
Jacobi-type Gauss-Seidel Smoother with

Error Compensation for Parallel Multigrid ⋆

He Cangping a,b,∗, Zhao Yanmin c, Tang Yifa a

aLSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences, Beijing 100190, China.

bGraduate University of Chinese Academy of Sciences, Beijing 100190, China.

cSchool of Mathematical Sciences, Xuchang University, Xuchang 461000, China.

Abstract

Smoother is the most important component of parallel multigrid methods, however,
the widely used Gauss-Seidel smoother is difficult to be parallelized. This paper
proposes a new parallel smoother, Jacobi-type Gauss-Seidel with error compensa-
tion(JGSEC), by compensating the error caused by Jacobi-type Gauss-Seidel(JGS)
smoother. Requiring no more inter-processor communication than JGS, JGSEC can
eliminate the main part (more than ninety-five percent) of error arising from JGS
at cost of a little more work amount. Numerical experiment has verified the good
performance of JGSEC.

Key words: parallel multigrid, parallel Gauss-Seidel, JGS, JGSEC
1991 MSC: 65N55

1 Introduction

Smoother is the most important component of multigrid methods[3,5], and
impacts the convergence rate and stability of multigrid. Gauss-Seidel(GS),

⋆ Supported by open project (No. 47549P0) of the State Key Laboratory of Sci-
entific and Engineering Computing, Chinese Academy of Sciences, and by Na-
tional Natural Science Foundation of China (Grant Nos. 10471145, 10672143
and 10872037), Natural Science Research Project of Henan Province (Grant
No.2009A110017).
∗ Corresponding author.

Email addresses: cphe@lsec.cc.ac.cn (He Cangping), zhaoym@lsec.cc.ac.cn
(Zhao Yanmin), tyf@lsec.cc.ac.cn (Tang Yifa).

Preprint submitted to Elsevier 26 June 2009

which is a commonly used smoother, possesses many attractive properties such
as good convergence rate and applicability on unstructured grids. However,
GS has a crucial shortcoming: update of value of a grid point needs the most
recent values of neighboring grid points. Thus, GS smoother is difficult to be
parallelized.

As far as the authors know, the only one efficient parallel true Gauss-Seidel
algorithm is Parallel block multi-color Gauss-Seidel, which is developed by
Adams[1]. Unfortunately, this algorithm loses its simplicity on 3D unstruc-
tured grid as the number of required colors increases dramatically[2]. Many
other parallel versions of Gauss-Seidel smoother have been given in [8–11,7].

Jacobi-type Gauss-Seidel(JGS) smoother[5] is also called as Processor block

Gauss-Seidel in[6]. JGS applies the GS smoother only within a subgrid of a
grid-partitioning application. As a consequence, the resulting iteration proce-
dure is no longer a sequential GS iteration, but a combination of Jacobi-type
iteration and GS[5]. Although JGS can be easily implemented on parallel com-
puter systems, its convergence rate is worse than that of sequential GS, and
PGS is even divergent under some special situation. An artificial example, on
which PGS fails, is given in[2].

In this paper, it is found that the error on the boundary of subgrids cause
the failure of JGS. The boundary error from initialization will propagate into
interior of subgrids in the procedure of JGS iteration. Since GS scheme is
a local relaxation, the boundary error attenuates rapidly in its propagation.
Therefore, compensation of the largest components of error will make JGS
approximate sequential GS well. That is the main idea of Jacobi-type Gauss-
Seidel smoother with Error Compensation(JGSEC) algrorithm.

Compared with JGS, JGSEC needs no more communication and only a lit-
tle more flops. Numerical experiment shows that JGSEC can reduce about
eighty-five(ninety-five) percent of the error caused by JGS when compensat-
ing three(six) error terms.

The reminder of this paper is organized as follows. Section 2 introduces the
sequential Gauss-Seidel iteration. Section 3 gives an introduction of JGS al-
gorithm and points out its shortcoming. Section 4 is the central part of this
paper. Here, JGSEC algorithm is obtained from the analysis of the boundary
error propagation in JGS. Section 5 is a numerical experiment. Finally, the
extension of JGSEC and future work are given in Section 6.

