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Abstract

In this paper, we study natural boundary reduction for Laplace equation with Dirichlet or Neu-
mann boundary condition in a three-dimensional unbounded domain, which is the outside domain
of a prolate spheroid. We express the Poisson integral formula and natural integral operator in a
series form explicitly. Thus the original problem is reduced to a boundary integral equation on a pro-
late spheroid. The variational formula for the reduced problem and its well-posedness are discussed.
Boundary element approximation for the variational problem and its error estimates, which have re-
lation to the mesh size and the terms after the series is truncated, are also presented. T'wo numerical

examples are presented to demonstrate the effectiveness and error estimates of this method.

Key words: Natural boundary reduction, Prolate spheroid, Finite element, Exterior harmonic prob-
lem.

1. Introduction

Starting from Green’s function and Green’s formula, natural boundary element method reduces the
boundary value problem of partial differential equation into a hypersingular integral equation on the
boundary, and then solves the latter numerically [1,15]. Since the variational principle can be conserved
after the natural boundary reduction, some useful properties, e.g., self-adjointness and coerciveness, can
also be preserved well. Thus the existence, uniqueness and stability of the solution of resulting boundary
integral equation can be obtained conveniently. However, it is difficult to obtain Green’s functions for
most general domains. Therefore the natural boundary element method is very efficient when it is used
to solve some exterior boundary value problems and singular problems with a special boundary, such
as circle [8,15], ellipse [9,16], and spherical surface [2,6]. But for general cases, only natural boundary
element method is not enough, we need the coupling or domain decomposition methods.

The coupling of natural boundary element method and finite element method is applied to solve
boundary value problems in general unbounded domains, sometimes for simplicity we still call it as
natural boundary element method, or more shortly, DtN method [1,8,10,14,15]. Its basic idea is described
as follows. First, the unbounded domain is divided into two subregions, a bounded inner region and an
unbounded outer one, by introducing an artificial boundary. Next, the original problem is reduced to an

equivalent one in the bounded region. There are many ways to accomplish this reduction. However, the
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advantages of the natural boundary reduction just as described above ensure that the coupled bilinear
form preserves automatically the symmetry and coerciveness of the original bilinear form, so not only
the analysis of the discrete problem is simplified but also the optimal error estimates and the numerical
stability are restored [10].

In the three-dimensional unbounded domain, a sphere [2,6] is usually selected as the artificial bound-
ary. However, for elongated cigar-shaped or ship-shaped obstacles, a prolate spheroid boundary can
enclose the obstacles very efficiently, since it leads to smaller computational domain. Therefore, in this
paper, we study natural boundary reduction for Laplace equation with Dirichlet or Neumann boundary
condition in a three-dimensional unbounded domain outside a prolate spheroid. On the basis of the given
results in this paper, we will further study the coupling of finite element and natural boundary element
and domain decomposition algorithm based on natural boundary reduction. By using the method of sepa-
ration of variables and spherical harmonic functions, We express the Poisson integral formula and natural
integral operator in a series form explicitly. Thus the original problem is reduced to a boundary integral
equation on a prolate spheroid. In real calculation, we truncate the series in finite terms. The variational
formula for the reduced problem, the concerned formula after truncating and their well-posedness are all
discussed. Boundary element approximation for the variational problem and the concerned error esti-
mates are also presented. The truncation error is often ignored in lots of previous papers but appears in
[12,13]. Our error estimates are not only based on the mesh size but also on the terms N after truncating.
Two numerical examples are presented to demonstrate the numerical method and their error estimates.

We may apply the similar method to solving the same problem outside an oblate spheroid boundary.
2. Poisson Integral Formula and Natural Integral Equation

Let Ty = {(z,9,2) : ST Z = 1,a > b > 0} denote a prolate spheroid and Q¢ be an unbounded

b2 a

domain outside the boundary I'g. We consider the following exterior Dirichlet problem:

Au =0, in €°,
U = Uug, on Ty, (2.1)

some conditions at infinity,

and the exterior Neumann problem:

Au =0, in Q°,

0

l = 907 on FO, (22)
ov

some conditions at infinity,

where v denotes the unit exterior normal vector on I'g(regarded as the inner boundary of Q°), ug and g
are the known function on Iy for corresponding problem, respectively. From [5], we know if go € H -3 (To),
problem (2.2) is well-posed in W(9°) and if ug € Hz (I'y), problem (2.1) is also well-posed in W (),
here

v 0w v o
r’ 0z’ Oy’ Oz
where D(Q°) = { v : v infinitely differentiable on Q¢ and with compact support in Q°}, and D’'(Q2°) is the

dual space of D(Q°). Its norm and semi-norm are defined as

W) = {v e D'(Q°) : L3(Q°)}, (2.3)

Vi ov 5 ov 5 ov 5 1
[vllw1(qe) = (H;”H(Qc) + H%Hm(gc) + ||3*y||L2(Qc) + ||@|\L2(Qc)) (2.4)



and
1o}

v
[vlwi(qe) = (H ||L2(Qr) + ||

respectively, where r = \/m .

We introduce a prolate spheroidal coordinates (p, 8, @), such that Ty coincides with the prolate spher-
oid p = pp and Q° = {(u,0,¢) : > pg > 0,0 € [0,7],¢ € [0,27]}. Thus, the Cartesian coordinates
(z,y, z) are related to the prolate spheroidal coordinates (u, 8, p) via

0 0

v v 1
||L2 Q)+ || HL2(QF))2 (2.5)

x = fosinh psin 6 cos ¢, w> o >0,
y = fosinh p sin 8 sin ¢, 6 € [0, ], (2.6)
2z = focosh pcosb, v € 10,27,

where fo = Va2 —b%, a = focoshpg, b= fosinh pg.
We use the method of separation of variables to derive Poisson integral formula and natural integral
operator. Through (2.6), we can obtain

1 { 1 9, . . 00 1 8( 98<I>)+( 11 82<I>}
— sinf— ——t—— )= ¢ -
f2(cosh® i — cos? 0) sin 6 06 sin®@  sinh? p” 02

Let ® = F(u)G(9)H (p) and A® = 0. Then, we have

Ad =

H"(p) +m*H(p) = 0,

1 d. . dGO). m2G(0)
< (sing _ DG(O) =
sngas 0 ) T Tzg TRntDG0) =0,
L4 dF(w),  mPF()
h _ _ DF(u) =
i i ) — T g )G =0,

where m,n are both integer. Since we consider the problem in unbounded domain, we can have

(TL — m)' m
D = an (cosh ) Ym0, 0), m=0,£1,£2,--- +n,
where
Q' () = (1) (a? — )% Qn( ), x>1 (2.7)
are the second kind associated Legendre functions,
n(x) = 1 a2 2.
e = S (14 S 9
(i) i
are the second kind Legendre functions, b7 = W J(8)k=8(s+1)---(s+k—1), and Yy, (0, )
. P} k
are spherical harmonic functions. Therefore,
ulp, 0, ) Z Z @ +Z Apm Q3 (cosh 1) Yo (6, ) (2.9)
n=0m=-—n
and
ou 1 ou

(1, 0,0) =
ov fo\/cosh? u cos2 6 aﬂ

—m) d
= nmiQZL(COSh M)Ynm(07 50)3
fov cosh2 —cos? 6 nz:() m;n | (n (n+m)! dp

(2.10)




where A,,,,, are any constant , A, = (=1)"A;  and A, are the conjugate complex of Ay,

Suppose that

n=0m=—n

where Upm = [y 57 u0(6, ©)Y,5,, (0, ¢) sin0dfde. In (2.9) and (2.10), set p — g, together with (2.11),
we can obtain
(n+m)! Unm

Anm = .
(= m)! Qi (eosh o)
Hence, we have
™ (cosh )
- Y, > 2.12
u(p,0,p) = Pug = nz;)mz Qm (cosh 1o )U mYnm(0,0), > g >0 ( )
and
d Q (cosh o)
ou 1 400 n 0 )13
gy~ Ruwo=- —Uannm(e,w). (2.13)
v fo/cosh? g — cos2 6 =5 m_z_ ., Qm(coshpg)

Here, (2.12) and (2.13) are Poisson integral formula and natural integral operator, respectively. In
addition, we set

1 Q2 (eosh )

Knug = — Ui Yom (0, ©). (2.14)
fo/cosh? jig — cos? 0 ,;) m;n QM (cosh pp)

We obtain the solution of problem (2.1) directly from (2.12). In the following parts, we mainly discuss
how to solve the problem (2.2).

