
ar
X

iv
:1

20
7.

00
77

v2
  [

m
at

h.
ST

] 
 4

 J
ul

 2
01

2

THE THREE-STATE TORIC HOMOGENEOUS MARKOV CHAIN

MODEL HAS MARKOV DEGREE TWO

PATRIK NORÉN

Abstract. We prove that the three-state toric homogenous Markov chain
model has Markov degree two. In algebraic terminology, that a certain class
of toric ideals are generated by quadratic binomials. This was conjectured
by Haws, Martin del Campo, Takemura and Yoshida, who proved that the
Markov degree was at most six.

1. Introduction

In this note we prove that the Markov degree of three state toric homogeneous
Markov chain model is two, as conjectured. Let S and T be positive integers,

RS,T = K[xw | w is a T -letter word i1 . . . iT on the alphabet [S] with ij 6= ij+1],

and define the S-state toric homogeneous Markov T–chain ideal, IS,T , as the kernel
of the ring homomorphism

ΦS,T : RS,T → RS,2

given by Φ(xi1...iT ) = xi1i2xi2i3 · · ·xiT−1iT . Most results are independent of T when
it is sufficiently large. The Markov degree is the smallest degree of a generating set,
and the Gröbner degree is the smallest degree of a Gröbner basis. A brief overview
of previous and related results:

Theorem (Hara and Takamura, [4] and [7]). The Markov degree of the two-state

model is 2.

Theorem (D. Haws, A. Martin del Campo, A. Takemura and R. Yoshida, [5], [6]).
The Markov degree of the three-state model is at most 6.

This is the ’big conjecture’ according to Ruriko Yoshida [8].

Conjecture. For S > 2 the S-state model has Markov degree S − 1 and Gröbner

degree S.

We prove the Markov part of the conjecture for three state model by combina-
torial arguments.

Theorem 2.8. The Markov degree of the three-state model is 2.

The S-state toric homogeneous Markov T –chain ideal is almost an ideal of graph
homomorphisms from the path of length T into the complete graph on S vertices.
Thanks to the following result it is believed that their structure should be possible
to understand.

Theorem (Engström and Norén [3]). The ideal of graph homomorphisms from any

forest into any graph has a square-free quadratic Gröbner basis.
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That results was proved using the toric fiber product, and adaptations of that
has been useful before, as in [1] and [2], when the ideals under consideration are
not toric fiber products right off.

2. Proof of the main result

Let PT be the directed path on vertex set [T ] and edges 12, 23, . . . , (T − 1)T .
Let K3 be the directed complete graph on vertex set [3]. A T -letter word i1 . . . iT
on the alphabet [3] with ij 6= ij+1 encode a graph homomorphism PT → K3, the
word i1 · · · iT corresponds to the homomorphism sending vertex j to ij.

A state graph is a directed graph on vertex set [3] with multiple edges allowed
but no loops.

Now the variables in R3,T are indexed by graph homomorphisms PT → K3. A
graph homomorphism PT → K3 induce a state graph and if x, y are two variables
with the same state graph then x − y ∈ I3,T . It is enough to have one variable
for each state graph. A state graph G of a variable can be uniquely decomposed
into a set of 2-cycles, triangles with the same orientation and potentially a leftover
path directed in the same way as the triangles. Note that any collection of 2-cycles,
triangles and a possibly empty path whose number of edges add up to T − 1 is a
decomposition of a state graph of a variable. The graph can be reconstructed from
the decomposition and so alternatively there is one variable for each decomposition.

The notation for a path is ij or ijk depending on the length. The notation for
2-cycles is (ij). The notation for triangles is (ijk), this cycle contains the path
ijk, note that the orientation or direction matters. The notation for a the step
xy−x′y′ is A,B → A′, B′ where A is a collection of paths and cycles in x and B is
a collection of cycles and paths in y, the variable x′ is obtained from x by removing
the cycles and paths A and adding A′ and y′ is obtained from y be removing B and
adding B′. Note that when this has been done it might be necessary to decompose
the the graphs in a new way, for example (123), (321) → (321), (123) might actually
be (123), (321)(321)→ (321), (12)(23)(13).

Example 2.1. The word 123231323123 has the decomposition (13)(23)(23)(123)23.

To prove that the ideals I3,T are generated in degree 2 some lemmas are needed.

