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1. Introduction

Signorini problem is one of the model problems considered in the theory of variational
inequality(see [7],[11]). The continuous linear finite element approximations of this problem
have been studied in many works(see [2],[8],[12],[3]). As far as we have known that Scarpini
and Vivaldi (see [12]) first gave the O(h3/4) convergence rate under the condition that the
displacement field u is of H2 regularity. Then, Brezzi, Hager and Raviart(see [2]) presented O(h)
convergence rate by detailed analysis under the additional assumptions that u|∂Ω ∈ W 1,∞(∂Ω)
and that the number of points in the free boundary set where the constraint changes from
binding to nonbinding is finite. For simplicity, we call these points ”the critical points”. Later,
Belgacem (see [3]) proved that under weaker assumption, i.e., u ∈ H 2(Ω) and the number of
critical points is finite, O(h|logh|1/2) convergence order can be obtained. Recently, Belgacem
(see [4]) has established an improved result of O(h|logh|1/4) convergence order under the same
assumptions as in his previous paper. However, the convergence rate is not optimal if stronger
regularity and finite number of the critical points are not assumed. In this paper, we work
with Crouzeix-Raviart linear finite element (see [6]) to approximate the Signorini problem and
achieve the same results as those of the continuous linear finite elements. The whole process
of analysis is more complicated and probably more skillful. Moreover, if the displacement field
u ∈ W 2,p with p > 2, we can obtain the optimal convergence rate without the assumption of
the finite number of the critical points on the contact region.

Throughout this paper all the notation about Sobolev spaces can be found in [1]. In addition,
the frequently used constant C is a generic positive constant whose value may be different under
different context. The paper is organized as follows: In section 2, we establish some notation
and lemmas. The main results are described in section 3, and in section 4, the proofs are given.
Next, we state the framework of the Signorini problem.

For the sake of simplicity, we only consider the Signorini problem for the Poisson equation.
The general continuous setting of this problem in R2 can be illustrated (a mathematical model) as
follows. Suppose Ω ⊂ R2 is a Lipschitz bounded domain, and it consists of three non-overlapping
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Fig 1.1

parts Γ0, Γ1 and Γg. Γ0 is the fixed boundary (Dirichlet condition) with the end points c1, c2

while Γ1 is the contact region subjected to a rigid fundation with d1, d2 as its endpoints, besides,
Γg is the ”glacis” with Neumann condition.

Now the Signorini problem can be restated as the following mathematical model:

to find u ∈ K = {u ∈ H1
Γ0

(Ω) : u ≥ 0 on Γ1}, such that (1.1)

a(u, v − u) ≥ χ(v − u), ∀v ∈ K, (1.2)

where

a(u, v) =

∫

Ω
∇u · ∇vdx, χ(v) =

∫

Ω
fvdx +

∫

Γg

gvds. (1.3)

The notation H1
Γ0

stands for the set {v ∈ H1(Ω) : v = 0 on Γ0}, ∂Ω = Γ0 ∪ Γ1 ∪ Γg, and
int(Γ0) ∩ int(Γg) = ∅, int(Γ1) ∩ int(Γg) = ∅. (see Fig 1.1). Here for concision, suppose the
domain Ω is polygonal in R2, and we only consider u ≥ 0 instead of u ≥ α on Γ1 in the closed
convex set K, since the whole subsequent analysis can be carried out to the case where α does
not vanish. It is easy to check that the equivalent differential form of (1.1) is the following















−4u = f in Ω,

u = 0 on Γ0,

∂νu = g on Γg,

u ≥ 0, ∂νu ≥ 0, ∂νu · u = 0 on Γ1 = Γ0
1 ∪ Γ+

1 ,

(1.4)

where ν is the unit outward normal to ∂Ω and Γ0
1 = {x ∈ Γ1 : u(x) = 0}, Γ+

1 = {x ∈ Γ1 : u(x) >

0}. The existence and uniqueness of the solution of the above problem can be easily verified by
the ellipticity of a(·, ·) and the continuity of χ on H 1

Γ0
.

