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Abstract

In this paper, a unified approach for analyzing finite dimensional approxima-
tions to a class of partial differential equations boundary value problems (second-
kind Fredholm differential equations) is introduced. The approach is shown to be
general despite of its extremely simple form. In particular, it is expected to be
useful in the convergence analysis of finite element methods for solving PDE prob-
lems. Three specific examples are presented to illustrate the broad applicability of
the approach.

Key words. Convergence, error analysis, finite dimensional approximation, Fredholm
differential equation
2000 AMS subject classifications. 65N15, 65N30.

1 Introduction

Let (X, ‖ · ‖) be a Hilbert space equipped with an inner product (·, ·) and a norm || · ||,
K : X −→ X be a compact operator. This paper is concerned with the error analysis
of finite dimensional approximations to the following Fredholm equation: Given f ∈ X,
find u ∈ X such that

(I −K)u = f . (1.1)

Here, our basic assumption is that Equation (1.1) is uniquely solvable for any f ∈ X,
i.e., 1 is not an eigenvalue of K.

The equation (1.1) provides a general framework for a large class of PDE problems
that arise in diverse applications. Our goal of this paper is to develop a unified approach
for analyzing the convergence of the discretized problems.
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Assume that {Xh} is a sequence of finite dimensional subspaces of X satisfying

lim
h→0

inf
v∈Xh

‖u− v‖ = 0, ∀u ∈ X. (1.2)

If Ph : X −→ Xh is the projection operator defined by

(u− Phu, v) = 0, ∀v ∈ Xh,

then

‖u− Phu‖ = inf
v∈Xh

‖u− v‖ (1.3)

and hence

lim
h→0

‖u− Phu‖ = 0, ∀u ∈ X. (1.4)

The organization of the paper is as follows. Convergence results are established in
Section 2 for solutions with limited regularity under this general framework. Three exam-
ples are presented to illustrate the generality and applicability of the approach in Section
3. For the first two examples, an elliptic boundary value problem and an electromagnetic
scattering problem, our present approach provides straight-forward alternative proofs to
the existing convergence results. The convergence result for Example 3, diffraction by a
periodic structure, is new.

Throughout, the letter C denotes a generic positive constant whose value is inde-
pendent of the parameter h and may vary at different occurrences. We also adopt the
standard notations for Sobolev spaces W s,p(Ω) and the associated norms and seminorms
[1]. For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0},
‖ · ‖s,Ω = ‖ · ‖W s,2(Ω) and ‖ · ‖Ω = ‖ · ‖W 0,2(Ω).

2 Convergence of the finite dimensional discretiza-

tion

The finite dimensional discretization scheme is defined as follows: Find uh ∈ Xh such
that

(I − PhK)uh = Phf. (2.1)

The following result concerns the well-posedness of the problem (2.1).

Theorem 2.1 If h ¿ 1, then ∀f ∈ X, the equation (2.1) attains a unique solution
uh ∈ Xh with

‖u− uh‖ ≤ C inf
v∈Xh

‖u− v‖. (2.2)

Consequently

lim
h→0

‖u− uh‖ = 0. (2.3)
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Remark 2.1. The above result is known in literature concerning numerical solution of
integral equations [2], [3] or [4]. However, this is not the case in literature of numerical
solution of partial differential equations. In fact, to our best knowledge, it has not been
applied to analyze the discretization of PDE problems. Our results in the present work
indicate that Theorem 2.1 is very general with useful applications not only to integral
equations but also to partial differential equations.

The error estimate (2.3) is based on the knowledge of the exact solution u. Indeed
certain error estimates may be also obtained if only information about f is provided.
In other words, error estimates may be established even in the situation where no more
information about K is available. Consequently, a convergence rate of finite dimensional
approximation may be obtained even when the exact solution is only with limited regu-
larity.

Let Y ⊂ X be a normed linear space equipped with norm ‖ ·‖Y . Introduce a quantity

ρY (h) = sup
f∈Y,‖f‖Y ≤1

inf
v∈Xh

‖(I −K)−1f − v‖, (2.4)

or equivalently
ρY (h) = ‖(I − Ph)(I −K)−1‖Y→X .

