e–1*h 8.15e+0*h
F4 1.27e+0*h−1 3.52e+0 1.30e+0 8.98e–1 8.51e–1 8.32e–1*h 1.52e+1*h

Finally, we illustrate how the supports of the discrete LBOs affect approximation errors. Table 5.4
shows the maximal error for the domain triangulation as shown in Fig. 5.1(a) with a fixed triangulation
(h = 2−5). Exact mean curvature at each point is computed from the given function. The approximated
mean curvature is computed from discrete data. But we perturb randomly the discrete function value
with 0.1%, to show that the discrete LBOs with larger supports are insensitive to the higher frequency
errors. The results in the table show that the discrete LBOs with larger supports usually give better
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results. Time costs (in second) for computing the data in Table 5.4 are summarized in Table 5.5. The
computation is conducted on a Dell PC equipped with an Intel(R) CPU (1.90GHz).

Table 5.4: The maximal Errors for domain (a) with h = 2−6

Fi ∆(2) ∆(3) ∆(4) ∆(A) ∆(L) ∆(F ) ∆(D)

F1 3.697 7.158 7.489 0.912 1.058 7.081 2.850
F2 5.719 3.010 3.263 1.049 0.945 2.603 1.083
F3 3.522 0.635 0.505 0.643 0.531 0.591 0.625
F4 7.395 2.539 2.353 1.827 1.484 1.887 1.872

Table 5.5: Time costs for the computation of Table 5.4
Fi ∆(2) ∆(3) ∆(4) ∆(A) ∆(L) ∆(F ) ∆(D)

F1 0.025 0.026 0.041 0.068 0.052 0.032 0.028
F2 0.026 0.029 0.042 0.074 0.054 0.036 0.032
F3 0.031 0.032 0.047 0.082 0.059 0.038 0.034
F4 0.025 0.031 0.042 0.072 0.053 0.035 0.029

6 Applications of Discrete LBOs

An obvious application of the discrete LBOs is use them to compute approximated mean curvatures from
a triangulated surface as we did in the last section. We have illustrate that the discrete LBOs with larger
supports usually works better for noisy data. One of our main purposes for proposing these discrete
LBOs is for solving geometric partial differential equations, such as numerical simulation of various
geometric flows (mean curvature flow, surface diffusion flow, Willmore flow etc.), surface smoothing,
surface construction and surface image processing. In the following, we give a few examples that show
the applications in these problems. We refer the interested readers to [30] for detail descriptions of various
geometric PDEs and how these PDEs are solved with given boundary conditions.
Simulation of Geometric Flows. The aim of the simulation of the geometric flow is to see how
the surface evolves under the flow. Fig. 6.1 show some simple examples of the simulation of the mean
curvature flow, the averaged mean curvature flow, surface diffusion flow and Willmore flow with the input
four pipes serving as boundary constraints (Fig. 6.1(a)). We use the solutions of these geometric flows
to blend the input four pipes. ∆M in these flows is approximated by ∆(F )

M . Fig. 6.1(b) shows an initial
blending mesh construction of the pipes which defines the topology of evolved surface and serves as an
initial condition. (c), (d), (e) and (f) are numerical solutions of the mean curvature flow, averaged mean
curvature flow, the surface diffusion flow and the Willmore flow, respectively. All these solutions are
obtained after 100 iterations with time step length 0.001. The solution of the mean curvature flow at
this stage is still undergoing rapid change, further evolution will lead to a pinch-off of the surface. The
solutions of the other three flows are almost stable at this moment.
Surface Hole Filling. Given a surface mesh with a hole, we construct a fair surface to fill the hole with
specified geometric continuity on the boundary. Fig 6.1(g)–(i) show such an example, where a head mesh
with a hole at the nose is given (figure (g)) with G1 continuity requirement. An initial G0 construction
of the nose is shown in (h) using the method in [1] with some noise added. The fair filling surface (figures
(i)) are generated using the surface diffusion flow. ∆M in the flow is discretized as ∆(F )

M .
Surface Smoothing. Given a surface mesh with noise, now we use the following mean curvature flow
to smooth the surface:

∂x

∂t
= −a(x)∆M(x),

where a(x) > 0 is a function which is adaptive to the mesh density. We choose it as Ai/A at vertex pi,
where A is the average of all Ai. Fig. 6.1(j) shows an input noisy mesh. (k) is the smoothing result
after 6 iterations using discrete LBO ∆(A)

M with time step-length 0.001. (l) is the smooth result of (k)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig 6.1: (a) shows four input pipes which serve as boundary constraints of the evolving surface. (b) shows

an initial blending mesh construction of the pipes. (c), (d), (e) and (f) show numerical solutions of the mean

curvature flow, the averaged mean curvature flow, the surface diffusion flow and the Willmore flow, respectively.

