
April 24, 2005 21:9 WSPC/INSTRUCTION FILE finms

Two Nonconforming Quadrilateral Elements for the Reissner-Mindlin

Plate

Pingbing Ming and Zhong-ci Shi

Institute of Computational Mathematics & Scientific/Engineering Computing,
AMSS, Chinese Academy of Sciences,

No. 55, Zhong-Guan-Cun East Road, Beijing, 100080, China

mpb@lsec.cc.ac.cn, shi@lsec.cc.ac.cn

Received (Day Month Year)
Revised (Day Month Year)

Communicated by (xxxxxxxxxx)

We construct two low order nonconforming quadrilateral elements for the Reissner-
Mindlin plate. The first one consists of a modified nonconforming rotated Q1 element for
one component of the rotation and the standard 4−node isoparametric element for the
other component as well as for the the approximation of the transverse displacement, a
modified rotated Raviart-Thomas interpolation operator is employed as the shear reduc-
tion operator. The second differs from the first only in the approximation of the rotation,
which employs the modified rotated Q1 element for both components of the rotation,

and a jump term accounting the discontinuity of the rotation approximation is included
in the variational formulation. Both elements give optimal error bounds uniform in the
plate thickness with respect to the energy norm as well as the L2 norm.
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1. Introduction

In the last two decades, extensive efforts have been devoted to the design and anal-

ysis of finite elements to resolve the Reissner-Mindlin (R-M) plate, which is one of

the most widely used plate bending model. However, the elements for which a sound

mathematical analysis exists are largely constricted to triangular and rectangular

elements. Arnold, Boffi and Falk 3 checked the possible traps during the straightfor-

ward extension of rectangular elements to general quadrilateral meshes. Following

the guideline of 3, it seems hopeful to analyze the classical quadrilateral MITC fam-

ily 13 35. Durán, Hernández, Hervella-Nieto, Liberman and Rodŕıguez 20 recently

proposed a new quadrilateral element (DL4) which is the same with MITC4 8 except

that a bubble enriched 4−node isoparametric element is used to approximate the

rotation. They established the optimal H1 error bound for a general quadrilateral

mesh, while the optimal L2 error bound is only proved for mildly distorted quadrilat-

1



April 24, 2005 21:9 WSPC/INSTRUCTION FILE finms

2 P. B. Ming and Z.-C. Shi

eral meshesa. Meanwhile, for the nested mesh with mildly distorted quadrilaterals,

they derived optimal H1 and L2 error bounds for the classical MITC4. In 25, we

proposed two elements that are also similar to MITC4 except that the rotation is

approximated by the nonconforming rotated Q1 element (NRQ1)
34. The optimal

H1 and L2 error bounds are derived for mildly distorted quadrilateral meshes. Con-

sequently, all the above elements cannot be regarded as strictly locking-free since

they degrade over general quadrilateral meshes either in the L2 norm or even in the

energy norm.

In this paper, we present two new quadrilateral elements, which can be regarded

as the quadrilateral extension of the rectangular elements in 28. For the first element,

we use the modified NRQ1 to approximate one component of the rotation, and

the 4−node isoparametric element to approximate the other component as well

as the transverse displacement. A modified rotated Raviart-Thomas interpolation

operator introduced in 31 is employed as the shear reduction operator. The second

element differs from the first in the approximation of the rotation. The modified

NRQ1 is used to approximate both components of the rotation, and a jump term

which accounts the discontinuity of the rotation approximation is included in the

variational formulation. We prove optimal H1 and L2 error bounds uniform in the

plate thickness over general quadrilateral meshes.