3. Variational Problem and Its Well-posedness

First, we give the concerned concepts in Sobolev spaces H*(I'g) and H~*(Iy)(s > 0). The space
H#(Ty), its norm and its inner product are defined by

HS(FQ) = {?] S D/<F0) :

1 (3.1)
ZZ (1+n?)% <w, nm>p0\) < 400, pg > 0},
—Ome——n f2 sinh g \/cosh? 1o — cos? 6
1 1
lollzsry) = (1+n%)°| <, Y. >r, |7)? (3.2)
o) = ’ILZO m_z—n fg sinh Ho \/COSh2 Ho — cos? ) ’ )
Z Z nm nma vfag € HS(FO) (33)
n=0m=-n
respectively, wherc Gnm f Iy 9(0,9)Ynm (0, ) sin0dfde, < v, f >r, denotes L? inner product on
Do, and Fy,,, = 0 T F0,0)Y (0, )sm 0dfde. The space H*(T'y) denotes the dual space of H*(T'g),
whose norm is defined as
< >
[ull fr—e(rg) = sup [<wvenl g, e gsm,). (3.4)

ver* (o) Vllae (o)



From [6] and [11], H*(T'¢) with regard to inner product (3.3) forms a Hilbert space.
Problem (2.2) is equivalent to problem (2.13) and (2.12), while problem (2.13) is equivalent to the

following variational problem:

find ug € H2 (Ty), such that (3.5)
D(ug,vp) = fpo vogods, Yy € H(T), .
where
D(UO,’U()) = / ICUO . ’UodS. (36)
I'o
Let Vi = fo v(0, )Y, (0, ¢)sin0d0dp, F., = fow 0% f(0,0)Yr . (0, p)sinOdfdp. Thus,
D(f,v) =<Kf,v>p,= / Kf -vds
o
2w
= f2 / / Kf - vy/cosh? g — cos? 0 sinh g sin 8dOde 3.7)
o Qr <cosh po)
—_ MW GinhpVE, Fom.
Set
d
Q (cosh o)
Dy (f,v) =< Knfov >r,= fo;)m_Zn O (eon gy~ b A0V P (3.8)
and p
H™ () (x§ — 1)@@?(330) (3.9)
Tg) = — , .
A Q (o)
where xg = cosh pg. In fact, the problem which we calculate is
find u) € H=(Ty), such that (3.10)
Dy (ud,vo) = fpo vogods, Yvg € H%(Fo), .

whereDy (ud) , v) = fFo Knuo - vods.
Now we consider the well-posedness of variational problems (3.5) and (3.10) and give truncation error

estimate. First, we give two Lemma.

Lemma 3.1. There are some following conclusions about Q7 (z)(x > 1,m < n):

moon %2”(nl)2x_"_1_m (n+m) X n(n+m+2k)
Qn(z) = (z* — 1) 2n+1)! { o ;bkw Y, (3.11)
(2 = 1)L QI () = (n = m+ D@ () — (0 + 1)a Q) a), (312)

Proof. Formula (3.11) immediately follows from (2.7) and (2.8). we refer [7] and obtain (3.12).

Lemma 3.2. Let n and m be both non-negative integer.

d
IQ?(COSh 1)
(1) If © = cosh u, then H™(z) = S inhop

Qi (cosh 1)
(2) Hy™(x) = HI'(x).



(3)If 0<m <nandl <z, then

(:CQI_ 1) (n2 +1)% < H™(2) < \/5(712 +1)% z. (3.13)

(4) f0<m<mnand 1<z <z, then

n+1
2 2 m
-1\ * _ Qp@) _ (zo\"t!
< < . .14
<x2—1) ~ QM (mo) T (x) (3.14)
Proof. For (1): Derivation of composite function gives
d d
@ (cost ) ) o Larw
SO ginhp=—9T — Tginhu=—(2? -1 e = H"(x).
ooy T T gy e T D gy )
For (2): Since Q™ (z) = MQW(QJ) it is obvious that
' " (mAn) T v
d d _m
@ DTQrE) 1) Q)
e (]
For (3): First we discuss the right of the inequality. When 0 < m < n, (3.11) and (3.12) imply that
HYz)=Mn+1z—(n—-—m+ 1)5;2(96)) <(n+Dx <V2n?+1)2z. (3.15)
m(x

Now we consider the left. Let
(2n+3)(n+1+m +2k)

