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Abstract. An interior-point trust-region algorithm is proposed for min-
imization of a convex quadratic objective function over a general convex
set. The algorithm uses a trust-region model to ensure descent on a suitable
merit function. The complexity of our algorithm is proved to be as good as
the interior-point polynomial algorithm.
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1 Introduction

The idea of interior-point trust-region algorithm can be traced back to
Dikin(1967) where an interior ellipsoid method was developed for linear
problems. Recently, Tseng(2004)produced a global and local convergence
analysis of Dikin’s algorithm for indefinite quadratic programming. We also
refer Absil and Tits(2005) for this direction. Ye(1992) developed an affine
scaling algorithm for indefinite quadratic programming by solving sequen-
tial trust-region subproblem. Global first-order and second-order conver-
gence results were proved, and later enhanced by Sun(1993) for convex case.
An affine-scaling potential-reduction interior-point trust-region algorithm
was developed for the indefinite quadratic programming in the chapter 9
of Ye(1997). This algorithm has recently been extended to solve symmet-
ric cone programming by Faybusovich and Lu(2004). In the trust-region
literature, Conn, Gould and Toint (2000) developed a primal barrier trust-
region algorithm, which has been recently extended to solve symmetric cone
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programming by Lu and Yuan(2005). In this paper, we present an affine-
scaling primal barrier interior-point trust-region algorithm. Our algorithm
minimizes a convex quadratic objective function over a general convex set,
which is the first interior-point trust-region algorithm of covering basically
the whole convex programming! Moreover, by using the techniques and
properties in both interior-point algorithms and trust-region methods lit-
erature, we show that the complexity of our algorithm is as good as the
interior-point polynomial algorithms! This gives us the strong theoretical
support for the good practical performance of the interior-point trust-region
algorithm in Lu and Yuan(2005). Although our analysis is based on a fixed
trust-region radius and solving the trust-region subproblem exactly in each
step of our algorithm, the frame of the interior-point trust-region algorithm
allows us to make the trust-region radius flexible and use iterative methods
to solve the trust-region subproblem approximately in practical implemen-
tation. This advantage makes the interior-point trust-region algorithm com-
petitive with the pure interior-point algorithm for solving large-scale prob-
lems. The goal of this paper is to show that the complexity of interior-point
trust-region algorithm is as good as the complexity of pure interior-point
algorithm in convex programming.

2 Self-concordant barrier and its properties

In this section, we present the concept of self-concordant barrier and its
properties that will play an important in our analysis of section 3.

We assume that K is a convex set in a finite-dimensional real vector
space E. The following is the definition of self-concordant barrier, which is
due to Nesterov and Nemirovskii(1994).

Definition 2.1. Let F : K◦ → R be a C3-smooth convex function such that
F (x) →∞ as x ∈ K◦ approaches the boundary of K and

| F ′′′
(x)[h, h, h] | ≤ 2 〈F ′′

(x)h, h〉3/2 (2.1)

for all x ∈ K◦ and for all h ∈ E. Then F is called a self-concordant function
for K. F is called a self-concordant barrier if F is a self-concordant function
and

ϑ := supx∈K◦〈F ′(x), F ′′(x)−1F ′(x)〉 < ∞. (2.2)

ϑ is called barrier parameter of F .
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Let F ′′(x) denote the Hessian of a self-concordant function F (x). Since
it is positive definite, for every x ∈ K◦, ‖v‖x = 〈v, F ′′(x)v〉 1

2 is a norm on
E induced by F ′′(x). Let Bx(y, r) denote the open ball of radius r centered
at y, where the radius is measured w.r.t. ‖ ‖x. This ball is called the Dikin
ball. The following lemmas are very crucial for the analysis of our algorithm
in the next section. For the proofs, see e.g. the chapter 2 of Renegar(2001).

Lemma 2.1. Assume F (x) is a self-concordant function for K, then for all
x ∈ K◦, we have Bx(x, 1) ⊆ K◦ and if whenever y ∈ Bx(x, 1) we have

‖v‖y

‖x‖x
≤ 1

1− ‖y − x‖x
for all v 6= 0. (2.3)

Lemma 2.2. Assume F (x) is a self-concordant function for K, x ∈ K◦ and
y ∈ Bx(x, 1), then

|F (y)− F (x)− 〈F ′(x), y − x〉 − 〈y − x, F ′′(x)(y − x)〉
2

| ≤ ‖y − x‖3
x

3(1− ‖y − x‖x)
.

(2.4)

Let n(x) := −F ′′(x)−1F ′(x) be the Newton step of F (x).