The main ingredient of our method is a new shear reduction operator, which

is motivated by the observation due to 20 31 32, namely, the L2 convergence rate

deterioration originates from the the non-optimality of the following interpolation

estimate for the rotated RT[0] element 36:

‖ rot(u−Πu)‖L2(Ω) ≤ Ch|rotu|H1(Ω) + C max
K∈Th

dK/hK ‖ rotu‖L2(Ω),

where Π is the rotated RT[0] interpolation operator, and dK is the distance be-

tween the midpoints of two diagonals of an element K of the triangulation Th for

a domain Ω. While the modified rotated RT[0] element instead admits the optimal

interpolation error estimate:

‖ rot(u−Rhu)‖L2(Ω) ≤ Ch|rotu|H1(Ω),

where Rh is the modified rotated RT[0] interpolation operator. In the same spirit,

the rotated ABF[0] interpolation operator 4 could also be used as a shear reduction

operator that would lead to the optimal L2 error estimate. Actually, the relatively

new ABF[0] interpolation operator appeared in early 80’s engineering literature in

a disguised form as a kinematically linked interpolation operator. This interesting

relation has recently been uncovered in 30 and 32. Naturally, the L2 error degradation

of DL4 element could be cured by using either the modified rotated RT[0] or the

rotated ABF[0] interpolation operator as the shear reduction operator.

The outline of the paper is as follows. We introduce the R-M model and recall

some a priori and regularity estimates of the solutions in §2. In §3, we introduce the

aSee 29 for the exact definition.
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elements. Two Korn’s inequalities for piecewise vector field of the approximation

spaces of the rotation are established in §4. We derive error bounds for all variables

in the energy norm and L2 norm in the last section.

Throughout this paper, the generic constant C is assumed to be independent of

the plate thickness t and the mesh size h.

2. Variational Formulation

Let Ω represent the mid-surface of the plate, which is assumed to be clamped along

the boundary ∂Ω. In the sequel, we assume that Ω is a convex polygon. Let φ

and ω be the rotation and the transverse displacement, respectively. In the R-M

plate model, they are determined by the following variational formulation: Find

φ ∈H1
0(Ω) and ω ∈ H1

0 (Ω) such that

a(φ,ψ) + λt−2(∇ω − φ,∇v −ψ) = (g, v) ∀ψ ∈H1
0(Ω) and v ∈ H1

0 (Ω), (2.1)

where a(η,ψ) =
(
CE(η), E(ψ)

)
for any η,ψ ∈H1

0(Ω), and E(η) is the symmetric

part of the gradient of η. Here H1
0 (Ω) denotes the standard Sobolev space, and

H1
0(Ω) the corresponding space of 2−vector-valued functions, this rule is applicable

to other spaces and operators. Let g be the scaled transverse loading function, t−the

plate thickness, λ = Eκ/[2(1 + ν)] with Young’s modulus E, the Poisson ratio ν

and the shear correction factor κ. For a 2 × 2 symmetric matrix τ , Cτ is defined

as Cτ = D [(1 − ν)τ + ν tr(τ )I ] with the bending modulus D = E/[12(1 − ν2)],

where I is a 2 × 2 identity matrix and tr(τ ) is the trace of τ .

For any domain D, the norm and semi-norm in Hk(D) are denoted by ‖ · ‖k,D

and | · |k,D , the subscript D will be dropped if it is Ω.

Given φ and ω, the shear stress γ is defined by

γ = λt−2(∇ω − φ). (2.2)

A proper space for the shear stress is H−1(div, Ω), which is defined as the dual

space of

H0(rot, Ω) = { q ∈ L2(Ω) | rot q ∈ L2(Ω), q · t = 0 on ∂Ω }

with t denoting the unit tangent to ∂Ω and rotq = rot(q1, q2) = ∂xq2−∂yq1. It can

be shown that

H−1(div, Ω) = { q ∈H−1(Ω) | div q ∈ H−1(Ω) }

with div q = ∂xq1 + ∂yq2. Define

H(div, Ω) = { q ∈ L2(Ω) | div q ∈ L2(Ω) },

and the norm in H(div, Ω) is given by

‖q‖H(div) = (‖q‖2
L2(Ω) + ‖ div q‖2

L2(Ω))
1/2.
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The following a priori estimates and regularity results of the solution of (2.1)

are essentially included in the Appendix of 6 and 17 as

‖φ‖1+‖ω‖1 + ‖γ‖0 ≤ C‖g‖−1, (2.7)

