2011年7月15日	Proceedings of the CSEE	©2011 Chin.Soc.for Elec.Eng. 121
第31卷第20期	中 国 电 机 工 程 学 报	Vol.31 No.20 Jul. 15, 2011

文章编号: 0258-8013 (2011) 20-0121-06 中图分类号: TK 16 文献标志码: A 学科分类号: 470-10

农业秸秆烘焙热分析

朱波,王贤华,杨海平,陈应泉,张世红,陈汉平 (煤燃烧国家重点实验室(华中科技大学),湖北省 武汉市 430074)

Thermal Analysis of Agricultural Straw Torrefaction

ZHU Bo, WANG Xianhua, YANG Haiping, CHEN Yingquan, ZHANG Shihong, CHEN Hanping

(State Key Laboratory of Coal Combustion(Huazhong University of Science & Technology), Wuhan 430074, Hubei Province, China)

ABSTRACT: The torrefaction characteristics of agricultural straw were investigated by using thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) method with rice straw, wheat straw, cotton stalks and corn stalk as typical samples. The results showed that there was no clear mass loss of the straw at a lower temperature (200~230 °C), and the mass loss was obvious as the temperature increased further (>260 °C), which was mainly due to the decomposition of hemicellulose. The FTIR gas products were mainly water, CO₂ and small amounts of acids, alcohols, aldehydes, ketones and other organic hydrocarbons.

KEY WORDS: agricultural straw; three components; torrefaction; thermogravimetric-Fourier transform infrared spectroscopy

摘要: 以稻杆、麦秆、棉杆、玉米杆为研究对象,采用热重 红外联用方法(TG-FTIR)研究烘焙预处理对农业秸秆热分解 特性及气体产物释放机制的影响。实验结果表明: 在较低温 度时(200~230 ℃),秸秆的热失重不是很明显,而随着温度 进一步提高(>260 ℃),秸秆中半纤维素分解剧烈,热失重明 显,傅里叶转换红外光谱分析气相产物中主要为水分、CO₂ 以及少量的酸、醇、醛、酮等含氧有机碳氢化合物。

关键词:农业秸秆;三组分;烘焙;热重红外分析

0 引言

生物质作为一种清洁的可再生能源,具有污染 物排放低和 CO₂零排放等优点,近年来得到了各国 的普遍重视^[1-2],通过热化学转化方法将其转化为高 品位的合成气、生物油等方法也成为研究热点^[3]。 然而由于生物质自身的分散性大、水分高、能量密 度低以及不易储存等缺点限制了其大规模工业化 利用,因此选择合理的预处理方式解决生物质利用 中存在的瓶颈问题已成为当前的研究重点^[4-6]。

低温热解又称烘焙,是一种在常压、无氧的条件下,在 200~300℃内慢速热解,脱除生物质中的 水分以及过多的氧的过程。Pentanunt^[7]等发现烘焙 后木材的烟气排放量减少; Felfli等^[8]研究揭示了烘 焙后生物质具有良好的疏水性,并认为 270℃左右 为适宜的烘焙温度,烘焙过程也有助于提高生物质 的可磨性和反应性^[9]。然而国内外大多数研究者主 要关注烘焙对林业废弃物的影响研究,对农业秸秆 涉及较少,并且对生物质的烘焙过程及烘焙机制的 研究也鲜有报道,鉴于此,本研究对华中地区典型 的农业秸秆以及生物质三大组分的烘焙过程以及 烘焙特性进行了较为深入的分析,以期探究农业秸 秆的烘焙机制以及烘焙机制,为进一步研究烘焙工 艺,建立合理的烘焙技术提供理论依据。

1 实验

1.1 原料选取与制备

实验选取的生物质三组分(纤维素、半纤维素和 木质素)购自美国 Sigma-Aldrich Chemie GmbH 公 司,纤维素为纤维粉末状,木质素为碱性木质素, 灰褐色粉末,样品颗粒细而均匀,平均粒径为约 50 μm; 而半纤维素因很难从生物质中直接分离出 来,常采用木聚糖来代替^[10-117]。

