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Abstract

It has been shown that the Kullback-Leibler divergence is a Lyapunov
function for the replicator equations at evolutionary stable states, or ESS.
In this paper we extend the result to a more general class of game dy-
namics. As a result, sufficient conditions can be given for the asymptotic
stability of rest points for the entire class of incentive dynamics. The
previous known results will be can be shown as corollaries to the main
theorem.

1 Information Theory and The Replicator Dy-
namics

Information theory was originally developed by Claude Shannon and Warren
Weaver [Sha01, SW49] as a mathematical framework to describe problems in
communication including, but not limited to, data compression and storage.
They introduced measures of information called entropy1. Shannon’s entropy,
denoted H(P ), is a measure of the average uncertainty in a random variable, P .
It can be interpreted as the average number of bits needed to encode a message
drawn i.i.d. from P. Maximizing the entropy can be used to give a lower bound
on this average number of bits needed for encryption.

For our purposes, the concepts of cross entropy and relative entropy will be
of great use. The Kullback-Leibler divergence (KL divergence or DKL) [KL51],
or relative entropy is a measure of information gain (loss) from one state to
another. More precisely, it is an average measure of the additional bits needed

1In fact, the Shannon entropy is simply the Boltzmann entropy [Jay65] without the con-
stants
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to store y given a code optimized to store x. It is defined as

DKL(x||y) =
∑
α

xα ln
xα
yα

=
∑
α

xα lnxα −
∑
α

xα ln yα

= H(x)−H(x, y).

where H(x, y) is the cross entropy of x and y. It should be clear that minimizing
DKL with respect to y is equivalent to minimizing the cross entropy term as well.
Intuitively, this is trying to find the best distribution to approximate the ‘true’
distribution x and is well known as the Principle of Minimum Discrimination
or Minimum Discrimination Information.

Recall the definition of an evolutionary stable state or ESS [S+74].

Definition 1. A strategy profile x̂ ∈ ∆ is an ESS if and only if u(x̂, x) > u(x, x)
for every x 6= x̂ in a neighborhood of x̂.

In this context there is a single population playing a symmetric game against
itself. It has been shown by Weibull [Wei97], and Harper [Har11] that the
KL divergence is a Lyapunov function for the replicator equation at an ESS2.
Further connection between evolutionary games and information theory can be
realized by expanding the KL divergence in a Taylor series along x = y and
noting that the Hessian term is positive definite and is thus a metric. The
derived metric, a localization of the global divergence, is called the Shahshahani
metric [Sha79] and it has been shown that the replicator dynamics are gradient
flows of this metric [HS98].

2 Incentive Stable States

In [Fry12], the notion of an incentive for a game was developed. Furthermore,
a family of game dynamics was derived from these incentives and shown to be
fully general in the following sense: any valid game dynamic can be achieved
from an appropriate choice of incentive. To recap: an incentive, ϕ(x), is valid
if and only if, for every i and α, xiα = 0 ⇒ ϕiα(x) ≥ 0 and

∑
α ϕiα(x) 6= −1.

The corresponding incentive dynamic is then given by

ẋiα = ϕiα(x)− xiα
∑
β

ϕiβ(x).

The deep connections between information theory and the replicator dynam-
ics lead us to believe that some of these properties are more general. Unfortu-
nately, most of our incentive dynamics are not gradient flows of some Rieman-
nian metric, but the Principle of Minimum Discrimination is compelling enough
for us to believe we may be able to describe asymptotically stable states for the

2This result continues to be true for n-population games.
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incentive dynamics. We begin by defining a notion of incentive stability that is
closely related to the notion of ESS.

Definition 2. A strategy profile x̂ is an incentive stable state or ISS if and only
if

xi ·
ϕi(x)

xi
< x̂i ·

ϕi(x)

xi
, ∀i

for x 6= x̂ in a neighborhood of x̂.

The interpretation is exactly the same as in the ESS case: x̂ is preferred to
all distributions sufficiently close.

We can now show that all ISS are asymptotically stable for the corresponding
incentive dynamics. Note: if there is only one agent we have a necessary and
sufficient condition for the Kullback-Liebler divergence to be a strict Lyapunov
function.

Theorem 1. If the state x̂ is an interior incentive stable state for the corre-
sponding incentive dynamics, then

∑
iDKL(x̂i||xi) is a local Lyapunov function.

Proof. Define Vi(x) = DKL(x̂i||xi) and V (x) =
∑
i Vi(x). Then we have the

following:

V̇i(x) = −
∑
α

x̂iα
ẋiα
xiα

= −
∑
α

x̂iα
xiα

ϕiα(x)− xiα
∑
β

ϕiβ(x)


=

∑
β

ϕiβ(x)
∑
α

x̂iα −
∑
α

x̂iα
xiα

ϕiα(x)

=
∑
α

xiα − x̂iα
xiα

ϕiα(x) < 0

⇔ xi ·
ϕi(x)

xi
< x̂i ·

ϕi(x)

xi

3 Examples

The replicator dynamics can be achieved using the incentive

ϕiα(x) = xiα(fiα(x) + gi(x)),

where f is the fitness landscape, and g is an arbitrary function. Thus the ISS
condition trivially reduces to the familiar ESS condition.

There are however, many other dynamics that are asymptotically stable at
ESS. For example, Nagurney and Zhang [NZ96], Lahkar and Sandholm[LS08],
and Harper [Har11] all show independently that the euclidean distance can be
used as a Lyapunov function to establish this fact for the projection dynamics.
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3.1 Best Reply

The Best Reply dynamic as defined by Young [You01] has a simple incentive
function, ϕiα(x) = BRiα(x), where BRiα(x) = 1 if eiα is a best reply to the
current state x. A tiebreaker is assumed for instances where there is more than
one best reply. Thus the incentive dynamic is

ẋiα = BRiα(x)− xiα.

The ISS condition is rather simple to interpret:

xi ·
ϕi(x)

xi
< x̂i ·

ϕi(x)

xi∑
α

BRiα(x) <
∑
α

x̂iαBRiα(x)

xiα

1 <
x̂iβ
xiβ

,where eiβ is the best reply to x

⇒ xiβ < x̂iβ

This occurs trivially at an ESS.
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