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Abstract

In this paper, based on the natural boundary reduction method, we discuss a coupled

natural BEM and FEM for three-dimensional exterior problems. We express the artificial

boundary condition on the prolate spherical artificial boundary in a series form explicitly. In

practical computation, we truncate this condition in finite terms. We discuss well-posedness

about the variational problem of the coupled method. The error estimates are based on the

mesh size, the terms after truncating the infinite series, and the location of the artificial

boundary. Two numerical examples are presented to demonstrate the effectiveness and the

error estimates.

Key words: Natural boundary reduction, Prolate spheroid, Finite element, Exterior harmonic
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1. Introduction

The standard procedure of the coupling of boundary element and finite element is described as
follows. First, an artificial boundary is introduced to divide the original (unbounded) domain into
two subregions, a bounded inner region and an unbounded outer one. Next, the original problem
is reduced to an equivalent one in the bounded region. There are many ways to accomplish this
reduction.

The natural boundary reduction method proposed by Feng and Yu [8] has advantages over the
usual boundary reduction methods: the coupled bilinear form preserves automatically the symme-
try and coerciveness of the original bilinear form, so not only the analysis of the discrete problem is
simplified but also the optimal error estimates and the numerical stability are restored(see [1,4,6,7]).

For three-dimensional exterior problems, a spherical surface (see [5],[9]) is usually selected
as the artificial boundary. However, for an elongated cigar-shaped or ship-shaped obstacles, we
use a prolate spheroid boundary as the artificial boundary very efficiently, since it leads to smaller
computational domain. In this paper, based on the natural boundary reduction method, we discuss
a coupled natural BEM and FEM for three-dimensional exterior problems with a prolate spherical
artificial boundary. We express the exact artificial boundary condition on the prolate spheroid in
a series form explicitly. We discuss well-posedness about the variational problem of the coupled
method. In practical computation, we truncate this exact artificial condition in finite terms. Thus
there exists a truncation error, which is often ignored in lots of previous papers, but it appears in
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[2,6]. Our error estimates are based on the mesh size, the terms after truncating the infinite series,
and the location of the artificial boundary.

2. The natural boundary reduction and the coupled variational problem

Let Ω be a Cigar-shaped Lipschitz bounded domain and include the coordinate origin in R3

and Ωc = R3\(Ω ∪ ∂Ω). Assume that the given functions f and g satisfy g ∈ H1/2(∂Ω) and
f ∈ L2(Ωc), supp(f) ⊂ Ωc. We consider the following exterior Dirichlet problem:





−∆u = f, in Ωc,

u = g, on Γ0,

some conditions at infinity.
(2.1)

From [3], we know problem (2.1) is well-posed in W 1
g (Ωc) = {v ∈ W 1(Ωc) : v|Γ0 = g}. The

variational form of the boundary value problem (2.1) is: find u ∈ W 1
g (Ωc) such that

D(u, v) = (f, v), ∀v ∈ W 1
0 (Ωc). (2.2)

Let Γ = {(x, y, z) : x2+y2

b2 + z2

a2 = 1, a > b > 0} denote a prolate spheroid and Γ ⊂ Ωc. Then
Γ divides Ωc into two subregions, a bounded inner region Ω1 and a unbounded outer region Ω2.
Ω1 ∩ Ω2 = ∅,Ω1 ∪ Ω2 = Ωc, supp(f) ⊂ Ω1.

To derive a coupled variational formula which is equivalent to (2.2), we define

Dk(u, v) =
∫

Ωk

∇u · ∇vdx dy dz, k = 1, 2.

Let u ∈ W 1
g (Ωc) be the solution of (2.2) and v ∈ W 1

0 (Ωc). It is clear that

D(u, v) = D1(u, v) + D2(u, v). (2.3)

From Green’s formula on Ω2, we infer that

D2(u, v) =
∫

Γ

∂u(p)
∂ν

· v(p)dp, (2.4)

where ν denotes the unit exterior normal vector on Γ(regarded as the inner boundary of Ω2)
We consider the following exterior Dirichlet problem:

{
∆u = 0, in Ω2,

u = u1, on Γ.

We introduce a prolate spheroidal system of coordinates (µ, θ, ϕ), such that Γ coincides with
the prolate spheroid µ = µ1 and Ω2 = {(µ, θ, ϕ) : µ > µ1 > 0, θ ∈ [0, π], ϕ ∈ [0, 2π]}. Thus, the
Cartesian coordinates (x, y, z) is related to the prolate spheroidal coordinates (µ, θ, ϕ) via





x = f0 sinhµ sin θ cos ϕ, µ ≥ µ1 > 0,

y = f0 sinhµ sin θ sinϕ, θ ∈ [0, π],
z = f0 cosh µ cos θ, ϕ ∈ [0, 2π],

where f0 =
√

a2 − b2, a = f0 cosh µ1, b = f0 sinhµ1.
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Using natural boundary reduction [1,10], we obtain that Poisson integral formula and natural
integral operator

u(µ, θ, ϕ) =
+∞∑
n=0

n∑
m=−n

Qm
n (cosh µ)

Qm
n (cosh µ1)