实验采用的秸秆主要为华中地区选取的稻杆、 麦秆、棉杆和玉米杆,经粉碎和筛分后选取 0.42 mm 以下的样品进行烘干处理(55 ℃,16 h),然后用密 封袋封装保存放入干燥塔内备用,生物质原料的工 业分析、元素分析和低位发热量结果如表 1 所示。

基金项目:国家重点基础研究发展计划项目(973 项目)(2007CB 210202);国家自然科学基金项目(50930006,51021065,50806027)。

The National Basic Research Program of China (973 Program) (2007CB210202); Project Supported by National Natural Science Foundation of China (50930006, 51021065, 50806027).

表1 生物质样品物性参数

 Tab. 1 Proximate and ultimate analysis of biomass samples

样品	工业分析/%			元素分析/%						
	M _{ad}	V_{ad}	A _{ad}	FC _{ad}	C_{ad}	H _{ad}	N _{ad}	\mathbf{S}_{ad}	$\mathrm{O*}_{\mathrm{ad}}$	Q/(MJ/kg)
稻杆	5.04	82.12	7.74	5.10	37.52	5.92	0.86	0.14	42.78	17.23
麦秆	4.38	68.52	12.91	14.19	40.35	5.95	0.55	0.27	35.59	16.13
棉杆	4.66	74.95	4.59	15.80	45.22	6.34	1.15	0.34	37.70	17.77
玉米杆	5.02	70.17	8.25	16.56	42.68	6.21	1.22	0.32	36.30	16.84

注: *O 含量由差减法计算得到。

从表中可以看出农业秸秆中的挥发分含量较高,而 N、S 含量均较低,发热量约为 17 MJ/kg,为环境 友好的可再生能源,然而农业秸秆中氧含量较高, 与煤、石油、天然气等化石能源相比发热量较低, 为提高生物质的能量密度,需要尽量降低生物质中 氧含量。

1.2 热重红外分析

农业秸秆和生物质三组分的烘焙过程均采用 德国 NETZSCH 公司的 STA 409 型热重分析仪进行 实验。热重分析仪采用高纯氮气(99.999%)为载气, 流量为 100 mL/min,样品量为 10 mg 左右,以 10 ℃/min 从室温升至设定温度(200、230、260、 290 ℃),然后保温 90 min。烘焙过程中气体的析出 特性采用美国 Bruker 公司的 EQUINOX 55 型傅里 叶变换红外光谱仪(Fourier transform infrared spectroscopy, FTIR)进行在线分析,测试过程中气 室和气体传输管路温度保持在 180 ℃,以避免发生 气体部分冷凝。FTIR 扫描的红外光谱范围从 4 000 到 500 cm⁻¹,分辨率为 0.5 cm⁻¹。从实验开始即开 始进行红外扫描,直至实验结束,每 10s 扫描 1 次。 由于气体管路的延时性,反应产物从热重反应器到 红外检测器的过程中有约 1 min 的滞后时间。

2 结果与分析

2.1 生物质样品的烘焙热重特性分析

图 1、图 2 所示为秸秆和生物质三组分在 260℃烘焙的热重(thermogravimetric, TG)特性曲线 (质量随时间变化曲线)与失重速率(differential thermogravimetric, DTG)特性曲线。从图中可以看 出,随着温度的升高(<150℃)秸秆、半纤维素及木 质素的质量快速减少,这主要因为样品中所含自由 水及部分结合水的加热挥发,为生物质的脱水干燥 阶段,失重量为10%左右。而随着温度的进一步升 高(>230℃),由于生物质样品内部分挥发分的裂解 析出,导致样品质量迅速降低,并在约 260℃出现

图 1 不同样品烘焙 TG 曲线(260 ℃) Fig. 1 Mass loss of different samples during torrefaction at 260 ℃

失重速率的最大值。然而,随着停留时间的延长, 失重速率快速降低,当停留时间大于 10min 时失重 速率降至约 0.2%/min,并且随着烘焙时间的继续延 长,生物质样品失重缓慢,TG 曲线平缓延伸,无 明显热解发生。相应 DTG 曲线有两个明显的失重 速率峰,表明生物质的烘焙主要为生物质的低温脱 水干燥(<150 ℃)及小部分挥发分的裂解析出 (>200℃) 2 个阶段。