We are now ready to present the error estimate based on the information of f only.

Theorem 2.2 For any f ∈ Y , there holds

‖u− uh‖ ≤ CρY (h)‖f‖Y . (2.5)

Moreover, if (Y, ‖ · ‖Y ) is compactly embedded into (X, ‖ · ‖), then

lim
h→0

ρY (h) = 0. (2.6)

Proof. The estimate (2.5) follows from (2.2) and the definition of ρY (h).
If Y is compactly embedded into X, then (I − K)−1 : Y −→ X is compact. Hence

Ph(I −K)−1 : Y −→ X is compact and continuous. Since ∀f ∈ Y ,

lim
h→0

‖(I − Ph)(I −K)−1f‖ = 0,

we get
lim
h→0

sup
f∈Y,‖f‖Y ≤1

‖(I − Ph)(I −K)−1f‖ = 0,

which implies (2.6). 2

Remark 2.2. The convergence result may be improved by using some iteration pro-
cedure, such as uh = f +Kuh or uh = Phf + PhKuh.

Sometimes, it is useful to replace the discretization (2.1) with

(I − PhKh)uh = Phf, (2.7)

where Kh : X −→ X is an approximation to K. For the scheme (2.7), similarly, we have
(see Corollary 13.10 of [4])
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Theorem 2.3 Assume that

lim
h→0

‖Kh −K‖ = 0. (2.8)

If h ¿ 1, then ∀f ∈ X, the equation (2.7) attains a unique solution uh ∈ Xh with

‖u− uh‖ ≤ C
(

inf
v∈Xh

‖u− v‖+ ‖(Kh −K)u‖
)

. (2.9)

Consequently,

‖u− uh‖ ≤ C
(
ρY (h) + ‖Kh −K‖

)
‖f‖Y , ∀f ∈ Y. (2.10)

3 Applications

A large class of partial differential equations (as well as integral equations) may be
formulated as (1.1). In this section, we apply the general convergence results of Section
2 to three different types of PDE problems.

3.1 An elliptic boundary value problem

Let Ω ⊂ Rd(d ≥ 1) be a bounded domain. Consider the homogeneous boundary value
problem




Lu = g, in Ω,

u = 0, on ∂Ω.
(3.1)

Here g ∈ H−1(Ω) is given and L is a general linear second order elliptic operator:

Lu = −
d∑

i,j=1

∂

∂xj

(aij
∂u

∂xi

) +
d∑

i=1

bi
∂u

∂xi

+ cu,

satisfying aij, bi, c ∈ L∞(Ω), and (aij) is uniformly positive on Ω.
The variational form of (3.1) is as follows: Find u ≡ L−1g ∈ H1

0 (Ω) such that

a(u, v) ≡
∫

Ω

d∑

i,j=1

aij
∂u

∂xi

∂v

∂xj

+
d∑

j=1

bj
∂u

∂xj

v + cuv =
∫

Ω
gv, ∀v ∈ H1

0 (Ω). (3.2)

Set

(w, v) =
∫

Ω

d∑

i,j=1

aij
∂w

∂xi

∂v

∂xj

, ∀w, v ∈ H1
0 (Ω) (3.3)

and define K : H1
0 (Ω) −→ H1

0 (Ω) by

(Kw, v) = −
∫

Ω

d∑

j=1

bj
∂w

∂xj

v + cwv, ∀w, v ∈ H1
0 (Ω).
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Then (3.2) can be written as

(I −K)u = f, (3.4)

where f ∈ H1
0 (Ω) satisfying

(f, v) =
∫

Ω
gv, ∀v ∈ H1

0 (Ω).