‖φ‖2 ≤ C‖g‖−1, ‖ω‖2 ≤ C(‖g‖−1 + t2‖g‖0), (2.8)

‖ div γ‖0 ≤ C‖g‖0, t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0). (2.9)

3. Finite Element Approximation

Let Th be a partition of Ω̄ by convex quadrilaterals K with the diameter hK and

h := maxK∈Th
hK . We assume that Th is shape regular in the sense of Ciarlet-

Raviart 18 . Namely, all quadrilaterals are convex and there exist constants σ ≥ 1

and 0 < ρ < 1 such that

hK/hK ≤ σ, |cos θi,K | ≤ ρ, i = 1, 2, 3, 4 ∀K ∈ Th.

Here hK and θi,K denote the shortest length of edges and the interior angles of K,

respectively. The quasi-uniformity of Th is not assumed.

Let K̂ = (−1, 1)2 be the reference square and the bilinear function F be an

isomorphism from K̂ → K = F (K̂). Let DF be the Jacobian matrix of the mapping

F and J its determinant. Obviously, J(x̂) = J0 + J1x̂+ J2ŷ.

For notation brevity, the inner products in L2(K) and L2(Ω), and the dual

pairing between H−1(div, Ω) and H0(rot, Ω) are all denoted by (·, ·). Denote by∫
−

Ω1

f the mean value of a function f over the sub-domain Ω1 of Ω.

We firstly use the standard 4−node isoparametric bilinear element space

Wh: = { v ∈ H1
0 (Ω) | v|K ∈ Q1(K) ∀K ∈ Th }

to approximate the transverse displacement, where

Q1(K): = { q ◦ F−1 | q ∈ Span{1, x̂, ŷ, x̂ŷ} }.

Denote by Π1 the standard bilinear interpolation operator.

Next we define

Nh: = { v ∈ L2(Ω) | v|K ∈ Q̂1, v is continuous regarding Qe

and Qe(v) = 0 if e ⊂ ∂Ω }

with

Q̂1: = { q ◦ F−1 | q ∈ Span〈1, x̂, ŷ, x̂ŷ, x̂2 − ŷ2〉 },

and Qe(v): =
∫
−ev for all smooth function v: K → R and e ⊂ ∂K. The five degrees

of freedom associated with Q̂1 are give by the mean value of a function f over

four edges and the integral
∫
−

K̂
f ◦F−1x̂ŷ. Denote by Πh the standard interpolation

operator over Nh.
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Remark 3.1. The finite element space Nh defined above is a modification of NRQ1

by adding x̂ŷ in the basis function. It differs from the element introduced in 16 as

Q̂1: = { q ◦ F−1 | q ∈ Span 〈1, x̂, ŷ, x̂ŷ, θ`(x̂) − θ`(ŷ)〉 }

with

θ`(x̂) =

{
x̂2 − 5

3 x̂
4 ` = 1,

x̂2 − 25
6 x̂

4 + 7
2 x̂

6 ` = 2.

Define

V h = Nh ×Wh and Ṽ h = Nh ×Nh

as the approximation space of the rotation. As V h and Ṽ h are nonconforming, so

when differential operators such as E , rot and ∇ may be applied to functions in V h

or Ṽ h, we shall write Eh, roth and ∇h in all these cases, which are defined piecewise

on each element. The space V h or Ṽ h is equipped with the piecewise semi-norm

|v|1,h = ‖∇hv‖0 and the norm ‖v‖1,h = ‖v‖0 + |v|1,h. The same rule is applicable

to the scalar functions in Nh.

Using the general theory in 2, we have the interpolation result

‖v − Πhv‖0 + h‖v − Πhv‖1,h ≤ Ch2‖v‖2 ∀v ∈ H1
0 (Ω) ∩H2(Ω). (3.8)

Finally, we define

Γh: = {χ ∈H1(Ω) ∩H0(rot, Ω) | χ = DF−T χ̂, χ̂ ∈ V (K̂) ∀K ∈ Th }.