Lemma 2.3. Assume F (x) is a self-concordant function. If ‖n(x)‖x ≤ 1
4

then F (x) has a minimizer z and

‖z − x‖x ≤ ‖n(x)‖x +
3‖n(x)‖2

x

(1− ‖n(x)‖x)3
. (2.5)

Lemma 2.4. Assume F (x) is a self-concordant barrier with barrier param-
eter ϑ. If x, y ∈ K◦ then

〈F ′(x), y − x〉 ≤ ϑ. (2.6)

3 The interior-point trust-region algorithm

In this section, we present our algorithm and give the complexity analysis.

We consider the following optimization problem

min q(x) =
1
2
〈x,Qx〉+ 〈c, x〉 (3.1)

subject to x ∈ K. (3.2)

3



Here Q : E 7→ E is a positive definite or positive semi-definite linear
operator, c ∈ E. K is a bounded convex set with nonempty relative interior.

We assume F (x) is the self-concordant barrier for the symmetric cone
K and define the merit function as

fηk
(x) = ηkq(x) + F (x). (3.3)

We should mention here that fηk
(x) is a self-concordant function by the

definition (2.1)! We want to decrease the value of fηk
(x) for every fixed ηk in

each inner iteration, and increase ηk to positive infinity in outer iterations.
From Lemma 2.1, for any xk,j ∈ K◦ and d ∈ E, we have that xk,j + d ∈ K◦

provided that ‖F ′′(xk,j)
1
2 d‖ ≤ αk,j < 1. It follows from Lemma 2.2 that

F (xk,j + d)− F (xk,j) ≤ 〈F ′(xk,j), d〉+
〈d, F ′′(xk,j)d〉

2
+

‖d‖3
xk,j

3(1− ‖d‖xk,j
)

≤ 〈F ′(xk,j), d〉+
〈d, F ′′(xk,j)d〉

2
+

α3
k,j

3(1− αk,j)
.(3.4)

Therefore, we get

fηk
(xk,j + d) − fηk

(xk,j) ≤
〈d, (ηkQ + F ′′(xk,j))d〉

2

+〈ηk(Qxk,j + c) + F ′(xk,j), d〉+
α3

k,j

3(1− αk,j)
. (3.5)

Now, it is obviously that for decreasing fηk
(x), we solve the following

trust-region subproblem

min 1
2〈d, (ηkQ + F ′′(xk,j))d〉+ 〈ηk(Qxk,j + c) + F ′(xk,j), d〉 = mk,j(d)(3.6)

s.t. ‖F ′′(xk,j)
1
2 d‖2 ≤ α2

k,j . (3.7)

Define

Qk,j = ηkF
′′(xk,j)−

1
2 QF ′′(xk,j)−

1
2 + I, (3.8)

ck,j = F ′′(xk,j)−
1
2
(
ηk(Qxk,j + c) + F ′(xk,j)

)
, (3.9)

and using the transformation

d′ = F ′′(xk,j)
1
2 d, (3.10)
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the above problem (3.6)-(3.7) can be rewritten as

min q′k,j(d
′) = 1

2〈d′, Qk,jd
′〉+ 〈ck,j , d

′〉 (3.11)

‖d′‖2 ≤ α2
k,j . (3.12)

Once d′k,j is computed, we obtain the step

dk,j = F ′′(xk,j)−
1
2 d′k,j , (3.13)

and it follows from inequality (3.5) that

fηk
(xk,j + dk,j) − fηk

(xk,j) ≤ q′k,j(d
′
k,j) +

α3
k,j

3(1− αk,j)
. (3.14)

Algorithm 3.1. (An Interior-Point Trust Region Algorithm)

Step 0 Initialization. An initial point x0,0 ∈ K◦ and an initial pa-
rameter η0 > 0 are given. Set αk,j = α < 1 for some constant
α. Set k = 0 and j = 0.

Step 1 Test inner iteration termination. If

〈ck,j , Q
−1
k,jck,j〉 ≤ 1

9
, (3.15)

set xk+1,0 = xk,j and go to Step 3.

Step 2 Step calculation. Solve problem (3.11)-(3.12) obtaining d′k,j

exactly, set dk,j by (3.13) and xk,j+1 = xk,j + dk,j.

Step 3 Update parameter η. Set ηk+1 = θηk for some constant θ >
1. Increase k by 1 and go to step 1.

Theorem 3.1. a)If we choose α = 1
4 , then

fηk
(xk,j+1)− fηk

(xk,j) < − 1
48

, (3.16)

which is independent of k and j.
b)If the initial point x0,0 satisfies the condition (3.15), then for any ε > 0,
we will get a solution x such that q(x)− q(x∗) < ε in at most

48θ(ϑ +
√

ϑ) ln ϑ+
√

ϑ
εη0

ln θ
(3.17)

steps, here x∗ = argminx∈Kq(x).
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To prove part a) of this theorem, we need the following lemma which is
well-known in trust-region literature.