而对于生物质三组分而言,其烘焙特性明显不 同。从图中可以看出,当升温至设定温度后,半纤

维素有着明显的热失重,并在 26 min 时达到最大的 热失重速率,约为3.6%/min,这主要是由于半纤维 素为多种不均一聚糖结构[12],其分子中存在各个不 同的高分子支链,整体呈现无定性的散乱结构,而 且构成其高分子的各个支链很不稳定,在外界加热 的条件下,易发生热裂解反应;而木质素的 DTG 曲线最大峰值出现在脱水干燥阶段,约为 1.5 %/ min,而挥发分裂解析出相对缓慢,这也与其愈疮 木基型、紫丁香基型和对羟苯基型的致密苯丙烷结 构有着密切的联系^[13-14];而纤维素的 TG/DTG 曲线 则基本没有变化,说明其在低温下(260℃)未发生明 显的热裂解反应,这也说明了纤维素分子结构坚 固,较难以热解。因此生物质烘焙中的热失重主要 因为样品内部半纤维素的支链结构在热力作用下 发生了脱羧基、羰基化反应及部分木质素结构被破 坏,形成水分、小分子气体以及碳氢化合物析出。

不同的农业秸秆烘焙特性也有明显的不同。在 260℃的烘焙温度下固体产量虽表现出相同的失重 趋势,但其烘焙后的固体产率也不尽相同,稻杆、 麦秆和玉米杆3种秸秆在烘焙结束时的固体产率基 本一致(约60%),而棉杆约为55%,这主要是因为 棉杆的组织结构类似于木质类生物质,并含有较高 的木质素,分解较为缓慢[15],而其他3种秸秆均为 草本植物,半纤维素含量较高,并在热力条件下更 易分解。而对于烘焙失重过程秸秆样品特性对其也 有显著影响,主要表现在最大失重峰的形状及其对 应时间有明显不同,其中稻杆和麦秆最大失重速率 较为一致(均为: 2.0%/min),出现在 25min 左右, 而玉米杆的最大失重速率为1.4%/min,并且稻杆和 麦秆均为尖峰结构,而玉米杆的峰值则较为平缓, 这主要因为麦秆等生物质组织结构较为松散, 热裂 解较容易,同时其含有较高的碱金属等矿质元素也 有一定的催化作用,进而导致其失重速率较高[16], 同时值得注意的是棉杆的最大峰值出现时间较其 他 3 种秸秆滞后(约 27 min),这与其致密的结构及 较难热分解有关[17]。

2.2 烘焙温度对秸秆烘焙过程的影响

为了进一步分析温度对农业秸秆烘焙行为的 影响,以棉杆和稻杆为典型样品分析了不同烘焙温 度下秸秆的烘焙特性,其 TG/DTG 结果如图 3—6 所示。从图中可以看出,秸秆样品的固体产量都随 着烘焙温度的升高而降低,而其 TG 曲线也呈现出 两种不同的趋势: 200~230℃分解较为缓慢,失重 不明显; 而当温度为 260~290℃时出现明显的热失 重,这主要是因为农业秸秆中半纤维素在温度高于 230℃后开始分解,并且随着温度升高其热分解更 加剧烈^[18]。在温度为 200~230℃时,稻杆在烘焙结 束时的固体产率均低于棉杆(稻杆: 90%, 200℃; 85%, 200℃; 棉杆: 94%, 200℃; 88%, 200℃),

图 3 不同烘焙温度下稻秆 TG 曲线

Fig. 3 TG curve of rice straw during torrefaction at different final temperatures

图 4 不同烘焙温度下棉秆 TG 曲线

Fig. 4 TG curve of cotton stalks during torrefaction at different final temperatures

图 5 不同烘焙温度下稻秆 DTG 曲线 Fig. 5 DTG curve of rice straw during torrefaction at different final temperatures