Here V (K̂) is spanned by (1, 0)+b̂(x̂, ŷ), (0, 1)+b̂(x̂, ŷ), (ŷ, 0)+b̂(x̂, ŷ), (0, x̂)+b̂(x̂, ŷ)

with b̂(x̂, ŷ) =
(

J2

2|K|(1− ŷ2), J1

2|K| (x̂
2−1)

)
. The interpolation operator Rh is defined

as Rh|K = RK with
∫

e

(v −RKv) · t ds = 0, ∀e ⊂ ∂K

for any v ∈H1(Ω) ∩H0(rot, Ω). It is seen that

RKv =

4∑

i=1

(bi + b)

∫

ei

v · t ds (3.11)

with bi(x) = DF−T b̂i(x̂) and b(x) = DF−T b̂(x̂), where

b̂1(x̂) =
1

4
(0, x̂− 1), b̂2(x̂)=

1

4
(1 − ŷ, 0),

b̂3(x̂) =
1

4
(0, x̂+ 1), b̂4(x̂)=

1

4
(−1 − ŷ, 0).

It is easy to rewrite (3.11) into the following form:

RKv =

4∑

i=1

bi

∫

ei

v · t ds+

∫

K

rotv dxb. (3.13)
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A straightforward calculation gives

rotRKv =
1

4J

4∑

i=1

∫

ei

v · t ds+
1

J
(
J

|K| −
1

4
)

4∑

i=1

∫

ei

v · t ds

=
1

|K|

4∑

i=1

∫

ei

v · t ds =

∫
−

K

rotv dx. (3.14)

Next we prove a property of Rh.

Lemma 3.1. For any u ∈ H2(Ω) ∩H1
0 (Ω), we have

Rh∇u = ∇Π1u. (3.15)

Proof. Since u ∈ H2(Ω)∩H1
0 (Ω), so Π1u is well-defined. By the Sobolev imbedding

theorem that Rh∇u is also well-defined. Using (3.13) with v = ∇u, we get

RK∇u =

4∑

i=1

bi

∫

ei

∇u · t ds = Π∇u = ∇Π1u,

where we have used Lemma 2.1 of 20 in the last identity.

Lemma 3.2. For any v ∈H1(Ω) ∩H0(rot, Ω),

‖v −Rhv‖0 ≤ Ch|v|1. (3.17)

If rotv ∈ H1(Ω), then

‖ rot(v −Rhv)‖0 ≤ Ch|rotv|1. (3.18)

Proof. Using (3.13), we have

RKv = Πv +

∫

K

rotv dxb.

Taking the rotation into account, it is proved in Theorem 7.1 of 24 that

‖v −Πv‖0 ≤ Ch|v|1.

A straightforward calculation yields

‖
∫

K

rotv dxb‖0,K ≤ C|K|1/2‖ rotv‖0,K‖b̂‖0,K̂ ≤ ChK‖ rotv‖0,K .

Combining the above three equations and adding up all K ∈ Th, we obtain (3.17).

The estimate (3.18) is a direct consequence of (3.14).

Define by Eh all edges of Th and E
′

h all interior edges of Th. As in 15, for any

piecewise vector v ∈ ΠK∈Th
H1(K), we define the jump of v as

[v] = (v+ ⊗ n+)S + (v− ⊗ n−)S , ∀e ∈ E
′

h,
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where (v⊗n)S denotes the symmetric part of the tensor product. On the boundary

edge, we define the jump of a vector as [v] = (v ⊗ n)S , where n is the outward

normal to ∂Ω.

We introduce the first element which solves the following

Problem 3.1. Find φh ∈ V h and ωh ∈ Wh such that

ah(φh,ψ) + λt−2(∇ωh −Rhφh,∇v −Rhψ) = (g, v) ∀ψ ∈ V h and v ∈Wh,

where ah(u,v): =
(
CEh(u), Eh(v)

)
for all u,v ∈ V h.