J(k) = (n+1)(2n + 3+ 2k)
Clearly, when k > 0, f(k) < 2”+3 . From (3.11), we have
(n+m n n+m+2kz) ok
D SN () Pl s
(@) _ (n+1) { Z L (n +2k)! ’ }<1
Q' () z(2n + 3) n+m Z n+m+2k‘) iy 2
< nt2k)
Therefore,
m 2 V(22— 1
H'(z)=(n+1)x — (n—m+l)m > (n+1)(x . ) + % > (n2+1)5¥. (3.16)

Thus, (3.14) holds.
For (4): Formulas (3.15) and (3.16) imply that

d
(n+ Dz < %Q;”(w) < n+1
C(@2-1) " Qr(r) T =

Integration in interval [z, x] satisfies

(igi)HQ = 52:(20)) = (%)W'




Remark 3.1. When § = % — 1, we have pg — 400, i.e. g = cosh g — +oo. Therefore, from

(3.13) and (3.14), we know the limit coincides with those for a sphere boundary [2,6,9].

Theorem 3.1. D(-,-) and Dy(-,-) are both the symmetric bilinear form on Hz(Ig). D(-,-) is

. . 1 .
continuous and coercive on Hz(T'y), i.e

allol? ) . S Dww), Vo€ HE(T) (3.17)
and
. 1
DS, 0)| < VEfozolloll g g, 173 gy Vo f € HE (Do), (315)
Dy (-,+) is also continuous on Hz(Iy), i.e
. 1
|Dn (f,0)| < \/ifOfEOHU||H%(FO)||fHH%(FO)» Vo, f € H?(Iy), (3.19)
and there exists a positive constant My such that when N > My,
(6% A~ 1
SI0l2 1, < Dn(ws0), Vo€ HE (L), (3:20)
o
where o = =2 and x¢ = cosh pg.
T

Proof.  Clearly, it follows from (3.7) and (3.8) that D(-,-) and Dy(-,-) are both the symmetric
bilinear form on H% (Ty). For any f,v € H 3 (Tg), Schwarz inequality and Lemma 3.2 imply that

DUU —foz ZH Zo |Vnm|

n=0m=—n

—+oo n
1
>a) 3 0+ DVl = alully

n=0m=—n

—+o0 n
DU = 1o D2 H@0) Fum Vil < V2owolloll s o 14

n=0m=—n

and
|15N(f7 |* |fOZ Z Hm .’,UO Fﬂmvnnz' < \[fOIOZ Z ?’L +1 |anH nm|
n=0m=—n n=0m=—n
<V2fowolloll g oy 15174 (-
—+oo n
Since [|v]|? , = Z Z (n? 4 1)2|Vym|? < o0, there exists positive My such that when N > M,
H2(To n=0m=—n
Z Z 241)2 |Vnm\2<z Z n%+1)% [Viml?, (3.21)
n=N+1m=—n n=0m=—n
and then

d
: N Q)
D) ==hd Y o

n=0m=—n

—+oo n
1 o 1
>a) 3 @A DVl 25X 3 0P+ DAVl = Sl

n=0m=-—n n=0m=—n

(xg - 1)|Vnm|2 = bN(U7U)



Theorem 3.2. For any given g9 € H _%(FO), there exists a unique solution ug for the variational

problem (3.5) and the solution depends on the given initial value gg continuously.

Proof. Since go € H™2(T'y), we have | < go,v >r, | < |Jv]| Thus < go,v >p, is

H2 F )HQOHH*%(FO)
bounded linear functional in H2 (I'y). Using Theorem 3.1, together with Lax-Milgram theorem, we know

that there exists a unique solution for the problem (3.5) and then have

aflug||? < D(ug, up) =< go,uo >1,< [Juol|

o o]

H3 (To) H™3(To)"

Hence,

Consequently, we have the following conclusion.

Theorem 3.3. For any given gy € H *l(FO) there is a constant My > 0 such that when N > M,
there exists a unique solution u’ for the variational problem (3.10) and the solution depends on the given

initial value go continuously.

Now we consider truncation error estimate.
Theorem 3.4. Suppose that ug € Hz(Io) and u)) € H=(Ty) are solutions of problem (3.5) and
problem (3.10) respectively and there exist positive constant My and « such that when N > My, we have

2\[](.:[; “+o0 n N 2
luo = I3 ) < =0 ( >y (1+n2)2lUnml2> . (3.22)

n=N+1m=—n

Proof. It follows from (3.5) and (3.10) that
D(ug,v) — Dy (ud ,v) = 0,Yv € H?(T).