UnmYnm(θ, ϕ), µ ≥ µ1 > 0 (2.5)

and

∂u

∂ν
|Γ = − 1

f0

√
cosh2 µ1 − cos2 θ

+∞∑
n=0

n∑
m=−n

d

dµ
Qm

n (cosh µ1)

Qm
n (cosh µ1)

UnmYnm(θ, ϕ) .= Ku1.
(2.6)

where Unm =
∫ π

0

∫ 2π

0
u1(θ, ϕ)Y ∗

nm(θ, ϕ) sin θdθdϕ, Ynm(θ, ϕ) are spherical harmonic functions, Y ∗
nm

are the conjugate complex of Ynm, and Qm
n (x) = (−1)m(x2− 1)

m
2

dm

dxm
Qn(x), x > 1 are the second

kind associated Legendre functions.
Let γv = v|Γ, Vnm =

∫ π

0

∫ 2π

0
γvY ∗

nm(θ, ϕ) sin θdθdϕ and D̂(γu, γv) =< Kγu, γv >Γ . Thus,

D2(u, v) = D̂(γu, γv) = −f0

+∞∑
n=0

n∑
m=−n

d

dµ
Qm

n (cosh µ1)

Qm
n (cosh µ1)

sinhµ1V
∗
nmUnm. (2.7)

Set

Hm
n (x1) = −

(x2
1 − 1)

d

dx
Qm

n (x1)

Qm
n (x1)

= −
d

dµ
Qm

n (cosh µ1)

Qm
n (cosh µ1)

sinhµ1

where x1 = cosh µ1. Define

D̂N (γu, γv) = f0

N∑
n=0

n∑
m=−n

Hm
n (x1)V ∗

nmUnm. (2.8)

We will need the Sobolev spaces G1
g(Ω1) which is defined as

G1
g(Ω1) = {v : v ∈ H1(Ω1), v|Γ0 = g}.

Using (2.3) together with (2.7), we obtain the coupled natural BEM and FEM variational
problem: find u ∈ G1

g(Ω1) such that

D1(u, v) + D̂(γu, γv) =
∫

Ω1

f · vdx dy dz, ∀v ∈ G1
0(Ω1). (2.9)

Lemma 2.1.[10] Let n and m be both non-negative integer.

(1) If 0 ≤ m ≤ n, then
(x2 − 1)

x
(n2 + 1)

1
2 < Hm

n (x) <
√

2(n2 + 1)
1
2 x.

(2) If 0 ≤ m ≤ n and 1 < x0 < x, then
(

x2
0 − 1

x2 − 1

)n+1
2

≤ Qm
n (x)

Qm
n (x0)

≤
(x0

x

)n+1

.

Lemma 2.2.[10] D̂(·, ·) and D̂N (·, ·) are both the symmetric, continuous and semi-positive
bilinear form on H

1
2 (Γ), i.e.

0 ≤ D̂N (γv, γv) ≤ D̂(γv, γv), ∀v ∈ H1(Ω2)
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|D̂(γu, γv)| ≤
√

2f0x1‖γv‖
H

1
2 (Γ)

‖γu‖
H

1
2 (Γ)

, ∀v, u ∈ H1(Ω2).

|D̂N (γu, γv)| ≤
√

2f0x1‖γv‖
H

1
2 (Γ)

‖γu‖
H

1
2 (Γ)

, ∀v, u ∈ H1(Ω2),

where x1 = cosh µ1 and H
1
2 (Γ) is defined in [10] and its norm is equivalent to the usual definition

on H
1
2 (Γ).

Theorem 2.1. The variational problem (2.9) has a unique solution u ∈ G1
g(Ω1).

Let
AN (u, v) = D1(u, v) + D̂N (γu, γv).

In fact, we compute the approximate variational problem: find uN ∈ G1
g(Ω1) such that

AN (uN , v) =
∫

Ω1

f · vdx dy dz, ∀v ∈ G1
0(Ω1). (2.10)

According to Lemma 2.2 and Lax-Milgram Theorem, we know the variational problem (2.10)
has a unique solution in uN ∈ G1

g(Ω1).
Suppose that Γ1 = {(µ, θ, ϕ) : µ = µ0 < µ1, θ ∈ [0, π], ϕ ∈ [0, 2π]} and Γ1 ⊂ Ω1\supp(f).
Theorem 2.2. Suppose that u and uN are the solution of problem (2.9) and problem (2.10),

respectively, and u|Γ1 ∈ H
3
2 (Γ1). Then there is a positive constant C independent of N , such that

‖u− uN‖H1(Ω1) ≤
C

N + 1

(
x0

x1

)N+1

‖u‖
H

3
2 (Γ1)

,

where x1 = cosh µ1, x0 = cosh µ0.

3. Discrete Variational Problem and Its Error Estimate

We make the finite element partitions in Ω1 and suppose that Sh(Ω1) is composed of continuous
piecewise linear elements on Ω1 , Sh(Ω1) ⊂ H1(Ω1) and Sh

0 (Ω1) = {vh : vh ∈ Sh(Ω1), vh|Γ0 = 0}.
The discrete variational problem of (2.10) is as follows: find uNh ∈ Sh(Ω1) and uNh|Γ0 = g,

such that
AN (uNh, v) =

∫

Ω1

f · vdx dy dz, ∀v ∈ Sh
0 (Ω1). (3.1)

Problem (3.1) is well-posed. Now we discuss error estimates between the numerical solution
uNh and the solution u of the original problem (2.1).