2

2 Sequential Gauss-Seidel iteration

Consider two-dimensional Poisson equation with Dirichlet conditions

−△u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(1)

where Ω = (0, 1) × (0, 1). Given positive integer n and let h = 1/n, domain
of the problem Ω̄ = [0, 1] × [0, 1] is partitioned into n × n subsquares by
introducing the grid points (xi, yj) = ((i − 1)h, (j − 1)h).

Definition 1 The original grid is denoted by Ω̄hand given by Ω̄h = {(xi, yj)|1 ≤
i, j ≤ n + 1}. The original interior grid is denoted by Ωh and given by Ωh =
{(xi, yj)|2 ≤ i, j ≤ n}. And the original boundary grid is denoted by ∂Ωh and

given by ∂Ωh = Ω̄h\Ωh = {(xi, hj)|i, j = 1, n + 1}.

(1,1) (n+1,1)

(1,n+1) (n+1,n+1)

(2,2) (n,2)

(n,2) (n,n)

10
20

30
10

20
30
0

2

4

x 10
−4

Fig. 1. Left: two-dimensional grids on the unit square. Points on the dashed lines
are in original boundary grid ∂Ωh, while points on the solid lines are in original
interior grid Ωh. Right: v1 on original grid Ω̄h

These grids, Ωh, Ω̄h, and ∂Ωh, are shown in the left picture of Fig.1. The
original grid Ω̄h contains all points in the picture. The original interior grid
Ωh contains all points on the solid lines, while the original boundary grid ∂Ω
contains all points on the dashed lines.

At each of the (n − 1)2 interior grid points (xi, yj) ∈ Ωh, replace the original
equation (1) with a second-order finite difference approximation. In making
this replacement, vij is introduced as an approximation to the exact solution
u(xi, yj). Then the discrete Poisson equation is obtained:

(4vij − vi−1,j − vi,j−1 − vi,j+1 − vi+1,j)/h
2 = fij , (xi, yj) ∈ Ωh

vij = 0, (xi, yj) ∈ ∂Ωh,
(2)

where fij = f(xi, yj).

3

Given initial values v0
ij for all points (xi, yj) ∈ Ωh, the sequential Gauss-Seidel

iteration can be written in component form as

vm+1
ij = (h2fij + vm+1

i−1,j + vm+1
i,j−1 + vm

i,j+1 + vm
i+1,j)/4, (xi, yj) ∈ Ωh

vm+1
ij = vm

ij , (xi, yj) ∈ ∂Ωh,
(3)

where m = 0, 1, ...

Discrete Poisson equation (2) implies that, for any boundary grid points
(xi, yj) ∈ ∂Ωh, vm

ij has the same value as v0
ij , that is vm

ij ≡ v0
ij = 0. Let

set vm = {vm
ij |(xi, yj) ∈ Ω̄h} and denote GS iteration (3) by vm+1 = GS(vm, f)

for m = 0, 1, ...

Example 1. In Poisson equation (1), let f(x, y) = sin(πx) sin(πy), and let
v0

ij = 0, then v1 is obtained by v1 = GS(v0, f)(see the right picture of Fig. 1).

3 Jacobi-type Gauss-Seidel iteration

In order to implement GS iteration (3) on parallel computers with distributed
memory, grid partitioning is a natural approach. In this approach, the original
grid Ω̄h is split into P subgrids, such that P available processes can jointly
solve the discrete Poisson eqution (2). Each subgrid is assigned to a different
process such that each process is responsible for the computation in its part
of the problem[5]. Each process not only stores the data belonging its subgrid
but also a copy of data located in neighbor subgrids in a thin overlap area.

For simplicity, assuming P = 4, we split the original interior grid Ωh into 2×2
subgrids to illustrate the idea of grid partitioning.

Definition 2 (subgrids) subgrid 1: Ω1
h = {(xi, yj)|2 ≤ i, j ≤ n

2
+ 1}, subgrid

2: Ω2
h = {(xi, yj)|

n
2

+ 2 ≤ i ≤ n, 2 ≤ j ≤ n
2

+ 1}, subgrid 3: Ω3
h = {(xi, yj)|2 ≤

i ≤ n
2

+ 1, n
2

+ 2 ≤ j ≤ n}, subgrid 4: Ω4
h = {(xi, yj)|

n
2

+ 2 ≤ i, j ≤ n}.