Assume that Q.. = fo "(uo —ud )Y, (0, ) sin 0dfdp. There is positive My such that when N > My,
(3.20) and Lemma 3.2 1mply that

« ~ ~ A
3 lluo = Uévlli,% < Dy (uo —up’,uo — ug ) = D (uo, uo — ug') — D(ug, up — ug)
(To)
+00 —+o00 n
S U@ < VEhze 32 Y (112 Uil
n=N+1m=—n n=N+1m=—n

N

+oo n %
( > Y oa +n2>%|c2nm|2>

n=N+1m=-—n

2
< V2forolluo = w3 (Z > a 2|Um|> .

n=N+1m=—n

“+oo n
< \ﬁﬂﬂofo ( Z Z (1+n2);|Unm|2>

n=N+1m=-—n

This completes the proof.
4. Discrete Variational Problem and Its Error Estimates

We break the intervals [0, 27], [0, 7] into N2, N7 parts with the same length, respectively, and then
make the corresponding finite element partitions in I'g. In our computation, continuous piecewise linear
elements are used.



ST 2t

Set 05 = E,@t = E’
Nip, —0) 6 €0, 01]
Lo(f) =< ’ Y 4.1
o(6) { 0, otherwise, (4.1)
&(9—91\[ _1) 96[91\/ -1 7T]
Ln(@)=9 T T L (4.2)
0, otherwise,
%(0_03—1)3 NS [08—1798]7
LS(Q) = %(95—&-1 - 9)7 ZAS [053 05+1]7 (43)
0, otherwise,
and
%(‘P_(Pt—l)v © € [pi—1,¢t)s
Mi(p) = %(‘Pt-&-l - ), © € o1, Pry1)s (4.4)
0, otherwise,
where s =1,2,---,N; —1; t=1,2,---, Ny. Using these formulas, we can construct the bilinear interpo-
lating based functions on Iy, i.e.
BO(ev 90) = L()(e)v Bl(aa 30) =Ln, (9)7 (4 5)
B (0,0) = Ly(0)M(p), s=1,2,--- Ny —1; t=1,2,---, Ns. '

Sequential coding of By (0, ) are as follows : for the different s, the elements with the bigger s are

put back; for the same s, the elements with the bigger ¢ are permutated back.

We set
S"(Ty) = span{By(8, p), B1(8,¢), By(0,0) : s =1,2,--- Ny — 1;t =1,2,---, Ny}, (4.6)
and then obtain
S"(Ig) € H(T) € H(Iy).
Thus, the approximate variational problem of (3.10) is
find u)’™ € S"(Ty), such that @7
Dy (ud™ oh) =< go,v" >p,, Yol € SH(Ty). '

Using Theorem 3.1 , Theorem 3.3 and S"(Ty) C H%(Fo), together with Lax-Milgram Theorem, we
know that there is My > 0 independent of h, such that when N > M, the variational problem (4.7)
exists a unique solution in S”(I'y). Again, we set

Ni—1 Ny

ug " (0,¢) = UpBo(0,9) + U1 Bi(0,0) + Y ¥ UsutBi(0, ).
s=1 t=1

(4.8)

When vy, is fetched based functions By, By, Bst(s = 1,2, , Ny —1;t =1,2,- - -

(4.8) into (4.7) and then derive linear equations:

, N3) in turn, we substitute

Ao Ao Ao Ao N —1 UE?; bz:
A A A AN, U b
10 11 12 LN1—1 = (4.9)
An,—10 Ani—11 An—12 AN —1,8—1 ui-1) pMVi-1)



where

ago  apl a(()(is) aégs) e a(()%) T
AOO = 7A-OS = (0s) (0s) (053 7Aso = Aosa
aip  an a1 A" Qg
Ass’ - (agfls )) 7U(O) = [U07 Ul]Ta U(S) = [Usla UsQa Ty UsNg]T7
N2><N2

™ 2
b©® = [bg,by]", b; = g/ / 90(0, ) B; (8, p)\/cosh?py — cos? 0 sinh pg sin 0dfdp,
27
b®) = [by1,bs2, -, ben,] T, bar = fO/ / 90(0, ) Bst(0, p)\/cosh? g — cos? 6 sinh pig sin dfdp,

a;r = DN(BkaB )a DN(BstaB) att’ = DN(Bs’t’aBst)a
i, k=0,1;s, s =1,2,--- Ny — 1;t,t' =1,2,---, No.