Clearly the operator K : H1
0 (Ω) −→ H1

0 (Ω) is compact and the problem (3.2) is uniquely
solvable for any g ∈ H−1(Ω) if and only if the problem (3.4) is uniquely solvable for any
f ∈ H1

0 (Ω). Note that (·, ·) defined by (3.3) is an inner product of H1
0 (Ω), hence the main

results in [5] and [6] and the related result in [7] follow immediately from Theorem 2.1
and Theorem 2.2. More precisely, we have

Theorem 3.1 Assume that the problem (3.2) is uniquely solvable and {Xh} is a sequence
of finite dimensional subspaces of H1

0 (Ω) such that

lim
h→0

inf
v∈Xh

‖u− v‖1,Ω = 0, ∀u ∈ H1
0 (Ω).

If h ¿ 1 and g ∈ H−1(Ω), then the finite dimensional discretized problem

a(uh, v) =
∫

Ω
gv, ∀v ∈ Xh

attains a unique solution uh ∈ Xh with

lim
h→0

‖u− uh‖1,Ω = 0.

In addition, for g ∈ L2(Ω), the following estimate holds

‖u− uh‖1,Ω ≤ Cρ(h)‖g‖0,Ω

with
ρ(h) = sup

φ∈L2(Ω),‖φ‖0≤1

inf
v∈Xh

‖L−1φ− v‖1,Ω → 0 as h → 0 .

Proof. Set X = H1
0 (Ω) and ‖ · ‖ = ‖ · ‖1,Ω in Theorem 2.1, we immediately obtain the

first conclusion of Theorem 3.1.
Now we derive the second statement of Theorem 3.1 from Theorem 2.2. Define

K0 : L2(Ω) −→ H1
0 (Ω) by

(K0w, v) =
∫

Ω
wv, ∀w ∈ L2(Ω),∀v ∈ H1

0 (Ω),

then K0 : L2(Ω) −→ H1
0 (Ω) is compact. As a result, for Y = K0L

2(Ω), we have that
(Y, ‖ · ‖) can be compactly embedded into (X, ‖ · ‖). Note that

L−1φ = (I −K)−1K0φ, ∀φ ∈ L2(Ω),

we can estimate the quantity ρY (h), defined by (2.4), as follows

ρY (h) ≤ C sup
φ∈L2(Ω),‖φ‖0≤1

inf
v∈Xh

‖L−1φ− v‖1,Ω,

which together with Theorem 2.2 completes the proof. 2
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3.2 An electromagnetic scattering problem

Consider the scattering of electromagnetic waves from an infinitely long cylinder contain-
ing an anisotropic inhomogeneous medium [8]. The electric and magnetic fields, denoted
by Ê and Ĥ, satisfy the following Maxwell equations:

ε
∂Ê

∂t
+ σÊ −∇× Ĥ = 0, µ

∂Ĥ

∂t
+∇× Ê = 0,

where ε and µ are the electric permittivity and magnetic permeability, respectively.
For a fixed frequency ω, let ε0 and µ0 denote the electric permittivity and magnetic

permeability of free space. Define the wave number k = ω
√

ε0µ0 and the index of
refraction

N(x1, x2) =
1

ε

(
ε(x1, x2) + i

σ(x1, x2)

ω

)
.

Consider the special case of an anisotropic medium: an orthotropic medium

ε(x1, x2) =




ε11(x1, x2) ε12(x1, x2) 0

ε21(x1, x2) ε22(x1, x2) 0

0 0 ε33(x1, x2)


 .

Assume further that σ(x1, x2) and µ(x1, x2) are of the same form as ε and independent
of x3. The time-harmonic electric and magnetic fields can be written as

E(x1, x2, t) = ε
−1/2
0 E(x1, x2) exp(−iωt) and H(x1, x2, t) = µ

−1/2
0 H(x1, x2) exp(−iωt)

so that

∇× E − iknH = 0, ~∇×H + ikNE = 0, (3.5)

where n(x1, x2) = µ33/µ0 and ~∇× is the vector curl. Also, E and H are assumed to be
independent of x3 with H perpendicular to the x1x2-plane,

E =




E1(x1, x2)

E2(x1, x2)

0


 , H =




0

0

H3(x1, x2)


 .