Lemma 2.2. Given a monomial m′ it is possible to use degree 2-moves to reach a

monomial m so that all triangles of m have the same direction and if x, y divide m

then the number of triangles in x and y differ by at most two.

Furthermore if it is impossible to get all the paths and triangles of the variables

dividing m directed in the same way then there is at most one triangle in the vari-

ables of m.

Proof. Suppose the monomial m′ have variables with triangles directed differently
and one variable with more than one triangle then the move (123), (321) → (321), (123)
decrease the number of triangles. In the end either all triangles have the same
direction or the variables have at most one triangle. If there still is cycles of
different directions and paths on some of the variables with cycles it is possi-
ble to reduce the number of cycles in the same way, otherwise there is a move
(123), (132) → (12)31, (23)13 reducing the number of cycles of different directions.
If all paths and cycles have the same directions the move

(ijk)(ijk), (i1i2)(i3i4)(i4i5) → (i1i2)(i3i4)(i4i5), (ijk)(ijk)
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reduces the difference of triangles between variables. If there is two or more triangles
in some variables and a path with the other direction on some, then the moves
(ijk), kj → (jk)ij, ki or (ijk), kji → (ij)ki, (jk) might be needed together with
swapping the extra paths to reduce the number of triangles and paths directed the
wrong way. If the variable with triangles have a path with one edge then the moves
above are enough since the variable with the wrong directed path have at least six
2-cycles in this case. �

Call the monomials m in Lemma 2.2 normal.

Lemma 2.3. If m,n are normal monomials so that m − n ∈ I3,T and m has all

paths and cycles directed in the same way then so do n.

Proof. Assume m have the direction (123) and that n have something in the oppo-
site direction.

First case is odd T and no triangles in n. Inm everything have the same direction
and so at least one edge with this direction outside a 2-cycle is needed for every
variable in n, however in n there is only one edge outside of 2-cycles in each variable
and so all of them have the right direction.

Second case is even T and no triangles in n. By assumption n contains some
path directed in the wrong way, it is possible to chose one of these paths to be
321. Without loss of generality n do not contain the path 123 as this would allow
the move 321, 123 → (12), (23) that reduces the number of wrong directed paths.
Now in this situation it is no loss of generality to assume that the only type of
path directed the wrong way in n is 321, since other paths in the right direction is
needed to cancel the edges with wrong direction. This give a surplus of edges 13
that can not be accounted for in m, in m there is at most one extra edge 13 for any
other edge in the right direction.

Now there are two situations, that the triangles in n have the same direction
as in m and that they have the opposite direction. The next two cases deal with
triangles in the same direction.

Third case is odd T and triangles in n. Without loss of generality assume that n
contains the path 21. Now n will not contain the paths 12, 123 and 312. Further-
more it will not contain any variables with triangles but no path. In this situation
n can not contain paths 32 and 13, this gives more extra 23 and 31 edges than can
be in m.

Fourth case is even T and triangles in n. Again assume that n contain 321. This
implies that n can not contain the paths 123, 12 and 23. Now n can not contain
any other type of wrong directed path. The extra edges 31 make n impossible.

When the triangles in n are directed in the opposite way as in m the situation is
easier, it guarantees the existence of paths needed to cancel all triangles and and
so it reduces to one of the previous four cases. �

Lemma 2.4. Let m′, n′ be normal monomials so that m′ −n′ ∈ I3,T . It is possible

using degree 2 steps to go to normal m from m′ and normal n from n′ so that if x

divides m and y divides n then the number of triangles in x and y differ by at most

three.

Proof. There is only something to prove if both monomials have all triangles and
paths directed the same way.
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Suppose that the minimal number of triangles in a variable in m′ and n′ are the
same, then there is nothing to prove. If the minimal number differ by two or more
then the number of edges in the triangles and paths can not add up to the same in
both monomials and this is required since the set of 2-cycles have to be the same
for both monomials. �

Lemma 2.5. Let m and n be normal monomials with paths and triangles in the

same direction and containing variables with the same number of triangles. If m−
n ∈ I3,T then it is possible to go from m to n using degree two steps.

Proof. Let x, y be variables with the same number of triangles so that x divide m

and y divide n.
Suppose the variables x, y have the same path then it is possible to do a sequence

of moves (ij), (jk) → (jk), (ij) to m,n that share a variable. This is because the
set of 2-cycles are the same for both monomials.