Lemma 3.1. Any global minimizer d′k,j of problem (3.11)-(3.12) satisfies
the equation

(Qk,j + µk,jI)d′k,j = −ck,j , (3.18)

here Qk,j+µk,jI is positive semi-definite, µk,j ≥ 0 and µk,j(‖d′k,j‖−αk,j) = 0.

For a proof, see e.g. Section 7.2 of Conn, Gould and Toint (2000).

Proof of Theorem 3.1 part a). If the solution of (3.11)-(3.12) lies on the
boundary of the trust-region, that is, ‖d′k,j‖ = αk,j , then

q′k,j(d
′
k,j) =

1
2
〈d′k,j , Qk,jd

′
k,j〉+ 〈ck,j , d

′
k,j〉

= 〈d′k,j , Qk,jd
′
k,j + ck,j〉 − 1

2
〈d′k,j , Qk,jd

′
k,j〉

= 〈d′k,j ,−µk,jd
′
k,j〉 −

1
2
〈d′k,j , (ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2 + I)d′k,j〉

= −µk,jα
2
k,j −

1
2
〈d′k,j , ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2 d′k,j〉 −

1
2
α2

k,j

≤ −1
2
α2

k,j = − 1
32

,

here the third equality follows from the equalities (3.8) and (3.18), and
the inequality follows from the fact that ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2 is posi-

tive definite or positive semi-definite. Therefore, it follows from inequality
(3.14) that

fηk
(xk,j+1)− fηk

(xk,j) ≤ − 1
32

+
(1
4)3

3(1− 1
4)

< − 1
48

.

If the solution of (3.11)-(3.12) lies in the interior of the trust-region, that
is, ‖d′k,j‖ < αk,j , then from Lemma 3.1 we know µk,j = 0 and consequently
d′k,j = −Q−1

k,jck,j , and

q′k,j(d
′
k,j) =

1
2
〈d′k,j , Qk,jd

′
k,j〉+ 〈ck,j , d

′
k,j〉 = −1

2
〈ck,j , Q

−1
k,jck,j〉. (3.20)

By the mechanism of our algorithm, we know that 〈ck,j , Q
−1
k,jck,j〉 > 1

9 for all
k and j. Therefore,

fηk
(xk,j+1)− fηk

(xk,j) ≤ − 1
18

+
(1
4)3

3(1− 1
4)

< − 1
48

.
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Therefore, we complete our proof. ¤

Let nηk
(xk,j) be the Newton step of fηk

(x) at the point xk,j . We should
point out that

‖nηk
(xk,j)‖xk,j

= 〈f ′ηk
(xk,j), f ′′ηk

(xk,j)−1f ′ηk
(xk,j)〉

= 〈ηk(Qxk,j + c) + F ′(xk,j), (ηkQ + F ′′(xk,j))−1(ηk(Qxk,j + c) + F ′(xk,j))〉
= 〈ck,j , Q

−1
k,jck,j〉,

where last equality follows equalities (3.8) and (3.9). This equality con-
nects equality (3.19) and the assumption of the following two lemmas, which
tells us that we can stop the inner iteration if the reduction of the objective
function with an interior solution is smaller than some constant. The fol-
lowing two lemmas are extension of Renegar(2001)’s result of minimizing a
linear objective function over a convex set.

Lemma 3.2. Let x∗ = argminx∈Kq(x). If ‖nη(x)‖x ≤ 1
9 , then

q(x)− q(x∗) ≤ ϑ +
√

ϑ

η
. (3.22)

Proof. Let x(η) = argminx∈Kfη(x). Then

q(x(η))− q(x∗) ≤ 〈q′(x(η)), x(η)− x∗〉
= 〈−F ′(x(η))

η
, x(η)− x∗〉 ≤ ϑ

η
(3.23)

The first inequality is by the convexity of q(x). The equality follows from
the fact that f ′(x(η)) = 0, and the last inequality follows from Lemma 2.4.