Suppose Jh is the regular triangulation of Ω, and T ∈ Jh is the triangular element. Let Vh be
the Crouzeix-Raviart linear finite element space corresponding to Jh, (which is nonconforming,
i.e., Vh * H1(Ω)), that is to say,

Vh =

{

vh ∈ L2(Ω) : vh|T ∈ P1(T ), vh is continuous at the midpoints of the edges of T ,

for all T ∈ Jh, and vh(a′ij) = 0,where a′ij is the midpoint of a′

ia
′

j ⊂ Γ0.

}

(1.5)
and let

‖vh‖h = (
∑

T

|vh|21,T )1/2, ∀vh ∈ Vh, (1.6)

be the norm on Vh. Moreover, assume Kh is the following closed convex subset of Vh,

Kh = {vh ∈ Vh : vh(aij) ≥ 0,where aij is the midpoint of aiaj ⊂ Γ1.} (1.7)
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And we always consider that the triangulation Jh is built in such a way that the end points
of Γ0 and Γ1 are always chosen as the vertices of triangular elements. Then the finite element
approximation of problem (1.1)-(1.3) leads to : to find uh ∈ Kh, such that

ah(uh, vh − uh) ≥ χ(vh − uh), ∀vh ∈ Kh, (1.8)

where

ah(uh, vh) =
∑

T

∫

T
∇uh · ∇vhdx, (1.9)

χ(vh) =

∫

Ω
fvhdx +

∫

Γg

gvhds. (1.10)

As ‖vh‖h in (1.6) is a norm in Vh, the solution of the discrete problem (1.8)-(1.10) uniquely
exists, and the following abstract error estimate holds:

Theorem 1.1 Suppose u ∈ K is the solution of the variational Signorini problem (1.1)-(1.3)
and uh ∈ Kh the solution of the discrete one (1.8)-(1.10) respectively, then

‖u − uh‖h ≤ C inf
vh∈Kh

{‖u − vh‖2
h + ah(u, vh − uh) − χ(vh − uh)}1/2. (1.11)

The proof is similar to that of the second Strang lemma(see [5]), so we omit it here.
Remark: In the following sections, we often use the subscript h to denote something related
to the finite element discretization.

2. Notation and lemmas

In this section, we introduce some notation and lemmas, which will be used in the later
context. Let F ⊂ ∂Ω be the line element with respect to the triangulation Jh, and let

Γ1h = {F : F ⊂ Γ1} (2.1)

then Γ1h can be divided into the following three non-overlapping sets:







Γ0
1h = {F ∈ Γ1h : F ⊂ Γ0

1},
Γ+

1h = {F ∈ Γ1h : F ⊂ Γ+
1 },

Γ−

1h = {F ∈ Γ1h : F ∩ Γ0
1 6= ∅, F ∩ Γ+

1 6= ∅},
(2.2)

and
Γ1h = Γ0

1h ∪ Γ+
1h ∪ Γ−

1h. (2.3)

Lemma 2.1 The following discrete trace inequality holds, for 1 < p < ∞,

‖v‖0,p,∂T ≤ C{h−1
T ‖v‖p

0,p,T + h
p−1
T |v|p1,p,T }1/p, ∀v ∈ W 1,p(T ), T ∈ Jh. (2.4)

where C is a constant independent of v and hT .
The proof is the same as Stummel(see [13]).

Lemma 2.2 Suppose F ⊂ ∂T is an edge of the triangular element T ∈ Jh, and v ∈ H1(F ),
moreover, there exists some QF ∈ F such that v(QF ) = 0, then

‖v‖0,F ≤ Ch‖dv

ds
‖0,F ≤ Ch|v|1,F (2.5)
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‖v‖0,F ≤ Ch1/2‖v‖1/2,F (2.6)

where C = constant > 0 is independent of h and v, and dv
ds denotes the derivative of v along F .