Suppose x have the path 12 and y have the path 23. Now m can not contain
any paths 23, 231 and n can not contain any paths 12, 312. Any extra edge 23 in m

are locked up in paths or triangles also containing 12 and so there are more extra
edges 12, however the same argument for 12 and n give that there are more extra
edges 23. This is impossible.

Suppose x have the path 123 and y have the path 231. Now at most one of m
and n can contain the path 213, assume without loss of generality that n contain
no 213. Now any edge 12 in n are in triangles, while in m there are more edges 12
than edges 31. This is impossible.

The case that remains is when x have no path and y have the path 123. If m
contains any variable with a path on two edges, a variable with a triangle and a
path with one edge or a variable that is not x containing a triangle with no path.
Then there is a move giving a path to x and not changing the triangles in x or the
orientation of the other variables. The case that remains is that all variables in m

except x contain no triangle and no path of length 2. If T is odd then the other
variables contain no path and if T is even the other variables have paths with one
edge. Note that x contain fewer extra edges than y and the other variables in m

contain the lowest possible number of extra edges, this is impossible. �

Lemma 2.6. If m and n are normal monomials so that m−n ∈ I3,T and m and n

have all paths and cycles directed in the same way, then it is possible to use degree

2-steps to go from m to n.

Proof. Note that by Lemma 2.5 the only case that remains is that the monomials
have no variables with the same number of triangles and by Lemm 2.4 all the
variables dividing one of the monomials have an even number of triangles and the
variables dividing the other have an odd number of triangles.

One of the monomials have paths with one edge on each variable, assume that
this monomial is m. The step (ijk)ij, (i1i2)(i3i4)jk → (i1i2)(i3i4), (ijk)ijk from m

if possible creates variables with the same number of triangles in both monomials.
This step is impossible if all the variables have the same number of triangles and
fewer than two 2-cycles or if all paths are the same. If all paths are the same
assume it to be 12 then the other monomial have to have paths on all variables
containing the edge 12, however two paths of length two can at most give one
extra edge 12 and so this is impossible. Now all variables have exactly one 2-cycle,
zero 2-cycles is impossible since the number of 2-cycles in the other monomial
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is nonzero. Now again all paths still have to be the same otherwise the move
(ijk)(i1i2)ij, (i3i4)jk → (i1i2)(i3i4)ijk, (ijk) is possible. �

Lemma 2.7. If m and n are normal monomials with paths and triangles in different

directions and if m−n ∈ I3,T then it is possible to go from m to n using degree two

steps.

Proof. Again divide into the cases that T is evan and odd.
Assume that T is even and that m contains triangles. Let the triangles have the

orientation of (123) and assume that there is a path 21. Now every triangle have
to have the path 231 or there is a move destroying a triangle. This proves that all
the paths with orientation opposite of the cycles are 21 and this proves that the
only paths with the orientation of (123) are 23, 31 and 231. Now there is more than
one extra edge for each variable even after canceling the edges 21 from paths and
12 from triangles and this forces n to have triangles even after minimizing them
as was done for m. In fact counting the extra edges give that the set of triangles
and paths have to be equal for both monomials and so it is possible to go between
them with the steps (ij), (jk) → (jk), (ij). When m do not contain triangles then
n will not contain triangles by the previous argument and then it is possible to go
between them with the moves (ij), (jk) → (jk), (ij) and ij, ji(jk) → jk, kj(ij).

Assume that T is odd and that m contains triangles. Again the triangles have
the orientation (123) and m contains the path 321. All paths on variables with
triangles have to be 31 and so all paths of opposite direction of the triangles are
321. The paths 123 may not occur and counting the extra edges as in the even case
give that the sets of paths and triangles have to be the same for both monomials
and it is possible to go between them. Now assume that m have no triangles then
neither do n and it is clear that it is enough to use the moves (ij), (jk) → (jk), (ij)
and ijk, kji → (ij), (jk) �

Theorem 2.8. Three-state toric homogenous Markov chain model has Markov de-

gree two.

Proof. Letm′, n′ be two monomials andm,n be the corresponding normal monomi-
als obtained from Lemma 2.2, then m′−n′ ∈ I3,T if and only if m−n ∈ I3,T . Either
both monomials have everything directed in the same way or both have paths and
or triangles oriented differently according to Lemma 2.3. Now it is possible to go
between the monomials by Lemma 2.6 or Lemma 2.7. �
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