All these solutions are obtained after 100 iterations with time step length 0.001. (g) shows a head mesh with a

hole around the nose. (h) shows an initial filler construction of the brandy nose. (i) is the faired filler surface,

after 1 iteration, generated using surface diffusion flow. The time step length is chosen to be 0.0001. Fig. (j),

(k) and (l) show the denoising effect of discrete LBOs, where (j) shows the input. (k) and (l) are the smoothing

results after 6 and 12 iterations with time step-length 0.001.
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after another 6 iterations using discrete LBO ∆(F )
M with the same time step-length. Since ∆(A)

M has
larger support, it will affect low frequency noise and insensitive to the higher frequency error. Hence the
combination use of the discrete LBOs with different sizes of support can yield more desirable results. The
deliberated use of these discrete LBOs on denoising is beyond the scope of this paper. We shall report
our research results on this aspect elsewhere.

7 Conclusions

We have proposed several discretization schemes for LBO on the triangular surfaces. The presented
numerical and application examples show that these discrete LBOs can be applied in solving geometric
PDEs or surface processing, or to compute the approximate values of LBO acting on discrete function
on surface. Convergence results under some specified conditions are established and these theoretical
results are verified by numerical examples. We also show that the discrete LBOs with larger supports are
insensitive to higher frequency errors. Hence they have antinoise property when applying them to noise
data.

8 Appendix

The proof Theorem 3.1. For simplifying the notation in this proof, we assume i = 0 and N1(i) =
{1, 2, · · · , n}. Let

dj = (cj , sj) := (cosθj , sinθj) := (qj − q0)/‖qj − q0‖.

and assume that θ1 > θ2 > · · · > θn. Then

qj(h) = q0 + hwjdj

with wj = ‖qj − q0‖. Now we compute Aj(h) and n̄j(h). Since

4Aj(h)2 = ‖pj(h)− p0‖2‖pj+1(h)− p0‖2 − (pj(h)− p0, pj+1(h)− p0)2,

ñj(h) = −[(p0 − pj(h), pj(h)− pj+1(h))(pj+1(h)− p0) + (p0 − pj+1(h), pj+1(h)− pj(h))(pj(h)− p0)],

we can derive that

4Aj(h)2 = w2
j w2

j+1(cj+1sj − cjsj+1)2(g11g22 − g2
12)h

4 + O(h5).

Since

cj+1sj − cjsj+1 = sin(θj − θj+1) > 0,

we have

2Aj(h) = wjwj+1(cj+1sj − cjsj+1)
√

gh2 + O(h3)

and

ñj(h) = wjwj+1(cj+1sj − cjsj+1)h3g[t1, t2]G−1Sj + O(h4)

with Sj =
[

sjwj − sj+1wj+1

cj+1wj+1 − cjwj

]
. Hence

n̄j(h) = ñj(h)/(2Aj(h)) = h
√

g[t1, t2]G−1Sj + O(h2).
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Now we compute ∇Mf(pj(h)) by Taylor expansion. It follows from (2.2) that

∇Mf(pj(h)) = ∇Mf(p0) + hwjDdj
([t1, t2]G−1∇Mf(p))

∣∣
p=p0

+ O(h2)

= ∇Mf(p0) + hwjDdj
([t1, t2])G−1∇f(p0))

+ hwj [t1, t2]Ddj
[G−1∇f(p)]

∣∣
p=p0

+ O(h2)

= ∇Mf(p0) + hwj [cjt11 + sjt12, cjt12 + sjt22]G−1∇f(p0))
+ hwj [t1, t2]Ddj

[G−1∇f(p)]
∣∣
p=p0

+ O(h2).

Hence

∇Mf(pj(h)) +∇Mf(pj+1(h))
2

= ∇Mf(p0)

+
h

2
{(wjcj + wj+1cj+1)[t11, t12] + (wjsj + wj+1sj+1)[t12, t22]}G−1∇f(p0)

+
h

2
[t1, t2](wjDdj

+ wj+1Ddj+1)[G
−1∇f(p)]

∣∣∣∣
p=p0

+ O(h2),

and therefore

n̄j(h)T ∇Mf(pj(h)) +∇Mf(pj+1(h))
2

= h
√

gST
j G−1[t1, t2]T∇f(p0) (8.1)

+
h2

2
√

gST
j G−1[(wjcj + wj+1cj+1)G1 + (wjsj + wj+1sj+1)G2]G−1∇f(p0) (8.2)

+
h2

2
√

g(wjDdj
+ wj+1Ddj+1)S

T
j [G−1∇f(p)]

∣∣∣∣
p=p0

+ O(h3), (8.3)

where

G1 =
[

g111 g112

g211 g212

]
, G2 =

[
g112 g122

g212 g222

]
.

