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Abstract

The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It
splits the 3D square-root operator along crossline and inline directions alternately. In this paper,
based on the ideal of data line, the four-way splitting schemes for the finite-difference (FD) method
and the hybrid or Fourier finite-difference (FFD) method are investigated. All schemes can be
used in 3D post-stack or prestack depth migration. Numerical results of 3D post-stack depth
migration show that the ADI FD migration has visible numerical anisotropic errors, and that the
hybrid or FFD method has much less splitting errors than that of FD method. Moreover, the ADI
hybrid or FFD method can image complex structures with large velocity variations. Numerical
calculations with the ADI hybrid scheme for SEG/EAEG benchmark model are completed and
very good imaging results are yielded. The MPI parallel algorithm which based on shot parameter
are adopted and improve the computational efficiency further. The results in this paper show that
3D ADI hybrid shot profile migration has large potential practical values.

keywords: 3D depth migration, prestack, poststack, multiway splitting, finite-difference,
hybrid method, SEG/EAEG model, MPI parallel.

1 Introduction

3D prestack depth migration is an important tool for complex structure imaging. There are
two kinds of 3D prestack depth migration methods. One is the Kirchhoff integral method which
based on ray tracing. The other is the non-Kirchhoff integral method which based on wavefield
extrapolation. Kirchhoff integral method is a high-frequency approximation method, which has
difficulties in imaging complex structures. However, it can adapt sources and receivers configura-
tion easily and has the advantage of less computational cost. So it is still the dominant method for
3D prestack migration in oil industry. Non-Kirchhoff integral method, such as the finite-difference
method, the phase-shift method (Gazdag, 1978), the split-step Fourier (SSF) method (Stoffa et
al., 1990) and the Fourier finite-difference (FFD) method (Ristow and Ruhül, 1995), do wavefield
extrapolation with one-way wave equation.

For 3D one-way wave equation, a direct solution with stable implicit finite-difference scheme
may lead to a non tri-diagonal system, which is computationally expensive. In order to decrease
computational cost, the alternatively directional implicit (ADI) scheme is usually used. It splits
the finite-difference equation along two directions which are perpendicular to each other, i.e. the
0◦ and 90◦ directions, and then implements wavefield extrapolation by solving two tri-diagonal
equations successively. By doing so, it saves large computational cost. However, the ADI scheme
will lead to azimuthal errors with maximum at 45◦ and 135◦. In order to eliminate these errors,
Li (1991) derived an error-correction equation to correct the azimuthal anisotropy. Wang (2001)
proposed a so-called ADI plus interpolation method, which uses a simple, efficient interpolation
step to accomplish the azimuthal-error correction and the evanescent-wave suppression two jobs.
In 1994, Ristow and Ruhl (1994) proposed the ideal of multiway splitting method which splits the
migration operator or the square-root operator along three, four and six ways, in order to reduce
splitting errors. The commonly used splitting method is a four-way splitting method which does
splitting along 45◦ and 135◦ two directions in addition to the original 0◦ and 90◦ two directions.
Claebout (1998, 1999) proposed the ideal of helix and migration in helix can be found in the
works of Rickett (Rickett et al. 1999) and Zhang (Zhang et al., 1999, 2000, 2001). In helix, helical
boundary conditions are considered, which makes the absorbing boundary more simple.
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In this paper, we will discuss another type of error-correction method, namely the multi-way
splitting method on a data line. We implement the computations of wavefield extrapolation on
a data line, which makes four-way computations more easily and has a better generality and
adaptability as well. The implicit scheme is used in wavefield extrapolation and so it is stable
unconditionally. After deriving the relevant formulae, numerical analysis for a impulse response
with constant velocity and a field data with variable velocity are given. And the computations
show the correctness of our algorithm. Moreover, 3D shot profile prestack depth migration for
/SEG/EAEG benchmark model are accomplished and its imaging result show that the traditional
ADI hybrid or FFD method can yield very good images for complexly geological structures.

2 Theory

2.1 FD four-way splitting

The 3D one-way wave equation in the frequency-space domain is written as
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where P (ω, x, y, z) is the wavefield in the frequency-space domain, ω is the frequency, x is the
coordinate along the inline direction, y is the coordinate along the crossline direction, z is the
depth, and v(x, y, z) is the medium velocity. The plus and minus signs represent downgoing wave
and upgoing wave respectively. For simplicity here follows, we take the positive sign. In the
frequency-wavenumber domain, equation (1) becomes
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The square-root in equation (2) can be approximated as
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where kx and ky are wavenumber along 0◦ and 90◦ directions respectively, whereas kx′ and ky′

are the wavenumber along 45◦ and 135◦ directions. Substituting the four-way approximation into
equation (2) and transforming it back to the frequency-space domain, we can obtain the following
four-ways migration equation:

∂P
∂z
≈ − iω

v
P + iω

2v
[
√

1 + v2

ω2
∂2

∂x2 +
√

1 + v2

ω2
∂2

∂y2 ]P

iω
2v

[
√

1 + v2

ω2
∂2

∂x′2 +
√

1 + v2

ω2
∂2

∂y′2 ]P,
(4)

where x′ and y′ are the position of 45◦ and 135◦ directions respectively and can be represented
in terms of x and y by the following expression
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Wavefield extrapolation with equation (4) is called four-way splitting scheme. Here, we implement
it on a data line. Such implementation is suitable to either the conventional finite-difference (FD)
or the so-called Fourier finite-difference (FFD) method. For the FD method, at each extrapolating
step, there are the following five equations successively in the frequency-space domain
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The numerical examples below show that wavefield extrapolation based on equations (6) to (7)
can eliminate azimuthal anisotropic errors and thus improve migration precision.
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2.2 spliiting error

In order to analysis splitting errors of the FD method, we define the following relative error of
four-way splitting
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If replacing kx′ and ky′ by kx and ky, this equation is that of two-way splitting
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The accuracy of four-way splitting compared to the two-way splitting is shown in the numerical
calculations below.

2.3 Hybrid or FFD four-way splitting

Like the derivation of four-war FD splitting scheme, we outline the derivation of hybrid or FFD
four-way splitting scheme as follows. Introducing a reference velocity v0 and basing on the integral-
differential expression of the square-root (Zhang G., 1985, 1993), in the frequency domain, equa-
tion (1) can be decompose in the following precise form operator
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where v0(z) is the reference velocity. In the expression of A3 in (11) and the rational fraction ap-
proximation are used. Such approximation is necessary in numerical calculations. The coefficients
α and β can be written as follows (Ristow and Ruhül, 1995; Zhang w. et al., 1999)
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In the case of small dip angle, A3 can be neglected. And for the media with large velocity
variations, A3 should be included. Operators A1, A2 and A3 are termed the phase-shift operator,
time-shift operator and difference operator (Stoffa et al., 1990; Ristow and Ruhül, 1995). With
the last approximation expression in equation (11), the FFD four-way wavefield extrapolation can
be approximated as
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Generally, for wavefield extrapolation of the following equation

∂P

∂z
= LP, (16)
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where L is the linear operator with the form of L =
n∑

i=1

Li, and n is the splitting number, the

wavefield extrapolation can be completed by the following equations

∂P

∂z
= LiP, i = 1, · · · , n. (17)

With the above extrapolation equations of the four-way FD scheme (i.e. equations (6) and (7))
and the four-way hybrid or FFD scheme (i.e. equations (13) to (15)), the wavefield extrapolation
can be implemented. We implement the four-way wavefield extrapolation on a data line.

2.4 Four-way wavefield extrapolation on a data line

We outline the implementation of wavefield extrapolation on a data line with the FD method and
the FFD method as follows. When wavefield extrapolation is implemented along 45◦ and 135◦ two
directions, it should be noted that the program complexity arises. However, introduce an ideal of
data line, the difficulty can be overcome. The basic ideal is to transform the 2D data into the 1D
data along a specific direction to form a data line. The wavefield extrapolation based on equations
(6) to (7) on a data line can be implemented according to the following steps. First of all, equation
(6) is used , which is the phase-shift extrapolation. Then do wavefield extrapolation along 0◦ and
90◦ directions with equation (7) which contributes to the traditional ADI wavefield extrapolation.
And then, arrange the result data along 45◦ direction and do wavefield extrapolation with the
third expression in equation (7). Finally, arrange the newly result data along 135◦ direction and
then do extrapolate wavefield with the last expression in equation (7). By now, the wavefield
extrapolation of one depth step is completed. For wavefield extrapolation of hybrid or FFD
method based on equations (13) to (15), after finishing the wavefield extrapolation for operators
A1 and A2, which are the actions of phase-shift operator and time-shift operator respectively, the
rest steps of wavefield extrapolation for operators A31, A32, A33 and A34 are similarly.

2.5 Wavefield extrapolation with ADI hybrid scheme

For the importance of traditional ADI scheme, we present briefly its difference scheme. The
difference equation of the ADI hybrid scheme can be derived from the approximated difference
operator A3 in equation (11). The corresponding difference scheme is
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Equation (18) can can be solved by the well-known alternately directional implicit scheme as
follows

[1 + (α1 − iβ1)δ
2
x]P

n+1/2
ij = [1 + (α1 + iβ1)δ

2
x]P n

ij ,

[1 + (α2 − iβ2)δ
2
y]P n+1

ij = [1 + (α2 + iβ2)δ
2
y]P

n+1/2
ij .

(20)

Our numerical computations show that this traditional ADI hybrid FFD scheme in 3D shot profile
prestack depth migration can yield very good images for complex structures.