Proof. Since C1(F ) ⊂ H1(F ) densely, it is sufficient to prove the lemma for smooth function
v ∈ C1(F ). Firstly, we have

‖v‖2
0,F =

∫

F
|v2(s) − v2(QF )|ds

=

∫

F
|
∫ s

QF

dv2(t)

dt
dt|ds ≤ 2

∫

F
{
∫ s

QF

|v(t)||dv(t)

dt
|dt}ds

≤ 2|F |
∫

F
|v(t)||dv(t)

dt
|dt ≤ 2h‖v‖0,F ‖

dv

ds
‖0,F

≤ 2h‖v‖0,F |v|1,F

from which the estimate (2.5) is proved. Next, we also have

‖v‖2
0,F ≤ 2

∫

F
|
∫ s

QF

v(t)
dv(t)

dt
dt|ds

≤ 2|F ||
∫

F
v(t)

dv(t)

dt
dt|

≤ 2h‖v‖1/2,F ‖
dv

dt
‖−1/2,F ≤ Ch‖v‖2

1/2,F

from which the estimate (2.6) can be obtained.

Lemma 2.3 Let u and uh be the solutions of the problems (1.1)-(1.3) and (1.8)-(1.10) respec-
tively, and assume that u ∈ H2(Ω), then

−
∑

F∈Γ−

1h

∫

F
∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch3/2‖u‖2

2,Ω, (2.7)

where C = constant > 0 is independent of h.
Proof. For given F ∈ Γ−

1h, if uh ≥ 0 on F , then −
∫

F ∂νu · uhds ≤ 0, since ∂νu ≥ 0 on Γ1. Thus
we need only consider such F ∈ Γ−

1h, that uh ≥ 0 does not identically hold on F . Then, for
those F , because we have uh(mF ) ≥ 0, with mF the midpoint of F , and by the linearity of uh

on F , there exists some QF ∈ F , such that uh(QF ) = 0. Let

PF
0 (v) =

1

|F |

∫

F
vds, RF

0 (v) = v − P F
0 (v) (2.8)

then,

−
∫

F ∂νu · uhds = −
∫

F
RF

0 (∂νu)uhds − P F
0 (∂νu)

∫

F
uhds

≤ −
∫

F
RF

0 (∂νu)uhds ≤ ‖RF
0 (∂νu)‖0,F ‖uh‖0,F (2.9)

since ∂νu ≥ 0 on F , P F
0 (∂νu) ≥ 0 and

∫

F uhds = |F |uh(mF ) ≥ 0. By lemma 2.1 for p = 2 and
the interpolation error estimate (see [5]), it can be seen that, for F ⊂ ∂T ,

‖RF
0 (∂νu)‖0,F ≤ Ch1/2|u|2,T , (2.10)
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where C = constant > 0 is independent of h. Thus again by lemma 2.1 for p = 2, (2.5) and
(2.10), one yields

−
∫

F ∂νu · uhds ≤ Ch3/2|u|2,T |uh|1,F

≤ Ch3/2|u|2,T (|u − uh|1,F + |u|1,F )

≤ Ch3/2|u|2,T (h−1|u − uh|21,T + h|u|22,T )1/2 + Ch3/2|u|2,T |u|1,F

≤ Ch|u|2,T |u − uh|1,T + Ch2|u|22,T + Ch3/2|u|2,T |u|1,F

where F ⊂ ∂T . Then, it comes out that

−
∑

F∈Γ−

1h

∫

F
∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2|u|22,Ω + Ch3/2|u|2,Ω‖u‖1,∂Ω

from which, and by the trace theorem, the proof is completed.

Lemma 2.4 Under the assumptions of lemma 2.3, assume that the number of the critical
points on Γ1 is finite, then

−
∑

F∈Γ−

1h

∫

F
∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2‖u‖2

2,Ω (2.11)

where C = constant > 0 is independent of h.
Proof. To begin with, following the same analysis of lemma 2.3, we only need to consider those
F , such that uh has at least one zero point QF on F . Then, for those F , by (2.5) we have

‖uh‖0,F ≤ Ch‖duh

ds
‖0,F (2.12)

Furthermore, for all F ∈ Γ−

1h, we claim that there exists either some line segment F ′ ⊂ F ∈ Γ−

1h

with meas(F ′) > 0 and u|F ′ = 0 or card{x ∈ F : u(x) = 0} is finite, since that the number of the
critical points on Γ1 is finite. For the latter case, which means ∂νu = 0 almost everywhere on F ,
then −

∫

F ∂νu · uhds = 0 by the definition of the Lebesgue integral. So we only need to consider

the former case, which implies that there must be some P F ∈ F ′ ⊂ F such that d
dsu(P F ) = 0.