The shear stress is defined locally as

γh: = λt−2(∇ωh −Rhφh).

The second element is defined as to solve the following

Problem 3.2. Find φh ∈ Ṽ h and ωh ∈ Wh such that

ah(φh,ψ) + λt−2(∇ωh −Rhφh,∇v −Rhψ) = (g, v) ∀ψ ∈ Ṽ h and v ∈Wh,

where

ah(u,v): =
(
CEh(u), Eh(v)

)
+

∑

e∈Eh

κe

∫
−

e

[u] · [v] ds (3.26)

for all u,v ∈ Ṽ h, where κe is a positive constant.

The shear stress is defined as in Problem 3.1.

Note that
∫

e
ψ · t ds is well-defined for any ψ ∈ V h or Ṽ h, so Rhψ is also

well-defined for any ψ ∈ V h or Ṽ h.

Remark 3.2. It seems quite unusual at the first sight that the vector space V h

consists of two different finite element spaces. This is mainly due to the fact that

the discrete Korn’s inequality is invalid over Ṽ h as suggested in 28 by means of a

counterexample. If we use Ṽ h to approximate the rotation in Problem 3.1, then

the resulting method does not converge in the classic sense even over a rectangular

mesh 28.

4. Korn’s Inequality

In this section, we first prove Korn’s inequality for V h, next we cite a weak Korn’s

inequality for Ṽ h, which is the cornerstone for Problem 3.2.

We shall frequently use the following basic inequality: For any K ∈ Th and

e ⊂ ∂K, there exists a constant C only depending on the shape regularity constants

σ and ρ, such that

‖v‖0,e ≤ C(|e|−1/2‖v‖0,K + |e|1/2|v|1,K) ∀v ∈ H1(K). (4.1)

This inequality also holds for vector-valued functions v ∈H1(K). We refer to 1 for

a proof. Using the above inequality, we get

‖v −Qe(v)‖0,e ≤ C|e|1/2|v|1,K ∀v ∈ H1(K). (4.2)
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Lemma 4.1. For any u ∈ V h,

|u|1,h ≤
√

2‖Eh(u)‖0. (4.3)

Proof. Let u = (u, v), then

‖Eh(u)‖2
0 =

∑

K∈Th

∫

K

(
|∂u/∂x|2 +

1

2
|∂u/∂y|2

)
dx

+ ‖∂v/∂y‖2
0 + 1/2‖∂v/∂x‖2

0 +
∑

K∈Th

∫

K

∂u

∂y

∂v

∂x
dx. (4.4)

Green’s formula yields

∑

K∈Th

∫

K

∂u

∂y

∂v

∂x
dx =

∑

K∈Th

∫

K

∂v

∂y

∂u

∂x
dx+

∑

K∈Th

∫

∂K

u
∂v

∂τ
ds. (4.5)

For any edge e ⊂ ∂K, if it is on the boundary ∂Ω, we have ∂v/∂τ = 0. If e is the

common edge of two adjacent elements, then the summation of two integrals on e

is ∫

e

[u]
∂v

∂τ
ds =

∫

e

[u] ds
∂v

∂τ
= 0,

since u ∈ Nh and ∂v/∂τ is a common constant along e. Consequently, we obtain

‖Eh(u)‖2
0 =

∑

K∈Th

∫

K

(
|∂u/∂x|2 +

1

2
|∂u/∂y|2

)
dx

+ ‖∂v/∂y‖2
0 +

1

2
‖∂v/∂x‖2

0 +
∑

K∈Th

∫

K

∂u

∂x

∂v

∂y
dx

≥ 1

2
|u|21,h,

which gives (4.3).

Remark 4.1. An integration by parts gives

|u|1 ≤
√

2‖E(u)‖0 ∀u ∈H1
0(Ω),

while (4.3) indicates that this inequality is also valid for a piecewiseH1 vector field.