3 Numerical calculations

3.1 Four-way FD and hybrid 3D postack depth migration

In order to demonstrate effects of the schemes in this paper, the migration for an impulse response
is presented first. The grid number for x, y and z is 64, the spatial step for x and y is 15m. The
extrapolation step is 15m. The time sampling step is 4ms. The medium velocity is 3000m/s.
It is well known that the theoretical 3D migration result in homogeneous media is a half sphere.
The impulse is the Ricker wavelet with 20Hz main frequency which located at the position of
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(x, y, z, t) = (480m, 480m, 500ms). Figure 2 are the horizontal slices of migration result by the
traditional FD two-way scheme. This figure shows that the migration errors caused by different
azimuthal angles reach maximum along 45◦ and 135◦ directions. Figure 2(b) is the same slice
but splitting along 45◦ and 135◦ directions, which shows the migration errors reach maximum
along 0◦ and 90◦ directions. And figure 2(c) is that splitting along 0◦, 90◦ , 45◦ and 135◦ four
directions, which shows a perfect circle like theoretical predication.

For the media with constant velocity, due to the reference velocity used in hybrid method,
there is only the action of phase-shift operator in the FFD extrapolation equation. That is to say,
there is no any actual extrapolation for the rest time-shift operator A2 and difference operators
A2, A31, A32, A33 and A34. In this case, The migration result is a precise hemisphere because the
Laplacian is an isotropic operator. Thus there is no azimuthal errors when the four-way scheme
is used in a constant velocity media. Let’s see an example with a variable velocity. Suppose the
velocity is v(x, y, z) = 1600 + 3x + 3y + z(m/s). The spatial steps and other parameters are the
same with those in the example with constant velocity above. Figure 3 are the vertical slices of
the 3D migration result at y = 660m, which calculated by the hybrid method of the two-way
splitting scheme and the four-way splitting scheme respectively. Comparisons between figure 3a
and figure 3b show that the numerical anisotropic errors of four-way FFD scheme is not very
obvious and is much less than that of FD because the Laplacian in phase-shift operator A1 is
an isotropic operator and can reduce those errors. Therefore, multiway splitting scheme for FFD
method is not necessary generally. This is also proved by the migration result presented in figure
4 for a field data with variable velocity. In figure 4, wavefield extrapolation with the two-way
FFD scheme (a) and the four-way FFD scheme (b) are used respectively, and comparisons show
that there is no obvious difference actually.

3.2 ADI 3D prestack depth migration

3D SEG/EAEG salt model is an international dimensional benchmark model. The data used here
has the 50 shot line with 160m line space. Each line has 96 shots with 80m shot space. Each shot
has 68×6 receivers. The grid element is 40m×40m. The record length is 4992ms with 8ms time
step. The model data amounts 6.23 Gbytes. In this large scale computation, the MPI parallel
is used to improve computational efficiency. Here, x is the inline direction and y is the crossline
direction. Figure 5 is the 3D shot profile prestack depth migration result by the ADI FFD scheme.
Figure 5(a) is the vertical section of model at y = 6740m and figure 5(b) is the same sclice of
the migration result. Figures 5 shows that the ADI FFD or hybrid method can actually yield
precise images of the complicate structures with large velocity variations. In all calculations, the
MPI parallel algorithm is adopted. And shot number is chosen as parallelization parameter for
single-shot profile migration. The parallel efficiency is very high because the problem itself has
very high parallel features.

4 Conclusion

Based on the ideal of data line, the four-way splitting schemes and extrapolation equations for
FD and hybrid or FFD methods are derived. The advantage of wavefield extrapolation on a data
line is unconditionally stable. Numerical calculations show that the four-way FD algorithm can
eliminate numerical anisotropic errors effectively. Moreover, the numerical anisotropic errors of
FFD method is much less than that of FD because the Laplacian in phase-shift operator is an
isotropic operator and can reduce those errors. A numerical migration for a field data with variable
velocity show the imaging difference between the traditional ADI FD method and the four-way
FFD method is very small. Thus, the traditional ADI FFD method is preferred in 3D prestack
depth migration in order to save computational time. The ADI hybrid or FFD 3D shot profile
prestack depth migration for SEG/EAEG salt model is implemented and fine imaging results are
obtained. Calculations show that shot profile can yield precise images for 3D complex structures
and has much more potential practical values. The MPI parallel algorithm is adopted to improve
computational efficiency further.
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(a)

(b)
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(c)

Figure 2. Horizontal slices of 3D post-stack depth migration for a impulse response with
constant velocity. FD method with (a) traditional two-way splitting, (a) 45◦ and 135◦ two-way

splitting, (c) Four-way splitting.

(a)
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(b)

Figure 3. 3D post-stack depth migration for a impulse response with variable velocity. FFD
method wilth (a) traditional two-way splitting, (b) Four-way splitting.
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Figure 4. 3D post-stack depth migration for a field data with variable velocity. FFD method
with (a) traditional two-way splitting, (b) Four-way splitting.
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Figure 5. The vertical slice at x = 5400m along crossline of (a) velocity model, (b) 3D shot
profile migration result with ADI splitting scheme.
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