且在 230℃时,稻杆 DTG 为典型的尖峰,而棉杆的 峰值随时间变化不明显,且峰值较低,这主要是因 为稻杆中半纤维素含量较高,随着温度升高其逐渐 热解,并形成水分和部分小分子挥发分析出较多所 致。而随着温度增加为 260~290 ℃时,2 者的失重 曲线则表现出和前段相反的趋势(稻杆:60%,260℃; 55%, 290℃; 棉杆: 55%, 260℃; 43%, 290℃), DTG 曲线峰值也大幅度提高,并在 26 min 左右时 达到最大(稻杆: 2.35%/min, 棉杆: 3.77%/min), 然而稻杆的 DTG 曲线随时间的变化没有棉杆的剧 烈,这说明在较高温度下(>260℃)棉杆的热分解较 迅速,这主要是因为此时棉杆内含有较高的木质 素,在高温下(290℃),棉秆内部半纤维素分解的同 时,木质素也逐渐发生分解,并生成了较大量的气 体产物析出 (CO₂ 和 H₂O 等)^[19], 而稻杆主要为半 纤维素的缓慢分解,而其木质素含量较低(约10%), 热失重相对较慢。

此外,烘焙时间对农业秸秆的热失重也有一定 的影响(图 3、4),主要表现在烘焙的初期,特别在 烘焙温度较低时,随着停留时间的延长有明显的失 重,而当烘焙时间达到 40min 后,随着停留时间的 逐渐增加(>10min),固体样品失重不明显。

2.3 秸秆烘焙气体产物的 FTIR 分析

烘焙过程中各种气体组分的析出行为对烘焙 产物的品质特性以及烘焙过程机制的了解都有着 积极的作用。秸秆热重烘焙过程中气体产物析出特 性图见图 7 所示,其为烘焙时间为 60 min 时棉杆气 体产物析出特性的红外图谱。从图中可以看出此时 棉杆烘焙过程中主要气体产物为 H₂O(约 3 260 cm⁻¹ 和约 1 550 cm⁻¹)、CO₂(约 2 360 cm⁻¹ 和约 670 cm⁻¹) 以及少量富含 C=O(约 1 700 cm⁻¹)的甲醇、乙酸、 酮类和呋喃等有机碳水化合物。

图 7 60 min 时棉杆烘焙气体 FTIR 谱图 Fig. 7 FTIR spectra of gas products from torrefaction at 60 min

为了详细探究气体产物析出特性,采用红外吸 收峰的强度对主要气体的析出特性进行半定量分 析,结果见图8所示。从图中可以看出在棉杆的整 个烘焙过程中气体产物 CO2 和 C=O 均为双峰结 构,而 C-O-C 的吸收峰为单峰,H₂O 的吸收峰 值随着时间的增长为线性结构。可见其烘焙过程中 始终伴随着水分的析出,随着样品颗粒温度的升 高,水分逐渐析出,特别是在低温段(>100℃),这 与TG曲线的得到的结果一致(图1),这主要为秸秆 样品内所含的自由水的脱除;而随着到达设定温度 (约 260 ℃)后其吸光度也未消失,这主要是由于在 较高温度下,棉杆内各种分子之间的脱水反应持续 进行,导致棉杆在内水脱出后仍有部分水分析出。 由于在烘焙过程中棉杆内的半纤维素分解主要有 两个阶段,在较低温度下先发生聚合物的分解,环 内 C=O 基团在热力作用下断裂、缩合,从而发生 羧基、羰基的脱除和聚合,进而形成 CO2 以及 C= O 与 C−O−C 等小分子有机物;同时随着烘焙时 间的加长,产物之间二次反应也加剧,进而进一步 生成部分小分子气体(如 CO2)^[21]。因此,棉杆烘焙 析出产物中 CO2在 64 min 左右达到最大峰值(吸光 度: 0.012),而后随着时间的进一步加长,其二次 分解再次形成部分 H₂O 和 CO₂,导致 CO₂ 的吸收峰 值有少量降低而后又继续提高,并在 90 min 左右达 到第2个峰值(吸光度: 0.009)。而C=O等有机分 子的释放规律与CO,的特性相似,但其峰值较CO, 较低,并且释放的温度较低,可见两者的释放过程 中存在分子的关联耦合,后期CO2其C=O的峰值 生成是由于有机物的二次分解所致。对于 C-O-C 而言,其峰值出现时间较 CO₂、C=O 早,并呈现 单峰结构,这是由于其主要对应的是芳香烷骨架的