Let du
ds (s) = v(s), from (2.9),(2.10) and (2.12), it can be seen that

−
∫

F ∂νu · uhds ≤ Ch3/2|u|2,T ‖
duh

ds
‖0,F

≤ Ch3/2|u|2,T (‖duh

ds
− du

ds
‖0,F + ‖du

ds
‖0,F )

≤ Ch3/2|u|2,T (|u − uh|1,F + ‖du

ds
‖0,F )

≤ Ch3/2|u|2,T (h−1|u − uh|21,T + h|u|22,T )1/2 + Ch3/2|u|2,T ‖
du

ds
‖0,F

≤ Ch|u|2,T |u − uh|1,T + Ch2|u|22,T + Ch3/2|u|2,T ‖
du

ds
‖0,F

and by (2.6)

‖du

ds
‖0,F ≤ Ch1/2‖du

ds
‖1/2,F ≤ Ch1/2‖u‖3/2,F (2.13)
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As a result, by the trace theorem,

−∑

F∈Γ−

1h
∂νu · uhds ≤ Ch|u|2,Ω‖u − uh‖h + Ch2|u|22,Ω + Ch2

∑

F∈Γ
−

1h
F⊂∂T

|u|2,T ‖u‖3/2,F

≤ Ch|u|2,Ω‖u − uh‖h + Ch2‖u‖2
2,Ω (2.14)

and the proof is completed.
Remark: In the following sections, we often use the subscript h to denote something related
to the finite element discretization.

3. Main results

In this section, we present the main results of the error estimates for Crouzeix-Raviart
linear element approximation to the Signorini problem stated in (1.1)-(1.3) in section 1. We
first provide the O(h3/4) convergence rate as that of the continuous finite element approxima-
tion(Theorem 3.1), then, we show the quasi-optimal error of the nonconforming method under
the reasonable assumption(Theorem 3.2). Furthermore, if additional regularity is assumed, op-
timality can be achieved(Theorem 3.3). Finally, if the displacement field u is in W 2,p(Ω)(p > 2),
even without the assumption of the finite number of the critical points on the contact region,
optimal convergence rate is available.

Theorem 3.1 Suppose Ω ⊂ R2 is a polygonal domain, u, uh are the solutions of (1.1)-(1.3)
and (1.8)-(1.10) respectively, and u ∈ H2(Ω), then we have

‖u − uh‖h ≤ Ch3/4‖u‖2,Ω. (3.1)

Theorem 3.2 Under the assumptions of theorem 3.1, moreover, assume that the number of

the critical points in Γ1 is finite, then we have

‖u − uh‖h ≤ Ch|logh|1/4‖u‖2,Ω. (3.2)

Theorem 3.3 Under the assumptions of theorem 3.2, and in addition, assume u|∂Ω ∈
W 1,∞(∂Ω), then

‖u − uh‖h ≤ Ch|u|2,Ω(‖u‖2,Ω + |u|1,∞,∂Ω). (3.3)

Theorem 3.4 Suppose Ω ⊂ R2 is a polygonal domain, u, uh are the solutions of (1.1)-(1.3)

and (1.8)-(1.10) respectively, and u ∈ W 2,p(Ω) with p > 2, then we have

‖u − uh‖h ≤ Ch‖u‖2,p,Ω. (3.4)

We should note that for the continuous linear element approximation to the Signorini prob-

lme (1.1)-(1.3) in section 1, the above results (3.1),(3.2) and (3.3) have been obtained in [12],[4],
and [2] respectively. In the proof of Theorem 3.2 in the next section, our method differs from
that of the Belgacem’s, but the result is same.