Now we consider the sum of n̄j(h)T ∇Mf(pj(h))+∇Mf(pj+1(h))
2 . Since

∑n
j=1 ST

j = 0, the sum of right-handed
side of (8.1) is zero. The sum of the term (8.2) is

h2√g

2




n∑

j=1

ST
j (wjcj + wj+1cj+1)G−1G1 +

n∑

j=1

ST
j (wjsj + wj+1sj+1)G−1G2


G−1∇f(p0).

Since
n∑

j=1

ST
j (wjcj + wj+1cj+1) =

n∑

j=1

[
w2

j cjsj − w2
j+1cj+1sj+1 + wjwj+1(cj+1sj − cjsj+1)

(cj+1wj+1)2 − (cjwj)2

]T

= [α, 0],

and similarly

n∑

j=1

ST
j (wjsj + wj+1sj+1) = [0, α]

with α =
∑n

j=1 wjwj+1(cj+1sj − cjsj+1), the sum of (8.2) is

h2α

2
√

g

[
g11g212 + g22g111 − g12(g211 + g112)
g11g222 + g22g112 − g12(g212 + g122)

]T

G−1∇f(p0). (8.4)
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Since A(pi, h) =
∑

Aj(h) = h2α
√

g

2 , dividing (8.4) by A(pi, h), we obtain the first term of the right-handed
side of (2.5). Now we compute the sum of the first term of (8.3). Since

wjDdj
+ wj+1Ddj+1 =

[
∂

∂ξ1
,

∂

∂ξ2

]
S̃j ,

where S̃j = [wjcj + wj+1cj+1, wjsj + wj+1sj+1]T . The sum of the first term of (8.3) is

h2√g

2

[
∂

∂ξ1
,

∂

∂ξ2

] n∑

j=1

S̃jS
T
j [G−1∇Mf(p)]

∣∣∣∣∣∣
p=p0

=
h2√g

2

[
∂

∂ξ1
,

∂

∂ξ2

] [
α 0
0 α

] [
G−1∇Mf(p)

]∣∣∣∣
p=p0

=
h2α

√
g

2

[
∂

∂ξ1
,

∂

∂ξ2

] [
G−1∇Mf(p)

]∣∣∣∣
p=p0

Dividing this term by A(pi, h), we obtain the last term of (2.5). Therefore, the theorem is proved. 3

The Proof of Theorem 4.1. Consider ∇Tj
f . Let

qj(h) = qi + wjh(cj , sj)T , j ∈ N1(i).

Then we can derive that

4Aj(h)2 = w2
j w2

j+(cjsj+ − cj+sj)2 det(G) h4 + a
(j)
5 h5 + O(h6),

where a
(j)
5 is a constant. The second factor of the right-handed side of (4.1) is

w2
j w2

j+(cjsj+ − cj+sj)2h4

[
(g22t1 − g12t2)

∂f

∂ξ1
+ (g11t2 − g12t1)

∂f

∂ξ2

]
+ b

(j)
5 h5 + O(h6)

= w2
j w2

j+(cjsj+ − cj+sj)2h4[t1, t2]
[

g22 −g12

−g12 g11

]
∇f + b

(j)
5 h5 + O(h6).

Hence,

∇Tj
f = ∇Mf(pi) + C

(j)
1 h + O(h2), (8.5)

where C
(j)
1 is a constant. Taking a weighted average of ∇Tj

f with weight Aj(h)∑
j∈N1(i) Aj(h) , we obtain (4.3).

Now we prove (4.5). Under the condition (4.4), it is easy to see that

a
(ik+m)
5 = −a

(ik)
5 , b

(ik+m)
5 = −b

(ik)
5 , C

(ik+m)
1 = −C

(ik)
1 , k = 1, · · · ,m.

The coefficient of h in (4.3) is therefore cancelled. Hence (4.5) is derived. 3

The Proof of Theorem 4.2. Let qj(h) = qi + wjhdj with dj = (cj , sj)T , j ∈ N1(i). Then we can
derive that

t̃l =
2
n

n∑

k=1

cos
2π(k − l)

n

[
pi + wik

hDdik
G +

1
2
w2

ik
h2D2

dik
G + O(h3)

]

=
2
n

n∑

k=1

cos
2π(k − l)

n

[
wik

hDdik
G +

1
2
w2

ik
h2D2

dik
G + O(h3)

]
(8.6)

= [t1, t2][A1l, A2l]T h + D2lh
2 + O(h3),

where A1l and A2l are constants, D2l ∈ IR3 is a constant vector. Similarly

∂f̃

∂ξl
=

[
∂f

∂ξ1
,

∂f

∂ξ2

]
[A1l, A2l]T h + E2lh

2 + O(h3), (8.7)

16



where E2l is constant. From Lemma 2.1, we obtain (4.7). Now we assume n = 2m and (4.4) holds. Since

cos
2π(k − l)

n
= −cos

2π(k − l + m)
n

, k = 1, · · · ,m,

the coefficient D2l and E2l in (8.6) and (8.7) are zero. Therefore, (4.8) holds. 3
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