Theorem 3.1. Suppose that u ∈ H2(Ω1) and u|Γ1 ∈ H
3
2 (Γ1). Then there is a positive constant

C independent of h and N , such that

‖u− uNh‖H1(Ω1) ≤ C

(
h‖u‖H2(Ω1) +

1
N + 1

(
x0

x1

)N+1

‖u‖
H

3
2 (Γ1)

)
. (3.2)

Theorem 3.2. Suppose that u ∈ H2(Ω1) and u|Γ1 ∈ H
3
2 (Γ1). Then there is a positive constant

C independent of h and N , such that

‖u− uNh‖L2(Ω1) ≤ C

(
h2‖u‖H2(Ω1) +

1
N + 1

(
x0

x1

)N+1

‖u‖
H

3
2 (Γ1)

)
. (3.3)

4. Numerical Examples
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We divide respectively the intervals [0, 2π], [0, π] and [µ0, µ1] into N2, N1 and N3 equal-spaced
parts and then make the corresponding finite element partitions in Ω1. In our practical computa-
tion, continuous piecewise linear elements are used.

Example 1. Let f = 0,Γ0 = {(µ0, θ, ϕ) : µ0 = 0.5, θ ∈ [0, π], ϕ ∈ [0, 2π]}, and the artificial
boundary Γ = {(µ, θ, ϕ) : µ = 1, θ ∈ [0, π], ϕ ∈ [0, 2π]}. The exact solution of problem (2.1) is

u =
8
√

2 sinh µ sin θ cos ϕ(5 cosh 2µ cos 2θ + 3 cosh 2µ + 3 cos 2θ + 5)
f4
0 (cosh 2µ + cos 2θ)

7
2

,

and g = u|Γ0 , where f0 = 4.
The error of approximate solution is as follows:

Table 4.1: The effect of the mesh parameters (N1, N2, N3) for the solution u.

Mesh(N1,N2,N3) (4,8,1) (8,16,2) (16,32,4) (32,64,8)
||u− uNh||L∞(Ω1) 2.2938e-3 5.9829e-4 1.5128e-4 3.8020e-5
||u− uNh||L2(Ω1) 1.9658e-2 4.9272e-3 1.2166e-3 2.9615e-4
||u− uNh||H1(Ω1) 2.7862e-2 1.0669e-2 5.3343e-3 2.5402e-3

1 2 3 4 5 6
−10

−9

−8

−7

−6

−5

−4

N+1

ln
(E

N
)

k=0
k=1

Fig. 4.1. The effect of the terms N for the solution u.

In Table 4.1, we give concerned error for large N = 100 . The results show that the convergent
rates of ||u−uNh||L∞(Ω1), ||u−uNh||L2(Ω1) with respect to the mesh size h is 2, while the convergent
rates of ||u − uNh||H1(Ω1) with respect to h is 1. Finally, we test the effect of the terms N

for the solution u. Let u100h denote the finite element approximate solution of the problem on
the boundary Ω1 with large N , where N = 100. In figure 4.1, we calculate EN = ‖uNh −
u100h‖Hk(Ω1) (k = 0, 1) on the mesh (32×64×8) for different N . These results are consistent with
theoretical analysis in Theorem 3.1 and 3.2.

Example 2. Let f = 0, Γ0 = {(µ, θ, ϕ) : µ = 0.5, θ ∈ [0, π], ϕ ∈ [0, 2π]}, g =
√

2
f0(1.5431 + cos 2θ)

1
2
,

and the artificial boundary Γ = {(µ, θ, ϕ) : µ = 1, θ ∈ [0, π], ϕ ∈ [0, 2π]}. Thus, the exact solution
of problem (2.1) is

u =
√

2
f0(cosh 2µ + cos 2θ)

1
2
,
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where f0 = 4.

Then the relationship between the errors of solution and each parameters are as follows:

Table 4.2: The effect of the mesh parameters (N1, N2, N3) for solution u1 and u.

Mesh(N1,N2,N3) (4,8,1) (8,16,2) (16,32,4) (32,64,8)
||u− uNh||L∞(Ω1) 2.3038e-2 5.9223e-3 1.4851e-3 3.6214e-4
||u− uNh||L2(Ω1) 1.2350e-1 3.1364e-2 7.8214e-3 1.9601e-3
||u− uNh||H1(Ω1) 1.8815e-1 7.1476e-2 3.0187e-2 1.4612e-2

1 2 3 4 5 6
−9

−8

−7

−6

−5

−4

−3

−2

−1

N+1

ln
(E

N
)

k=1
k=0

Fig. 4.2. The effect of the terms N for the solution u.

In Table 4.2 and Figure 4.2, the corresponding parameters selected are the same as those in
Example 1. The numerical results and conclusions are similar to those in Example 1.
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