The definition of Ω̄k
h and ∂Ωk

h(k = 1, 2, 3, 4) is similar to Definition 1. Obvi-
ously, ∪4

k=1Ω
k
h = Ωh and ∪4

k=1Ω̄
k
h = Ω̄h, but ∪4

k=1∂Ωk
h 6= ∂Ωh. When n = 16,

Fig.2 illustrates the 4 subgrids. Grid points of the original boundary grid ∂Ωh

are marked with circles(◦), overlap points are marked with squares(�) and
interior gird points of subgrids are marked with bullets(•).

The left boundary of Ω2
h is {(xi, yj)|i = n

2
+ 1, 1 ≤ j ≤ n

2
+ 2}, and the bottom

boundary of Ω3
h is {(xi, yj)|1 ≤ i ≤ n

2
+ 2, j = n

2
+ 1}. The left boundary and

bottom boundary of Ω4
h can defined in the same way.

Using GS iteration (3), an update of unknowns depends on previously calcu-

4

1 2

3 4

Fig. 2. Grid partitioning with n = 16. Left: original grid Ω̄h. Grid points of the origi-
nal boundary grid ∂Ωh are marked with circles(◦). Right: Subgrids Ω̄k

h(k = 1, 2, 3, 4).
Overlap points are marked with squares(�) and interior gird points of subgrids are
marked with bullets(•).

lated values, so GS iteration is not suitable for parallel computing. A modifi-
cation of GS, which better suits the grid partitioning concept is to apply the
GS iteration only within a subgrid of Ω̄k

h[5].

Let am
ij , bm

ij ,c
m
ij , dm

ij be approximation of u(xi, yj) on subgrids Ω̄1
h, Ω̄2

h, Ω̄3
h, Ω̄4

h

respectively, and let wm
ij be approximation of u(xi, yj) on original grid Ω̄h.

Their initial values are given as

a0
ij = v0

ij , b0
ij = v0

ij, c0
ij = v0

ij , d0
ij = v0

ij. (4)

Definition 3 Define sets am, bm, cm, cm, wm as follows:

am = {am
ij |(xi, yj) ∈ Ω̄1

h}, bm = {bm
ij |(xi, yj) ∈ Ω̄2

h},

cm = {cm
ij |(xi, yj) ∈ Ω̄3

h}, dm = {dm
ij |(xi, yj) ∈ Ω̄4

h},

wm = {wm
ij } = {am

ij |(xi, yj) ∈ Ω1
h} ∪ {bm

ij |(xi, yj) ∈ Ω2
h} ∪ {cm

ij |(xi, yj) ∈ Ω3
h}

∪{dm
ij |(xi, yj) ∈ Ω4

h} ∪ {vm
ij |(xi, yj) ∈ ∂Ωh}, m = 0, 1, 2, ...

It is obvious that w0 ≡ v0.

The procedure of JGS iteration is described as following. Starting with some
approximation wm on these subgrids, each process computes a new GS iterate
wm+1 for each point in the interior of its subgrid, then each process exchanges
data with its neighboring subgrids.

Concretely, four processes compute a new GS iterate w1 from initial approx-
imation w0 on the four subgrids Ω̄k

h(k = 1, 2, 3, 4) simultaneously, then ex-
change data between subgrid Ω̄1

h and Ω̄2
h, between subgrid Ω̄3

h and Ω̄4
h, between

subgrid Ω̄1
h and Ω̄3

h, between subgrid Ω̄2
h and Ω̄4

h. The following JGS algorithm

5

10
20

30
10

20
30
0

2

4

x 10
−4

10
20

30
10

20
30
0

2

4

x 10
−4

Fig. 3. Left: w1 resulted from JGS. Right: w1 resulted from JGSEC.

is written in sequential pseudo code, which must be implemented by parallel
code in practice.