Remark 4.2. Inequality (4.3) remains true for triangular meshes if Nh is replaced

by the Crouzeix-Raviart element 19 and Wh is replaced by the conforming P1 ele-

ment. This inequality has been proven in 26 by a different method under a constraint

on the mesh partition.

The next lemma concerns a weak Korn’s inequality for a vector field in Ṽ h.

Lemma 4.2. For any u ∈ Ṽ h, there exists a constant C such that

|u|1,h ≤ C
(
‖Eh(u)‖0 +

( ∑

e∈Eh

∫
−

e

[u]2 ds
)1/2)

. (4.8)
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The above inequality is a special case of the results in 11. Notice that (4.3)

cannot be directly deduced from (4.8).

Clearly, Poincaré’s inequality for the function in V h and Ṽ h hangs on Poincaré’s

inequality for the function in Nh.

Lemma 4.3. There exists a constant C such that

‖v‖0 ≤ C|v|1,h ∀v ∈ Nh.

The above inequality is well-known, see for instance, Remark 3.3 of 33 or see 12

for more general case.

Using (4.3), (4.8) and Lemma 4.3, it is straightforward to prove the coercivity

of ah.

Lemma 4.4. There exists a constant C such that

ah(u,u) ≥ C‖u‖2
1,h for all u ∈ V h. (4.10)

If there exists a constant κ0 such that κe ≥ κ0 for all e ∈ Eh, then

ah(u,u) ≥ C‖u‖2
1,h for all u ∈ Ṽ h.

On the other hand, it follows from (4.1) that there exists a constant C such that

|ah(u,v)| ≤ C‖u‖1,h‖v‖1,h for all u,v ∈ V h or Ṽ h. (4.12)

5. Error Estimates

In this section, we shall derive the error bounds. Our approach is essentially the same

as that in 21 and its generalization 22. The main ingredient is a Fortin operator 23

constructed in next lemma.

Lemma 5.1. Let Mh be a space consisting of piecewise constants on each element.

Then there exists an operator Π : H1
0(Ω) → V h such that

(roth(v −Πv), q) = 0 ∀q ∈Mh (5.1)

and

‖v −Πv‖0 ≤ Ch|v −Πv|1,h. (5.2)

Moreover, if v ∈H2(Ω), the following estimate holds:

|v −Πv|1,h ≤ Ch|v|2. (5.3)

Proof. We consider the following auxiliary problem: find (vh, ph) ∈ V h ×Mh such

that

(∇hv
h,∇hz) + (roth z, p

h) = (∇v,∇hz) ∀z ∈ V h,

(roth v
h, q) = (rotv, q) ∀q ∈ Mh.

(5.4)
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Notice that (V h,Mh) is a stable pair for the rot operator (see, e.g.,Theorem 4.5

of 28), so the existence and uniqueness of (vh, ph) are the consequence of the classic

mixed finite element method theory 14. Denote Πh = (Πh,Πh), we have
(
∇h(v − vh),∇h(vh −Πhv)

)
= (roth(vh −Πhv), p

h)

= (roth(vh − v), ph) + (roth(v −Πhv), p
h)

= (roth(v −Πhv), p
h).

Using the discrete B-B inequality for (V h,Mh), we obtain

C‖ph‖0 ≤ sup
z∈V h

(roth z, p
h)

‖z‖1,h
= sup

z∈V h

(∇h(v − vh),∇z)
‖z‖1,h

≤ ‖∇h(v − vh)‖0.

A combination of the above two inequalities and using (3.8) give

‖∇h(v − vh)‖2
0 = (∇h(v − vh),∇h(v −Πhv)) − (roth(v −Πhv), ph)

≤ Ch|v|2(‖∇h(v − vh)‖0 + ‖ph‖0)

≤ Ch|v|2‖∇h(v − vh)‖0,

which implies (5.3).