Under these assumptions, the Maxwell system (3.5) reduces to the following general
Helmholtz equation for u = H3(x1, x2):

∇ · A∇u + k2nu = 0,

where

A =
1

N11N22 −N12N21


 N11 N21

N12 N22


 . (3.6)
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Consider a bounded impenetrable scatterer, D, with smooth boundary ∂D contained
in a bounded region outside of which A = I and n = 1. This corresponds to the cross
section of the cylinder. Let Γ ⊂ R3\D be a closed uniformly Lipschitz curve surrounding
D and Σ a closed uniformly Lipschitz curve surrounding Γ which does not intersect Γ.
Denote Ω the bounded part with boundary ∂D ∪ Σ.

Let Φ(x, y) = i
4
H

(1)
0 (k|x − y|), where x = (x1, x2), y = (y1, y2) and H

(1)
0 (k|x − y|) is

the Hankel function of the first kind and order zero.
Let ψ(x) be a cut-off function in C∞

0 (Ω) such that ψ = 0 in a neighborhood of Σ and
ψ = 1 in a neighborhood of Γ. Let (`Φ)(x, y) = ψ(y)Φ(x, y).

Introduce

(GΓu)(x) = −k2
∫

Ω0

`Φ(x, y)u(y)dy +
∫

Γ
u(y)

∂Φ

∂νy

(x, y)dsy

+
∫

Ω0

∇yu(y) · ∇y`Φ(x, y)dy, in Ω

(Lu)(x) =
∂u(x)

∂νx

, on Σ,

where Ω0 is the domain surrounded by Γ and Σ.
Define the space

X = {v ∈ H1(Ω) : v |∂D= 0}
equipped with the usual H1(Ω)-norm.

Use the coupling technique suggested by Jami and Lenoir [9], we may write the model
problem in this case as: Find u ∈ X such that





∇ · A∇u + k2nu = 0, in Ω,

u = 0, on ∂D,

L(u−GΓu) = Lui, on Σ,

(3.7)

where ui is the incident field, either a plane wave or a point source. The associated
variational formulation is : Find u ∈ X such that

∫

Ω
(∇v · A∇u− k2nv̄u)−

∫

Σ
v̄L(GΓu) =

∫

Σ
v̄Lui, ∀u, v ∈ X. (3.8)

The problem has recently been studied by Coyle and Monk [8]. See [8] for additional
discussions and references. In the following, we show that Theorem 2.1 yields convergence
results similar to those in [8].

Set
(u, v) =

∫

Ω
(∇v · A∇u + k2v̄u), ∀u, v ∈ X.

Under certain condition on A, for example one of the conditions stated in [8] (Page 1593),
(·, ·) becomes an inner product of X (Lemma 4.3 of [8]). Let K : X −→ X, f ∈ X satisfy

(Ku, v) = k2
∫

Ω
(n + 1)v̄u +

∫

Σ
v̄L(GΓu), ∀u, v ∈ X,

(f, v) =
∫

Σ
v̄Lui, ∀v ∈ X.
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By Lemma 4.4 of [8], the operator K is compact. In addition, the variational formulation
(3.8) amounts to the Fredholm equation (1.1)

(I −K)u = f, (3.9)

which is well-posed. From Theorem 2.1, we obtain the following results similar to Theo-
rem 5.8 in [8].

Theorem 3.2 Assume that {Xh} is a sequence of finite dimensional subspaces of X
consisting of piecewise linear functions defined on a shape-regular mesh, where h denotes
the mesh size. If h ¿ 1, then the finite dimensional discretization: Find uh ∈ Xh such
that

∫

Ω
(∇v · A∇uh − k2v̄uh)−

∫

Σ
v̄L(GΓuh) =

∫

Σ
v̄Lui, ∀v ∈ Xh (3.10)

is uniquely solvable in Xh and for u ∈ X ∩H2(Ω) there holds

‖u− uh‖1,Ω ≤ Ch‖u‖2,Ω. (3.11)

Proof. Under the assumption for {Xh}, we have (see, e.g., [10])

lim
h→0

inf
v∈Xh

‖u− v‖1,Ω = 0, ∀u ∈ X (3.12)

and

inf
v∈Xh

‖u− v‖1,Ω ≤ Ch‖u‖2,Ω, ∀u ∈ X ∩H2(Ω).