Algorithm 1: Jacobi-type Gauss-Seidel
∀(xi, yj) ∈ Ω̄1

h, a
0
ij = v0

ij ; ∀(xi, yj) ∈ Ω̄2
h, b

0
ij = v0

ij ;
∀(xi, yj) ∈ Ω̄3

h, c
0
ij = v0

ij ; ∀(xi, yj) ∈ Ω̄4
h, d

0
ij = v0

ij ;
for m = 0:1

am+1 = GS(am, f); bm+1 = GS(bm, f);

cm+1 = GS(cm, f); am+1 = GS(am, f);
(5)

am+1
n

2
+2,j = bm+1

n

2
+2,j , bm+1

n

2
+1,j = am+1

n

2
+1,j, j = 2, 3, .., n

2
+ 2.

am+1
i, n

2
+2 = cm+1

i, n

2
+2, cm+1

i, n

2
+1 = am+1

i, n

2
+1, i = 2, 3, .., n

2
+ 2.

bm+1
i, n

2
+2 = dm+1

i, n

2
+2, dm+1

i, n

2
+1 = bm+1

i, n

2
+1, i = n

2
+ 2, ..., n.

cm+1
n

2
+2,j = dm+1

n

2
+2,j , dm+1

n

2
+1,j = cm+1

n

2
+1,j, j = n

2
+ 2, ..., n.

end

JGS algorithm implies that wm ≡ w0 ≡ v0 on ∂Ωh, but wm 6≡ vm on Ωh.
So JGS is not algorithmically equivalent to sequential GS(3). In multigrid
method, only one or two JGS iterations is needed on each grid level, thus the
range of variable m in JGS algorithm is 0:1. The left picture of Fig. 3 is the
imagine of w1 on original grid Ω̄h. Comparing this picture with the right pic-
ture of Fig. 1, one can see that w1 approximates v1 well on the interior points
of subgrids, but the approximation is bad on the points near the interface of
subgrids.

Define the error of a parallel iteration as em = wm − vm. Imagine of error e1

of JGS algorithm(the left picture of Fig. 4) also shows that the main part of
error is located at grid points near subgrid boundary. So the norm of error em

can be defined as following:

6

10
20

30
10

20
30
0

1

2

x 10
−4

10
20

30
10

20
30
0

2

4

x 10
−5

Fig. 4. Left: error −e1 of JGS. Right: error −e1 of JGSEC.

‖em‖ =
1

4n − 8

n
∑

j=2

(

|em
n

2
+2,j | + |em

n

2
+3,j|

)

+
1

4n − 8

n

2
+1

∑

i=2

(

|em
i, n

2
+2| + |em

i, n

2
+3|

)

+
1

4n − 8

n
∑

i= n

2
+4

(

|em
i, n

2
+2| + |em

i, n

2
+3|

)

.

For JGS, ‖e1‖=7.17e-3 when n = 32.

4 Jacobi-type Gauss-Seidel with error compensation

In order to overcome the shortcoming of JGS, we have to answer two question2.
The first question is what cause the error e1? For subgrid 1, a1

ij ≡ v1
ij on Ω1

ij

since a0
ij ≡ v0

ij. For subgrid 2, if b1
ij ≡ v0

ij on the left boundary of Ω2
h, then

b1
ij ≡ v1

ij on Ω̄2
h. Similarly, if c1

ij ≡ v0
ij on the bottom boundary of Ω3

h, then
c1
ij ≡ v1

ij on Ω̄3
h; if d1

ij ≡ v0
ij on the left boundary and bottom boundary of Ω4

h,
then d1

ij ≡ v1
ij on Ω̄4

h. In JGS algorithm, however, GS iterations on the four
subgrids take place at the same time, so b1

ij 6≡ b0
ij ≡ v0

ij on left boundary of
Ω2

h, c1
ij 6≡ c0

ij ≡ v0
ij on the bottom boundary Ω3

h and d1
ij 6≡ d0

ij ≡ v0
ij on the left

boundary and the bottom boundary of Ω4
h.

Definition 4 The boundary error is denoted by ẽ and given by ẽ = {ẽij} =
{b0

ij−v1
ij |on the left boundary of Ω2

h}∪{c
0
ij−v1

ij |on the bottom boundary of Ω3
h ∪

{d0
ij − v1

ij |on the left and bottom boundary of Ω4
h}.

It is clear that boundary error causes error e1 on Ωh.