图 8 棉杆主要气体产物随时间变化 FTIR 谱图 Fig. 8 FTIR spectra of the main gas products over time of cotton stalks

醚支链结构,而在农业秸秆中芳香烷骨架主要是木质素的主要成分^[22],由此可见其对应的是棉杆中木质素分解所得的产物。

综上可以看出,棉杆等农业秸秆在烘焙过程中的热失重主要是由于 CO₂、有机化合物和水分的析 出引起的,并且主要为水分和 CO₂的析出。虽然上 述半定量分析不能具体看出各种物质的析出质量 分布,但是它也提供了不同温度及烘焙时间下每种 气体产物释放的特性分布。

3 结论

本文采用热重红外联用方法进行秸秆的烘焙 实验,并对烘焙机制进行分析,主要结论归结如下:

1)农业秸秆原样含水量高,含氧量大,并且 存在能量密度低,不易储存等缺点,使得其在燃烧、 气化等利用中存在产物品质较差等特性。

2)生物质在较低温度下(200~230℃)烘焙时,
 只发生了部分脱水反应,未发生明显失重,而随着
 温度上升至 260~290℃时,固体产率明显下降。

3) 农业秸秆烘焙过程中主要发生的是半纤维 素的分解,伴随有木质素的缓慢裂解,烘焙过程中 温度对其产物特性的影响最为明显,而烘焙时间的 延长也使得固体产量有所下降,而为了避免烘焙过 程中生物质有效组分的遗失,应选择较为适宜的烘 焙温度。

4)农业秸秆烘焙过程中气体产物主要为H₂O、 CO₂以及少量C=O、C-O-C含氧有机碳水化合物。

参考文献

[1] 杜胜磊,陈汉平,杨海平,等.生物质热解过程中 F 和 Cl 的迁徙行为研究[J].中国电机工程学报,2010, 30(14): 115-120.

Du Shenglei, Chen Hanping, Yang Haiping, et al. Transformation behavior of F and Cl during biomass pyrolysis[J]. Proceedings of the CSEE, 2010, 30(14): 115-120(in Chinese).

 [2] 杨海平,陈汉平,杜胜磊,等.碱金属盐对生物质三组 分热解的影响[J].中国电机工程学报,2009,29(17): 70-75.

Yang Haiping, Chen Hanping, Du Shenglei, et al. Influence of alkali salts on the pyrolysis of biomass three components[J]. Proceedings of the CSEE, 2009, 29(17): 70-75(in Chinese).

- [3] 蒲舸,张力,辛明道. 王草的热解与燃烧特性实验研究
 [J]. 中国电机工程学报,2006,26(11):65-69.
 Pu Ge, Zhang Li, Xin Mingdao. Experimental study on pyrolysis and combustion characteristic of king grass[J]. Proceedings of the CSEE, 2006, 26(11):65-69(in Chinese).
- [4] 王德元. 生物质能利用系统综合评价研究[D]: 武汉:
 华中科技大学, 2008.
 Wang Deyuan. Study on the comprehensive evaluation

about the biomass energy systems[D]. Wuhan: Huazhong University of Science and Technology, 2008(in Chinese).