Let

_ [
G(n,m,s) = \/(2n —(’_nlj_(:;)' m)! /0 Ls(0)P)*(cosf)sinfdd, s =0,1,2,---, Ny,

where P™(t)(|t| < 1,m < n) are the first kind Legendre functions. Using (3.8) yields the computing

formulas of elements in stiffness matrix A as follows:

N
ai = for »_ Hy(20)G(n,0,iN1)G(n,0,kNy), i,k = 0,1,
n=0

1t

N
s 4 ; )
a” = Jz% Y H(20)G(n,0,iN1)G(n,0,5),i = 0,1,

amm 2m(t—t)w

2N.
+ Z 7r377754H;”(aco)G(an,s)G(n,m, s") sin NS N |

5,8 =1,2,---,N; —1; t,t' =1,2,---, Ns.
Now we discuss how to calculate G(n,m, s) and H"(xo). From [3], we know
ii (2k)!(2n — 2k)!
4qr (k)2(n — k)l(n — k)!

k=0

P, (cosb) = cos(n — 2k)0

and

1~ (2K)!1(2n — 2k)!(n — 2k)
Pl(cosf) = —47];) ( (k‘)')g(n — k‘)')(7(1 7 ) sin(n — 2k)6.

Thus, we have

G(n,0,s) = 2t 1 Z (k'(Zk)!(Zn _ Qk)!k)! /07T L4(0) cos(n — 2k)0 sin 6d6,

an = N2(n —k)(n —

2n — 2k) (n — 2k) / L,(0) sin(n — 2k)0 sin 6d6,

1 2n+1 "
G(n,1,s) = Z D= Jo

=0

10



B 2n+1)(n—m)(n—m—1) Coms
G(n,m, s) = \/(2n—3)(n+m)(n+m—1)G(n 2,m, s)

_\/(n—m—i—?)(n—m—i—l)G(n m—25)

(n+m)(n+m—1)

(2n+ 1)(n+m —2)(n+m—3)
+\/ (2n—3)(n+m)(n+m—1) Gn—2,m—2,5), n>m2>2,

and when n < m, G(n,m,s) =0, where s =0,1,2,---, Nj.

Computing formulas of H*(x) are as follows:

9 Qm—1(z0) _
m—————~ — mo, m=n,
H () = (7o)
n AP0 =Y (n+m)(n—m)
-~ nx, n>m,
nxo — HT™  (x0)
where
1
m 21 m =1,
mfl(xo) = Ty — 1 .
27N m —D)(ag - 1) Qp(wo), m>1,
and
1 x9+1
m —In , m =0,
Qm(mo) = 2 o — 1

0@ _1(w0) — (2m = 1)(af —1)2Q "3 (z0)  m =1
Let ul'" denote numerical solution of udl, T = {(11,0,90) : = p1 > po,0 € 0,7, € [0,27]}, u is
exact solution of problem (2.2) and u™" is numerical value of u. h is maximum mesh size.

Now we consider error estimates in Hz(I'g) and L2(Ig).

Theorem 4.1. If ug € H?(Ty), then there are constant C' and My independent of h and N. We have
the following conclusions:
(1) for N > Mo,

_ Nk <o |t (1 Unm2 . 4.10

luo = o™l 13 r,) < *fuol e + N+1% n;—l—lm;n ) e 10
(2)

[ o (111)

Iy’
where Unm = 27 [T oYy, (6, @) sin 0d0dgp.
Proof. For (1): Note that (3.5) and (4.7) imply
D(ug,v") — Dy (ud™,v") = 0,v0" € S™(Ty).