It easily follows from Lemma 2.3 that

‖x− x(η)‖x ≤ 1
9

+
3(1

9)2

(1− 1
9)3

<
1
4

(3.24)

and consequently from Lemma 2.1 that

‖x− x(η)‖x(η) ≤
‖x− x(η)‖x

1− ‖x− x(η)‖x
<

1
3
. (3.25)

Then we have
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q(x)− q(x(η)) = 〈q′(x(η)), x− x(η)〉+
〈x− x(η), Q(x− x(η))〉

2

= 〈−F ′(x(η))
η

, x− x(η)〉+
〈x− x(η), ηQ(x− x(η))〉

2η

≤ 〈−F ′′(x(η))−
1
2 F ′(x(η)), F ′′(x(η))

1
2 (x− x(η))〉

η
+
‖x− x(η)‖x

2η

≤ ‖F ′′(x(η))−
1
2 F ′(x(η))‖‖F ′′(x(η))

1
2 (x− x(η))‖

η
+

1
8η

≤
√

ϑ‖x− x(η)‖x(η)

η
+

1
8η

≤
√

ϑ

3η
+

1
8η

≤
√

ϑ

η
, (3.26)

where the last inequality follows from the fact that ϑ is always greater
than 1 and the third last inequality follows from the definition of ϑ. By
adding the inequality (3.21) and (3.24), we get inequality (3.20). ¤

This lemma tells us that to get an ε-solution, we only need

ηk = η0θ
k ≥ ϑ +

√
ϑ

ε
,

and consequently

k ≥
ln ϑ+

√
ϑ

εη0

ln θ
(3.28)

outer iterations.

Lemma 3.3. If ‖nηk
(x)‖x ≤ 1

9 , then

fηk+1
(x)− fηk+1

(x(ηk+1)) ≤ θ(ϑ +
√

ϑ). (3.29)
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Proof . First, we have

fηk+1
(x)− fηk+1

(x(ηk)) ≤ 〈f ′ηk+1
(x), x− x(ηk)〉 = 〈ηk+1(Qx + c) + F ′(x), x− x(ηk)〉

=
ηk+1

ηk
〈ηk(Qx + c) + F ′(x), x− x(ηk)〉+ (

ηk+1

ηk
− 1)〈F ′(x), x(ηk)− x〉

= θ〈f ′′−
1
2

ηk (x)(ηk(Qx + c) + F ′(x)), f ′′ηk
(x)

1
2 (x− x(ηk))〉

+(θ − 1)〈F ′′(x)−
1
2 F ′(x), F ′′(x)

1
2 (x(ηk)− x)〉

≤ θ‖f ′′−
1
2

ηk (x)(ηk(Qx + c) + F ′(x))‖‖f ′′ηk
(x)

1
2 (x− x(ηk))‖

+(θ − 1)‖F ′′(x)−
1
2 F ′(x)‖‖F ′′(x)

1
2 (x(ηk)− x)‖

≤ θ‖nηk
(x)‖x‖x(ηk)− x‖x + (θ − 1)

√
ϑ‖x(ηk)− x‖x

≤ θ
1
9

1
4

+ (θ − 1)
√

ϑ
1
4
≤ θ

√
ϑ, (3.30)

where the first inequality follows from the convexity of fηk+1
(x) and the sec-

ond last inequality follows from inequality (3.22).

Similarly, we have

fηk+1
(x(ηk))− fηk+1

(x(ηk+1)) ≤ 〈f ′ηk+1
(x(ηk)), x(ηk)− x(ηk+1)〉

= 〈ηk+1(Qx(ηk) + c) + F ′(x(ηk)), x(ηk)− x(ηk+1)〉
=

ηk+1

ηk
〈ηk(Qx(ηk) + c) + F ′(x(ηk)), x(ηk)− x(ηk+1)〉

+(
ηk+1

ηk
− 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk)〉

= θ〈f ′ηk
(x(ηk)), x(ηk)− x(ηk+1)〉

+(θ − 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk)〉
= (θ − 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk)〉 < θϑ, (3.31)

where the last inequality follows from Lemma 2.4 and the last equality
holds because x(ηk) minimizes fηk

(x) and hence f ′ηk
(x(ηk)) = 0. By adding

inequality (3.27) and inequality (3.28), we get inequality (3.26). ¤

This lemma and Theorem (3.1) part a) tell us that we need at most

48(ϑ +
√

ϑ) (3.32)

steps in each inner iteration.
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Proof of Theorem 3.1 part b). It follows from (3.25) and (3.29). ¤

We want to mention that even the initial point doesn’t satisfy condition
(3.15), our algorithm will make it satisfy in polynomial-time, which follows
from the part a) of Theorem 3.1.

4 Concluding remarks

In this paper, we have shown that the complexity of interior-point trust-
region algorithm is as good as pure interior-point algorithm in convex pro-
gramming. This gives us a bridge of connecting interior-point methods and
trust-region methods. It is our belief that more efficient algorithm can be
built by taking advantages of both methods. The bottom line is that we
won’t lose any complexity priority by the result of this paper.
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