A standard dual argument gives

‖v − vh‖0 ≤ Ch‖∇h(v − vh)‖0.

Let Πv = vh, we complete the proof.

Remark 5.1. The operator Π constructed in the above lemma is a type of Fortin

operator. Such kind of operator is explicitly or implicitly exploited in many different

settings (cf. 7 21 9 10).

Remark 5.2. Let Π = (Πh,Πh). It is easy to see that Π : H1
0(Ω) → Ṽ h and

satisfies (5.1), (5.2) and (5.3).

Using Lemma 5.1 and Remark 5.1, we may construct a special interpolant for

the shear stress as that in Lemma 3.1 of 21.

Lemma 5.2. There exists ωh ∈ Wh such that γ̂: = λt−2(∇ωh −RhΠφ) = Rhγ.

Proof. For any q ∈Mh, it follows from the definition of Rh and (5.1) that
∫

Ω

rotRh(φ−Πφ) q dx =

∫

Ω

rot(φ−Πφ) q dx = 0,

which together with (3.14) gives rotRK(φ −Πφ) = 0 over each element K. By

Lemma 3.1, there exists ω1 ∈Wh such that

Rh(Πφ− φ) = ∇ω1.

Define

ωh = Π1ω + ω1.
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Using (3.15), we get ∇Π1ω = Rh∇ω. Consequently,

λt−2(∇ωh −RhΠφ) = λt−2(∇Π1ω + ∇ω1 −RhΠφ)

= λt−2Rh(∇ω − φ) = Rhγ.

Define the consistency error functional eh(u,v) for any u ∈ H2(Ω) and v ∈
V h or Ṽ h as

eh(u,v) =

{∑
K∈Th

∫
∂K

(CE(u) · n)1v1 ds,∑
K∈Th

∫
∂K
CE(u) · nv ds+

∑
e∈Eh

∫
−

e
[u] · [v] ds,

where v1 is the first component of v. Using (4.2), we estimate eh as

|eh(u,v)| ≤ Ch‖u‖2‖v‖1,h. (5.11)

Theorem 5.1. Let (φh, ωh,γh) be the solution of Problem 3.1 or Problem 3.2, and

(φ, ω,γ) be the solution of (2.1) and (2.2), there holds

‖φ− φh‖1,h + ‖∇(ω − ωh)‖0 + t‖γ − γh‖0 ≤ Ch(‖g‖−1 + t‖g‖0). (5.12)

Proof. For any ψ ∈ V h or Ṽ h and v ∈ Wh, we have the error equation for the

solution

ah(φ− φh,ψ) + (γ − γh,∇v −Rhψ) = (γ,ψ −Rhψ) + eh(φ,ψ),

from which we get

ah(Πφ− φh,ψ) + (γ̂ − γh,∇v −Rhψ) = ah(Πφ− φ,ψ) + (γ̂ − γ,∇v −Rhψ)

+ (γ,ψ −Rhψ) + eh(φ,ψ). (5.14)

Let ψ: = Πφ− φh and v = ωh − ωh. Applying Lemma 5.2, we conclude

γ̂ − γh = λt−2
[
∇(ωh − ωh) −Rh(Πφ− φh)

]
= λt−2(∇v −Rhψ).

Substituting the above identity into (5.14), using (4.10), (4.12), (5.11) and (3.17),

we obtain

‖ψ‖1,h + t‖γ̂ − γh‖0 ≤ Ch(‖φ−Πφ‖1,h + t‖γ −Rhγ‖0) + Ch(‖φ‖2 + ‖γ‖0).

Using (5.3), Remark 5.2, the interpolation estimate (3.17), the regularity esti-

mates (2.7) and (2.9), we obtain

‖φ− φh‖1,h + t‖γ − γh‖0 ≤ Ch(‖g‖−1 + t‖g‖0). (5.17)

It follows from

∇ωh = Rhφh + λt2γh, ∇ω = φ+ λt2γ,

and (5.17) that the error bound (5.12) for ω holds.