4. The proofs of the main results

Before verifying the main results, we present the following lemma.
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Lemma 4.1 Suppose u, uh are the solutions of (1.1)-(1.3) and (1.8)-(1.10) respectively, and
u ∈ H2(Ω), then we have

‖u − uh‖2
h ≤ C{h2|u|22,Ω +

∑

F∈Γ1h

∫

F
∂νu(Πhu − uh)ds} (4.1)

Proof. By the abstract error estimate (1.11), we set

Eh(u, vh − uh) = ah(u, vh − uh) − χ(vh − uh)

=
∑

T

∫

T
∇u · ∇(vh − uh)dx −

∫

Ω
f(vh − uh)dx −

∫

Γg

g(vh − uh)ds

= −
∫

Ω
(4u + f)(vh − uh)dx +

∑

T

∫

∂T
∂νu(vh − uh)ds −

∫

Γg

g(vh − uh)ds

=
∑

T

∑

F⊂∂T
F *∂Ω

∫

F
∂νu(vh − uh)ds +

∑

F∈Γ0h

∫

F
∂νu(vh − uh)ds

+
∑

F∈Γ1h

∫

F
∂νu(vh − uh)ds

= I1 + I2 + I3 (4.2)

Let wh = vh − uh, by the standard error estimates of Crouzeix-Raviart linear finite element(see
[13]), we have

I1 =
∑

T

∑

F⊂∂T
F *∂Ω

∫

F
∂νu · whds ≤ Ch|u|2,Ω‖wh‖h (4.3)

and

I2 =
∑

F∈Γ0h

∫

F
∂νu · whds ≤ Ch|u|2,Ω‖wh‖h (4.4)

By (4.2)-(4.4), one gets

Eh(u, vh − uh) ≤ Ch|u|2,Ω‖vh − uh‖h + I3 (4.5)

Thus, by(1.11),

‖u − uh‖2
h ≤ C inf

vh∈Kh

{‖u − vh‖2
h + Ch|u|2,Ω(‖u − vh‖h + ‖u − uh‖h) + I3}

Using the Young’s inequality

ab ≤ ε

2
a2 +

1

2ε
b2, ∀ε > 0

we obtain
‖u − uh‖2

h ≤ C inf
vh∈Kh

{‖u − vh‖2
h + I3} + Ch2|u|22,Ω

Let Πh be the linear interpolation operator of Crouzeix-Raviart linear finite element, then Πhv ∈
Kh for all v ∈ K and choose Πhu = vh in the above inequality and by the standard interpolation
error estimates of Crouzeix-Raviart linear finite element in [6], we derive,

‖u − uh‖2
h ≤ C(h2|u|22,Ω + I3) = C{h2|u|22,Ω +

∑

F∈Γ1h

∫

F
∂νu(Πhu − uh)ds} (4.6)
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which completes our proof.

With lemma 4.1 at hand, in order to prove the theorems in section 3, we only need to handle
the last term of the right-hand side of (4.1), i.e., I3.
Proof of Theorem 3.1.

I3 =
∑

F∈Γ1h

∫

F
∂νu(Πhu − u)ds −

∑

F∈Γ1h

∫

F
∂νu · uhds = A + B (4.7)

since ∂νu · u = 0 on Γ1. By lemma 2.1 for p = 2 and the interpolation error estimates,

A =
∑

F∈Γ1h

∫

F
∂νu(Πhu − u)ds ≤

∑

F∈Γ1h

‖∂νu‖0,F ‖Πhu − u‖0,F

≤
∑

F∈Γ1h

‖∂νu‖0,F Ch3/2|u|2,T ≤ Ch3/2‖∂νu‖0,Γ1
|u|2,Ω ≤ Ch3/2|u|22,Ω (4.8)

where F ⊂ ∂T . By the differential information (1.4), we know ∂νu = 0 on Γ+
1h, which results in

B = −
∑

F∈Γ1h

∫

F
∂νu · uhds = −

∑

F∈Γ0

1h

∫

F
∂νu · uhds −

∑

F∈Γ−

1h

∫

F
∂νu · uhds = B1 + B2 (4.9)