The second equation is how boundary error propagates from the boundary
subgrid points to the interior subgrid points? Take subgrid 2 for example. The
GS iteration (3) implies that

v1
ij = (h2fij + v1

i−1,j + v1
i,j−1 + v0

i,j+1 + v0
i+1,j)/4, (xi, yj) ∈ Ωh, (6)

7

and JGS algorithm implies that

b1
ij = (h2fij + b1

i−1,j + b1
i,j−1 + b0

i,j+1 + b0
i+1,j)/4, (xi, yj) ∈ Ω2

h. (7)

(7) subtracted from (6) gives the error propagation formula

e1
ij = b1

ij − v1
ij

=
1

4
[(b1

i−1,j − v1
i−1,j) + (b1

i,j−1 − v1
i,j−1) + (b0

i,j+1 − v0
i,j+1) + (b0

i+1,j − v0
i+1,j)]

(4)
=

1

4
[(b1

i−1,j − v1
i−1,j) + (b1

i,j−1 − v1
i,j−1)], (xi, yj) ∈ Ω2

h. (8)

In order to illustrate the propagation of boundary error, assume n = 12 and

ẽ73 = 1, ẽ7,j = 0, j = 1, 2, 4, ..., 8. (9)

Equations (5),(8) and (9) give e1
i,2 = 0, i = 8, 9, ..., 12, and

e1
83 =

1

4

[

(b1
73 − v1

73) + (b1
82 − v1

82)
]

=
1

4
(b0

71 − v1
71) =

1

4
ẽ73 =

1

4
,

e1
93 =

1

4

[

(b1
83 − v1

83) + (b1
92 − v1

92)
]

=
1

4
[e1

83 + e1
92] =

1

16
,

e1
84 =

1

4

[

(b1
74 − v1

74) + (b1
83 − v1

83)
]

=
1

4
[ẽ74 + e1

83] =
1

16
,

e1
10,3 =

1

64
, e1

94 =
2

64
, e1

85 =
1

64
, e1

11,4 =
1

256
. . . .

(10)

The propagation procedure on subgrid 2 is shown in the left picture of Fig. 5.
If let

b̄1
83 = b1

83 +
1

4
ẽ73, b̄1

93 = b1
93 +

1

16
ẽ73, b̄1

84 = b1
84 +

1

16
ẽ73,

then the three largest error terms are compensated:

e1
83 = b̄1

83 − v1
83 = 0, e1

93 = b̄1
93 − v1

93 = 0, e1
84 = b̄1

84 − v1
84 = 0.

Error compensation on subgrid 3 and subgrid 4 are similar(see the right picture
of Fig. 5). Following this compensation idea is the algorithm of JGSEC. The
following JGSEC algorithm is written in sequential pseudo code, which must
be rewritten in parallel code in practice.

Algorithm 2: Jacobi-type Gauss-Seidel with Error Compensation
∀(xi, yj) ∈ Ω̄1

h, a
0
ij = v0

ij ; ∀(xi, yj) ∈ Ω̄2
h, b

0
ij = v0

ij ;
∀(xi, yj) ∈ Ω̄3

h, c
0
ij = v0

ij ; ∀(xi, yj) ∈ Ω̄4
h, d

0
ij = v0

ij ;

8

(7,1) (13,1)

(7,8) (13,8)

1
1

4

1

16

1

64

1

256

1

1024

1

16

2

64

3

256

4

1024

1

64

3

256

6

1024

1

256

4

1024

1

1024

(1,7) (7,8)

(1,13) (7,13)

1

1

4

1

16

1

64

1

256

1

1024

1

16

2

64

3

256

4

1024

1

64

3

256

6

1024

1

256

4

1024

1

1024

Fig. 5. Error propagation from boundary to interior. Left: subgrid 2, right: subgrid
3.

for m = 0:1

am+1 = GS(am, f); bm+1 = GS(bm, f); cm+1 = GS(cm, f); dm+1 = GS(dm, f);
for j = 2 : n/2+1

bm+1
n

2
+2,j = bm+1

n

2
+2,j −

1
4
(bm+1

n

2
+1,j − am+1

n

2
+1,j) −

1
16

(bm+1
n

2
+1,j−1 − am+1

n

2
+1,j−1);

bm+1
n

2
+3,j = bm+1

n

2
+3,j −

1
16

(bm+1
n

2
+1,j − am+1

n

2
+1,j);

bm+1
n

2
+1,j = am+1

n

2
+1,j ; am+1

n

2
+2,j = bm+1

n

2
+2,j;