We turn to the L2 error estimate. To this end, we need the following lemma,

which can be proved as that in Lemma 4.2 of 20.
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Lemma 5.3. For any u ∈ H1
0(Ω) and ζ ∈ H(div, Ω), there exists a constant C

such that

|(u−Rhu, ζ)| ≤ Ch2|u|1‖ div ζ‖0 + Ch‖ rot(u−Rhu)‖0‖ζ‖0. (5.19)

Define an auxiliary problem as: find (ψ, z) ∈H1
0(Ω) ×H1

0 (Ω) such that

a(m, ψ) + λt−2(∇z −ψ,∇n−m)

= (φ− φh,m) + (ω − ωh, n) ∀(m, n) ∈H1
0(Ω) ×H1

0 (Ω).
(5.20)

Define s = λt−2(∇z − ψ). Analog to (2.8) and (2.9), we have the regularity result

of the above auxiliary problem as

‖ψ‖2 + ‖z‖3 + ‖s‖H(div) + t‖s‖1 ≤ C(‖φ− φh‖0 + ‖ω − ωh‖0). (5.21)

For the solutions of the above problem, using Lemma 5.2, there exists a function

zh ∈ Wh such that

λt−2(∇zh −RhΠψ) = Rhs. (5.22)

Exploiting the Aubin-Nitsche dual argument, we obtain the L2 estimate as

Theorem 5.2. The solutions of Problems 3.1 and 3.2 admit the error bounds

‖φ− φh‖0 + ‖ω − ωh‖0 ≤ Ch2‖g‖0. (5.23)

Proof. Putting m = φ−φh and n = ω−ωh into the right-hand side of (5.20), we

obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = ah(φ− φh,ψ) +
(
s,∇(ω − ωh) − (φ− φh)

)

+ eh(ψ,φ− φh). (5.24)

Obviously,

∇(ω − ωh) − (φ− φh) = λ−1t2(γ − γh) + φh −Rhφh.

Using (5.22), we obtain

ah(φ− φh,Πψ) + λ−1t2(γ − γh,Rhs) = ah(φ− φh,Πψ) − (γ − γh,RhΠψ)

= (γ,Πψ −RhΠψ) + eh(φ,Πψ),

where we have used (γ − γh,∇zh) = 0. By substituting the above two identities

into (5.24) we obtain

‖φ− φh‖2
0 + ‖ω − ωh‖2

0 = ah(φ− φh,ψ −Πψ) + λ−1t2(γ − γh, s−Rhs)

+ (s,φh −Rhφh) + (γ,Πψ −RhΠψ)

+ eh(ψ,φ− φh) − eh(φ,ψ −Πψ)

= I1 + · · · + I6.

Using (5.3) and the interpolation error estimate (3.17), we bound I1 and I2 as

|I1| ≤ Ch‖φ− φh‖1,h‖ψ‖2
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and

|I2| ≤ Cht‖γ − γh‖0 t‖s‖1.

We decompose I3 into

I3 =
(
s, (I −Rh)(φ− φh)

)
+ (s,φ−Rhφ).

Using (3.17) for the first term and Lemma 5.3 for the second, we obtain

|I3| ≤ Ch‖φ− φh‖1,h‖s‖0 + Ch2|φ|1‖ div s‖0 + Ch‖ rot(φ−Rhφ)‖0‖s‖0.

Similarly, I4 is bounded as

|I4| ≤ Ch2‖γ‖0‖ψ‖2 + Ch2‖ div γ‖0|ψ|1 + Ch‖γ‖0‖ rot(ψ −Rhψ)‖0.

The estimates for the last two consistency error functionals are standard as

|I5| ≤ Ch‖φ− φh‖1,h‖ψ‖2

and

|I6| ≤ Ch2‖φ‖2‖ψ‖2.

Summing up all the above estimates, using (5.12), (3.18) and the regularity esti-

mate (5.21), we obtain the desired estimate (5.23).
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