Consider for all F ∈ Γ0
1h,u|F = 0, so

−
∫

F ∂νu · uhds = −
∫

F
RF

0 (∂νu)uhds − P F
0 (∂νu)

∫

F
uhds

≤ −
∫

F
RF

0 (∂νu)uhds = −
∫

F
RF

0 (∂νu)RF
0 (uh)ds

= −
∫

F
RF

0 (∂νu)RF
0 (uh − u)ds

≤ ‖RF
0 (∂νu)‖0,F ‖RF

0 (uh − u)‖0,F

Note that

‖RF
0 (∂νu)‖2

0,F ≤ 2{
∫

F
|RF

0 (∂1u)|2ds +

∫

F
|RF

0 (∂2u)|2ds}

≤ 2{
∫

F
|RT

0 (∂1u)|2ds +

∫

F
|RT

0 (∂2u)|2ds} ≤ Ch|u|22,T (4.10)

The last inequality is obtained by the discrete trace inequality (2.4) in lemma 2.1 for p = 2.
Now it follows again from (2.4) with p = 2 that

B1 = −
∑

F∈Γ0

1h

∫

F
∂νu · uhds ≤

∑

F∈Γ0

1h

Ch1/2|u|2,T h1/2|u − uh|1,T ≤ Ch|u|2,Ω‖u − uh‖h (4.11)

From (4.6)-(4.9), and (4.11), one gets

‖u − uh‖2
h ≤ C(h2|u|22,Ω + h3/2|u|22,Ω + h|u|2,Ω‖u − uh‖h) + B2 (4.12)

Now using lemma 2.3, we know

B2 ≤ Ch|u|2,Ω‖u − uh‖h + Ch3/2‖u‖2
2,Ω (4.13)
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Combining (4.12)-(4.13) together with the Young’s inequality, the proof is completed.

Proof of Theorem 3.2. In order to obtain the quasi-optimal convergence rate, we should only
re-estimate the term I3. Note that ∂νu = 0 on Γ+

1h and ∂νu · u = 0 on Γ1,

I3 =
∑

F∈Γ1h

∫

F
∂νu(Πhu − uh)ds =

∑

F∈Γ0

1h

∫

F
∂νu(Πhu − uh)ds +

∑

F∈Γ−

1h

∫

F
∂νu(Πhu − uh)ds

=
∑

F∈Γ0

1h

∫

F
∂νu(Πhu − uh)ds +

∑

F∈Γ−

1h

∫

F
∂νu(Πhu − u)ds −

∑

F∈Γ−

1h

∫

F
∂νu · uhds

= D1 + D2 + B2 (4.14)

Moreover, for any F ∈ Γ0
1h, by lemma 2.1 for p = 2 and

∫

F
(Πhu − uh)ds = |F |(Πhu − uh)(mF ) = −uh(mF )|F | ≤ 0

with mF the midpoint of F , it follows easily that

∫

F ∂νu(Πhu − uh)ds ≤
∫

F
RF

0 (∂νu)(Πhu − uh)ds

=

∫

F
RF

0 (∂νu)(Πhu − u)ds +

∫

F
RF

0 (∂νu)RF
0 (u − uh)ds

≤ ‖RF
0 (∂νu)‖0,F (‖Πhu − u‖0,F + ‖RF

0 (u − uh)‖0,F )

≤ ‖Ch1/2|u|2,T (h3/2|u|2,T + h1/2|u − uh|1,T )

≤ Ch2|u|22,T + Ch|u|2,T |u − uh|1,T

hence,
D1 ≤ Ch2|u|22,Ω + Ch|u|2,Ω‖u − uh‖h (4.15)

Now we turn to estimate D2. For any F ∈ Γ−

1h, by discrete trace inequality lemma 2.1 and the
interpolation error estimates, we have

∫

F ∂νu(Πhu − u)ds ≤ ‖∂νu‖Lp′ (F )‖Πhu − u‖Lp(F )