If N > M, it follows from Theorem 3.1 and Theorem 3.4 that
h||2
X H? (Ty)

= Dy (" — ud, o™ — ug) + Dy (ug, v" — ud™) — D(ug, v — ud'™)

1
\
1
< V2 fozolle" =y o | 10" = woll 4 (}j §j<1+n2>2Unm2>

n=N+1m=—n

h Nh ,.h » h Nh Nh)

«
§||Uh < Dy (" —ud™ o —ud™) = Dy (0" — ud™ 0" —ug) + Dy (0" — ud™, ug — ud)
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Since ug € H?(T'y), we obtain

=

2v2fomo
||U 7u0h||H2(1—~)— o ||vh7u0||H%(F) Z Z 1+TL ‘Unm‘Q

=N+1m=—n

1
2v2 foxo h 2\

< — - - —

< o lv uO”H%(FO)+ N—|—1% E E |Unm|

n=N+1m=—n

Using the concerned conclusions in [10] gives

— Vb < inf —ud"
luo — g HH%(FO) - uhe;;l%(f‘o)(nv o ”H2(F + ”U uO||H2(F ))
Qﬂfoxo . 2 '
<(————+1) inf ||v — up| (14122 |Upm|
o vheHZ (To) HQ(FO) (N +1) (N+1)F n%;rl m;n

M

2
<C h%|’UJ0|H2(FO)+( § < Z Z 1—|—7’L |Unm|2>

n=N+1m=-—n

For (2): Suppose that P = [ [o (uo — ud™)Y5,,(6, ¢) sin #dfdep. Lemma 3.2 and (2.12) imply that

a2 —Z S (Lo N g ahp ey - a2
H2(T) ™ (cosh o) - H3 (Do)’

=0m=—n

[l —

Theorem 4.2. Suppose that ug € H?(T'g) and ul) —ul’" satisfies the following regularity assumptions:
udl —ud’™ € L3(Ty); the natural integral equation Kvg = ul’ — u)'" has solution vy and vy € H'(Iy);
there is a positive constant C, such that [|vol| g1 ry) < Cllud — ud™||2(ry). There is a positive constant

My such that when N > M, we have

1

(Z Z (1+n®)2U, |> . (4.12)

n=N+1m=—n

luo — ud™ 2oy < C | RPluolm2rg) + ————

M\w

(N+1)

Proof. Theorem 3.4 and error estimate in [10] imply that

< (lud” = wd™ I p2rg) + lluo — ud L2 ry))
< (= ™l ey + lluo — Ilm 2

SC h2|u0|H2(Fo)+ N+]_ % ( Z Z |Unm|2>

n=N+1m=—n

lluo — ud™ || L2(ro)

[SIE

Remark 4.1. From Theorem 4.1 and 4.2, our error estimates are based on the mesh size h and also
on the terms N. For a given mesh size h, Theorem 4.1 and 4.2 tell us the optimal way for choosing the

terms V.
5. Numerical Examples

In this section we present the numerical results which demonstrate the performance of the error

estimates(4.10)-(4.12). In our practical computation, continuous piecewise linear elements are used.
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Example 1. Let fo =4, T'o = {(uo,0,9) : po = 1,0 € [0, 7], ¢ € [0,27]} and

V/2sin 26 cos %)
4f4+/cosh? g — cos? 6

(7 — 3 cosh4pg + 4 cosh 2pq cos 26)
(cosh 219 + cos 260)%

9o =

Solve problem (2.2), whose exact solution is

V/2sinh(2) sin(26) cos ¢
2f3(cosh 2p 4 cos 20)2

Then the relationships between the errors of solution and each parameters are as follows:

Table 5.1: The effect of the mesh parameters (N1, N2) for the solution ug and u.

mesh(N1,N2) (10,20) (20,40) (40,80) | (80,160)

[up — ud™|| Lo (ry) | 1.8426e-4 | 4.7542e-5 | 1.2072e-5 | 3.0323e-6
Ratiol - 3.8758 3.9382 3.9812

llu—ud™|| 12y | 2.3981e-4 | 6.7109e-5 | 1.7460e-5 | 4.4576e-6
Ratio2 — 3.5735 3.8436 3.9169

[luo —ud™l ;3 (ry) | 5:5687e-4 | 1.5728¢-4 | 4.1080e-5 | 1.4464e-5
Ratio3 - 3.5406 3.8286 2.8402

[lu—aNP]| g (| 5:9056e-5 | 1.5650e-5 | 4.0337e-6 | 1.3467c-6
Ratio4 — 3.7736 3.8798 2.9956

Table 5.2: The effect of the terms N for the solution uyg.

mesh(N1,N2) (20,40) (40,80) (80,160)