Hence we obtain that (3.10) is uniquely solvable in Xh and (3.11) is true if u ∈ X∩H2(Ω).
2

Remark 3.1. In [8], the discretized problem may be viewed as

(I − PhKh)uh = Phf,

where Kh is an approximation of K and satisfies (cf. Lemma 5.3 of [8])

||Kh −K|| ≤ Ch, (3.13)

hence Theorem 2.3 implies Theorem 5.8 of [8].

3.3 Diffraction by a biperiodic structure

Consider a plane wave incident on a biperiodic structure, i.e., the structure is periodic
in two orthogonal directions. The diffraction problem is to study the electromagnetic
energy distributions away from the structure, which has many fundamental applications
in micro-optics. The electromagnetic fields are governed by the time harmonic Maxwell
equations (time dependence exp(−iωt)) [11], [12]:

∇× E − iωµH = 0, ∇×H + iωεE = 0, (3.14)
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where E and H denote the electric and magnetic fields in R3, respectively. The magnetic
permeability µ is assumed to be one everywhere. There are two constants Λ1 and Λ2

such that the dielectric coefficient ε satisfies, for any n1, n2 ∈ Z ≡ {0,±1,±2, · · ·}, and
for almost all x = (x1, x2, x3) ∈ R3,

ε(x1 + n1Λ1, x2 + n2Λ2, x3) = ε(x1, x2, x3).

Further, it is assumed that, for some fixed positive constant b and sufficiently small δ > 0,

ε(x1, x2, x3) = ε1, for x3 > b− δ,

ε(x1, x2, x3) = ε2, for x3 < −b + δ,

where ε(x) ∈ L∞, Re (ε(x)) ≥ ε0, Im (ε(x)) ≥ 0, ε0, ε1 and ε2 are constants, ε0 and ε1 are
real and positive, and Re ε2 > 0, Im ε2 ≥ 0. The case Im ε > 0 accounts for materials
which absorb energy.

Let Ω = {x ∈ R3 : −b < x3 < b}, Ω1 = {x ∈ R3 : x3 > b}, Ω2 = {x ∈ R3 : x3 <
b}, Γ1 = {x ∈ R3 : x3 = b}, and Γ2 = {x ∈ R3 : x3 = −b}.

Consider a plane wave in Ω1 in the form of (EI , HI) = (s, p) exp(iq · x) incident on
Ω. Here q = (α1, α2,−β) = ω

√
ε(cos θ1 cos θ2, cos θ1 sin θ2,− sin θ1) is the incident wave

vector whose direction is specified by θ1 and θ2 with 0 < θ1 < π and 0 < θ2 ≤ 2π. The
vectors s and p satisfy

s =
1

ωε
(p× q), q · p = ω2ε1, p · q = 0.

As usual, we are interested in quasiperiodic solutions, i.e., solutions E and H such
that the fields Eα, Hα defined by, for (α1, α2, 0),

Eα = exp(−α · x)E(x), Hα = exp(−α · x)H(x)

are periodic, with period Λ1 in the x1 direction, and with period Λ2 in the x2 direction.
Define the lattice

Λ = Λ1Z × Λ2Z × {0} ⊂ R3.

Since the fields Hα are Λ−periodic, we can move the problem from R3 to the quotient
space R3/Λ. For the remainder of the paper, we shall identify Ω with the cylinder Ω/Λ,
and similarly for the boundaries Γj ≡ Γj/Λ. Thus from now on, all functions defined on
Ω and Γj are implicitly Λ−periodic.