≤ C‖∂νu‖Lp′ (F )(h
−1‖Πhu − u‖p

0,p,T + hp−1|Πhu − u|p1,p,T )1/p

≤ C‖∂νu‖Lp′ (F )(h
p+1|u|p2,T )1/p

≤ Ch1+1/p|u|2,T ‖∂νu‖Lp′ (F )

Note that H1/2(Γ1) ↪→ Lp′(Γ1), (1 ≤ p′ < +∞) and ‖v‖Lp′ (Γ1) ≤ C
√

p′‖v‖H1/2(Γ1) (see [3]), then

D2 =
∑

F∈Γ−

1h

∫

F
∂νu(Πhu − u)ds ≤ Ch1+1/p‖∂νu‖Lp′ (Γ1)

∑

F∈Γ−

1h

|u|2,T

≤ Ch1+1/p‖∂νu‖Lp′ (Γ1)|u|2,Ω ≤ C
√

p′h−1/p′h2‖u‖2
2,Ω

Choosing p′ = |logh|, we obtain

D2 ≤ C|logh|1/2h2‖u‖2
2,Ω (4.16)
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Finally, using lemma 2.4,

B2 ≤ Ch|u|2,Ω‖u − uh‖h + Ch2‖u‖2
2,Ω (4.17)

we can finish the proof of Theorem 3.2 by (4.14)-(4.17) together with (4.6) and the Young’s
inequality.

Proof of Theorem 3.3. Following the proof of Theorem 3.2, to improve the convergence rate from
O(h|logh|1/4) to O(h), it is sufficient to re-estimate the term D2. For all F ∈ Γ−

1h, by lemma 2.1
with p = 2 and the interpolation error,

∫

F ∂νu(Πhu − u)ds ≤ ‖∂νu‖0,∞,F

∫

F
(Πhu − u)ds

≤ Ch1/2‖∂νu‖0,∞,F‖u − Πhu‖0,F

≤ Ch2|u|1,∞,F |u|2,T

From which we deduce that

D2 =
∑

F∈Γ−

1h

∫

F
∂νu(Πhu − u)ds ≤ Ch2|u|1,∞,Γ1

∑

F∈Γ−

1h

|u|2,T ≤ Ch2|u|1,∞,Γ1
|u|2,Ω (4.18)

here we have used the assumption that the number of the critical points is finite. Then, as a
consequence of (4.6),(4.14),(4.15),(4.17) and (4.18) as well as the Young’s inequality, the proof
is complete.

Proof of Theorem 3.4. Now observe that u ∈ W 2,p(Ω), p > 2, by the trace theorem we have
u|∂Ω ∈ W 2−1/p,p(∂Ω), and then by the Sobolev imbedding theorem, Du|∂Ω ∈ W 1−1/p,p(∂Ω) ↪→
C0(∂Ω), as p > 2. We still write

I3 = D1 + D2 + B2 (4.19)

It is easy to see that (4.15), (4.18) still hold. To be exactly, as a direct application of the above
imbedding theorem, now (4.18) can be re-written as

D2 ≤ Ch2‖u‖2,p,Ω|u|2,Ω (4.20)

Next, we need to bound B2. As before, we only need consider those F on which uh has at least
one zero point and then (2.12) follows. Since F ∈ Γ−

1h, u has at least one zero point which we
denote by QF , i.e., u(QF ) = 0. If furthermore there is a neighborhood W ⊂ F of the point QF

such that u(x)|W = 0, which implies that there must be du
ds (QF ) = 0. Otherwise, there exists

a neighborhood W ⊂ F of the point QF such that u(x) > 0 in W except on one point QF . In
this case, it is easy to see that QF is the minimum point on W which implies du

ds (QF ) = 0 since
du
ds ∈ C0(∂Ω). In short, on those F , the fact that both u and du

ds have zero points is crucial to
our relaxation of the finite number of critical points. Subsequently, following the same line of
the proof of lemma 2.4, (2.11) holds, i.e.,

B2 ≤ Ch|u|2,Ω‖u − uh‖h + Ch2‖u‖2
2,Ω (4.21)

Finally, By (4.6),(4.15),(4.19)-(4.21) as well as the Young’s inequality we complete our proof.
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