- [5] 刘岗,郝德海,董玉平. 生物质秸秆收集成本研究及实证分析[J]. 技术经济, 2006, 218(2): 85-88.
 Liu Gang, Hao Dehai, Dong Yuping. Cost collection and analysis of biomass[J]. Technical and Economic, 2006, 218(2): 85-88(in Chinese).
- [6] 伊晓路,孙立,郭东彦,等. 生物质秸秆预处理技术
 [J].可再生能源,2005,120(2):31-33.
 Yi Xiaolu, Sun Li, Guo Dongyan, et al. Pretreatment technology of raw biomass stalks[J]. Renewable Energy, 2005, 120(2): 31-33(in Chinese).
- [7] Pentananunt R, Rahman A N M, Bhattacharya S
 C. Upgrading of biomass by means of torrefaction
 [J]. Energy, 1990, 15(12): 1175-1179.
- [8] Felfli F F, Luengo C A, Suárez J A, et al. Wood briquette torrefaction[J]. Energy for Sustainable Development, 2005, 9(3): 19-22.
- [9] Arias B, Pevida C, Fermoso J, et al. Influence of torrefaction on the grindability and reactivity of woody biomass[J]. Fuel Processing Technology, 2008, 89(2): 169-175.
- [10] Varhegyi G, Antal J J M, Jakab E, et al. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1997, 42(1): 73-87.
- [11] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,

2007, 86(12): 1781-1788.

- [12] Yang H, Yan R, Chen H, et al. An in-depth investigation of biomass pyrolysis based on three major components: xylan, cellulose and ligin[J]. Energy & Fuels, 2006, 20(1): 288-393.
- [13] 杨海平,陈汉平,晏蓉,等.油棕废弃物及生物质三组 分的热解动力学研究[J].太阳能学报,2007,28(6):
 626-631.

Yang Haiping, Chen Hanping, Yan Rong, et al. Thermodynamic analysis of pyrolysis of palm oil wastes and biomass components [J]. Acta Energiae Solaris Sinica, 2007, 28(6): 626-631(in Chinese).

[14] 姚燕, 王树荣, 郑赟, 等. 基于热红联用分析的木质素 热裂解动力学研究[J]. 燃烧科学与技术, 2007, 13(1): 50-54.

Yao Yan, Wang Shurong, Zheng Yun, et al. Kinetic research of lignin in pyrolysis by TGA-FTIR analysis [J]. Journal of Combustion Science and Technology, 2007, 13(1): 50-54(in Chinese).

- [15] Shi J, Chinn M S, Sharma-Shivappa R R. Microbial pretreatment of cotton stalks by solid state cultivation of phanerochaete hrysosporium[J]. Bioresource Technology, 2008, 99(14): 6556-6564.
- [16] Nowakowski D J, Jones J M, Brydson R, et al. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice[J]. Fuel, 2007, 86(15): 2389-2402.
- [17] 张宏喜,赵秀峰,魏玲,等.棉杆中半纤维素稀酸水解的研究[J]. 昌吉学院学报,2010(3): 99-102.
 Zhang Hongxi, Zhao Xiufeng, Wei Ling, et

al. Hemicellulose acid hydrolysis research of cotton stalks [J]. Journal of Changji University, 2010(3): 99-102(in Chinese).

- [18] Rao, J., Sharma, F. Pyrolysis rates of biomass materials[J]. Energy 1998, 23(11): 973-978.
- [19] Prins M J, Ptasinski K J, Janssen F. Torrefaction of wood: Part 1. Weight loss kinetics[J]. Journal of Analytical and Applied Pyrolysis, 2006, 77(1): 28-34.
- [20] 杨昌炎,杨学民,吕雪松,等.分级处理秸秆的热解过程[J].过程工程学报,2005,25(4):379-383.
 Yang Changyan, Yang Xuemin, Lu Xuesong, et al. Pyrolysis of Straw Obtained from Stagewise Treatment, The Chinese Journal of Process Engineering, 2005, 25(4):379-383(in Chinese).
- [21] Luo Z, Wang S, Liao Y, et al. Mechanism study of cellulose rapid pyrolysis[J]. Industrial and Engineering Chemistry Research, 2004, 43(18): 5605-5610.

作者简介:

收稿日期: 2010-10-10。

朱波(1985), 男, 硕士研究生, 研究方向为生物质热化学转化利用, zhubo1985050506163.com;

杨海平(1977), 女, 副教授, 主要从事 生物质及固体废弃物的资源化利用研究, yhping2002@163.com。

```
(责任编辑 王庆霞)
```