As shown in Bao and Dobson [12], the scattering problem can be formulated as follows





∇α ×
(

1
ε
∇α ×Hα

)
−∇α

(
1
εc
∇α ·Hα

)
− ω2Hα = 0, in Ω,

ν ×
(
∇α × (Hα −HI,α)

)
−B1

(
P (Hα −HI,α)

)
= 0, on Γ1,

ν × (∇α ×Hα)−B2

(
P (Hα)

)
= 0, on Γ2,

(Tα
1 − ∂

∂ν
)Hα,3 − 2iβ1p3 exp(−iβ1b) = 0, on Γ1,

(Tα
2 − ∂

∂ν
)Hα,3 = 0, on Γ2,

(3.15)
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where εc is some fixed constant (penalty), HI,α = HI exp(−iα · x),∇α = ∇ + iα =
∇+i(α1, α2, 0), P is the projection onto the plane orthogonal to ν, i.e., Pf = −ν×(ν×f).
Here the operators B1, B2, Tα

1 , and Tα
2 are nonlocal pseudo-differential operators of order

one whose explicit forms are given in [12].
The weak form of the scattering problem takes form

a(H, F ) = `(F ), ∀F ∈
(
H1(Ω)

)3
, (3.16)

where

a(H, F ) =
∫

Ω

1

ε
(∇×H) · (∇α × F ) +

∫

Ω

1

εc

(∇α ·H)(∇α · F ) +
∫

Γ1

1

ε1

B1

(
P (H)

)
· F̄

−
∫

Γ1

1

εc

T1(H3)F̄3 +
∫

Γ2

1

ε1

B2

(
P (H)

)
· F̄ −

∫

Γ2

1

εc

T2(H3)F̄3

−
∫

∂Ω

1

εc

(∇αt ·H)(ν · F )− ω2
∫

Ω
H · F̄ ,

`(F ) =
∫

Γ1

(
ν ×∇α ×HI −B1P

(
HI)

)
· F̄ + 2i

∫

Γ1

β1
1

εc

p3 exp(−iβ1b)F̄ ,

where ∇αt = (∂x1 + iα1, ∂x2 + iα2, 0).
Well-posedness of the continuous model has been established in [12]. We also refer

the paper for additional references. Here, by using Theorem 2.2, we prove a new well-
posedness and convergence result for the discretized problem.

It is shown in Theorem 4.3 of [12] that if the real constant εc is chosen as

inf
x∈Ω

Re
1

ε
≥ 3

4

1

εc

,

then there exist an inner product (·, ·) of X =
(
H1(Ω)

)3
and a compact operator K on

(
H1(Ω)

)3
such that

((I −K)w, F ) = a(w, F ), ∀F ∈
(
H1(Ω)

)3
,

which is equivalent to

(I −K)H = f, (3.17)

where f ∈ X satisfies

(f, F ) = `(F ), ∀F ∈
(
H1(Ω)

)3
.

Consider a finite dimensional approximation scheme: Find Hh ∈ Xh such that

a(Hh, F ) = `(F ), ∀F ∈ Xh, (3.18)

where Xh ⊂
(
H1(Ω)

)3
is a finite dimensional subspace.
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It is easy to see that (3.18) is equivalent to an approximate operator equation: Find
Hh ∈ Xh such that

(I − PhK)Hh = Phf.

The following convergence result of the finite dimensional approximation is a direct con-
sequence of Theorem 2.1.

Theorem 3.3 Assume that {Xh} is a sequence of finite dimensional subspaces of
(
H1(Ω)

)3

such that

lim
h→0

inf
v∈Xh

‖u− v‖1,Ω = 0, ∀u ∈
(
H1(Ω)

)3
.

If h ¿ 1, then the equation (3.18) is uniquely solvable in Xh and there holds

lim
h→0

‖H −Hh‖1,Ω = 0. (3.19)

Remark 3.2. Note that B1, B2, Tα
1 , and Tα

2 are nonlocal operators. In practice, these
operators are often approximated by some local operators. Because of Theorem 2.3, we
can also obtain well-posedness and convergence in this situation.
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