N 15 20 20 40 70 80
L>=(Ty) | 1.3863 | 3.0239¢-6 | 3.4257 | 4.0532¢-6 | 1.1936 | 3.7576¢-6
L2(Ty) 0.2621 | 2.8397e-6 | 0.2912 | 1.9266e-6 | 0.0707 | 2.2484e-6
H*(To) | 1.6084 | 2.1847e-5 | 5.4238¢-6 | 9.2469¢-6 | 0.5863 | 2.9684e-5

First, we test the effect of the mesh parameters (N1, N2) in the error estimate (4.10)-(4.12). In Table
5.1, we give concerned error for large N, where N = 100 and pu; = 1.5. The results show that the

convergent rates of |[ug — ud™"|| Lo (ry) and |[u — u)™||12(r,) with respect to h is 2, while the convergent
éVh||H%(PO) and |[lu — uNh||H%(F) with respect to h are more than 2. Secondly, we test

the effect of the terms N for the solution ug. Let ul’®" denote numerical solution of the problem on

rates of ||ug — u

the boundary T’y with large N, where N = 100. In Table 5.2, we calculate the corresponding error of
ud® — ul®". The numerical results indicate the errors are admittable for a given mesh size, only if
the terms N are big enough. These results are consistent with theoretical analysis in Theorem 4.1 and
4.2. In numerical experiment, we also find that whether linear equations (4.9) exists unique solution
depends on the terms N. Finally, we test the effect of p for the exterior solution u. Let Ed denote

[lu — uNhHH%( ,where N = 60. In Fig 5.1, we choose respectively pu; = 1.2,1.5,2.0,2.5, 3.0.

)
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-10F i

—12} i

In(Ed)
5

—18} i

—-20F i

—22b i

—24 .
-2 -1.5

-1 —0‘.5 0
In(cosh( uo)/cosh( w)

Fig. 5.1. The effect of p for the exterior solution wu.

Example 2. Let fo =4,T = {(10,0,¢) : no = 1,60 € [0, 7], ¢ € [0,27]} and

V2cos g

15 \/cosh2 1o — cos? f(cosh 2y + cos 29)%
—3sin 36 cosh p9 — 4 sin 6 cosh 59 + 102 cosh g sin 6 — 66 sin 6 cosh 3 + cosh g sin 56) .

go = (15 cosh 3 sin 50 — 20 sin 36 cosh 51

Solve (2.2), whose exact solution is

_ 8v/2sinh pisin 0 cos (5 cosh 2/ cos 20 + 3 cosh 24 + 3 cos 20 + 5)

u
fé&(cosh 2 + cos 26) 2

The errors of approximate solution are as follows:

Table 5.3: The effect of the mesh parameters (N1, N2) for solution ug and w.

mesh(N1,N2) (10,20) (20,40) (40,80) (80,160)

o — ud ™| Lo (rg) | 1.6744e-3 | 4.64466e-4 | 1.1700e-4 | 3.0940e-5
Ratiol - 3.6050 3.9698 3.7815

llu—ud™||r2r,) | 1.6495e-3 | 4.9582e-4 | 1.313le-4 | 3.4024e-5
Ratio2 - 3.3268 3.7760 3.8594

[luo —ug ™|,y (0 | 4:2904e-3 | 1.3018¢-3 | 3.45463e-4 | 8.9834e-5
Ratio3 - 3.2958 3.7683 3.8456

[lu—u™"], 3 o 2.8951e-4 | 8.02981e-5 | 2.0618e-5 | 5.4415¢-6
Ratio4 - 3.6055 3.8947 3.7890

Table 5.4: The effect of the terms N for the solution ug.
mesh(N1,N2) (20,40) (40,80) (80,160)

N 15 20 30 40 70 80
L>(Ty) 1.3865 | 2.4691e-5 1.5963 8.0481e-6 | 1.1936 | 7.7843¢-6
L2(Ty) 0.2661 | 2.2772e-5 0.1587 6.3976e-6 | 0.0707 | 2.6323e-6
H? (To) 1.6087 | 1.80378e-4 | 1.3998e-5 | 1.8740e-5 | 0.5863 | 3.1723e-5
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In(Ed)

_22 . . .
-2 -1.5 -1 -0.5 0
In(cosh( uo)/cosh( W)

Fig. 5.2. The effect of p for the exterior solution wu.

In Table 5.3, Table 5.4, and Fig.5.2, the corresponding parameters selected are the same as those in

Example 1. The numerical results and conclusions are similar to those in Example 1.
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