end

for j = n/2+2 : n

dm+1
n

2
+2,j = dm+1

n

2
+2,j −

1
4
(dm+1

n

2
+1,j − cm+1

n

2
+1,j) −

1
16

(dm+1
n

2
+1,j−1 − cm+1

n

2
+1,j−1);

dm+1
n

2
+3,j = dm+1

n

2
+3,j −

1
16

(dm+1
n

2
+1,j − cm+1

n

2
+1,j);

dm+1
n

2
+1,j = cm+1

n

2
+1,j ; cm+1

n

2
+2,j = dm+1

n

2
+2,j;

end

for i = 2 : n/2+1

cm+1
i, n

2
+2 = cm+1

i, n

2
+2 −

1
4
(cm+1

i, n

2
+1 − am+1

i, n

2
+1) −

1
16

(cm+1
i−1, n

2
+1 − am+1

i−i, n

2
+1);

cm+1
i, n

2
+3 = cm+1

i, n

2
+3 −

1
16

(cm+1
i, n

2
+1 − am+1

i, n

2
+1);

cm+1
i, n

2
+1 = am+1

i, n

2
+1; am+1

i, n

2
+2 = cm+1

i, n

2
+2;

end

for i = n/2+2 : n

dm+1
i, n

2
+2 = dm+1

i, n

2
+2 −

1
4
(dm+1

i, n

2
+1 − bm+1

i, n

2
+1) −

1
16

(dm+1
i−1, n

2
+1 − bm+1

i−1, n

2
+1);

dm+1
i, n

2
+3 = dm+1

i, n

2
+3 −

1
16

(dm+1
i, n

2
+1 − bm+1

j, n

2
+1);

dm+1
i, n

2
+1 = bm+1

i, n

2
+1; bm+1

i, n

2
+2 = dm+1

i, n

2
+2;

end

end

The w1 is obtained after two JGSEC iterations. From Fig. 3, one can see that
w1 resulting from JGSEC is smoother than w1 resulting from JGS. Comparing
the two error pictures in Fig. 4, one can get an intuitive conclusion that error
of JGSEC is much smaller than error of JGS. For JGSEC, ‖e1‖ = 1.16e-5
when n = 32.

9

Algorithm 2 only compensates the three largest error terms, it can be easily
modified to compensate the six or nine largest errror terms.

Work amount: analysis of algorithm 1 and algorithm 2 shown that JGSEC
needs no more inter-processes communication than JGS. If define N as the
number of subgrid points of the set

∪P
k=1{left boundary and bottom boundary of Ω̄k

h}\Ω̄h,

then N = 2n−2 for 2×2 grid partitioning. One JGSEC sweep needs 3N(6N)
more addition operations and 2N(4N) more multiplication operations when
the three(six) largest error terms are compensated.

5 Numerical Experiment

Example 2. Let n = 256 and let f(x, y) = sin(kπx) sin(lπy) in the Poisson
equation (1), where k, l = 1, 2, ..., n − 1. With initial value v0

ij = 0, the error
norms of JGS and JGSEC are illustrated in Fig. 6. If the ratio of ‖e1‖JGSEC to
‖e1‖JGS is denoted by r and given by r = ‖e1‖JGSEC/‖e1‖JGS, the left(right)
picture of Fig. 7 shows that the ratio is less than 0.158(0.052) when the
three(six) largest error terms are compensated. The two pictures demonstrate
that JGSEC is much better than JGS.

50 100 150 200 250

2

4

6

8

10

x 10
−7

JGS
↓

JGSEC
↓

k = l = 1,3,5,..,n−1

‖
e1
‖

50 100 150 200 250

1

2

3

4

5

x 10
−7

JGS
↓

JGSEC
↓

k = l = 2,4,6,..,n−2

‖
e1
‖

Fig. 6. Comparison of error norm on 2 × 2 subgrids.

6 Extension and future work

It easy to get corresponding JGSEC algorithm for nine-point stencil. The
JGSEC algorithm 2 can be used on three-dimensional structured and unstruc-

10

50 100 150 200 250
0.146
0.148
0.15

0.152
0.154
0.156 Odd

↓
↑

Even

l
ra

ti
o

r
50 100 150 200 250

0.05

0.051

0.052 Odd
↓

Even
↓

l

ra
ti

o
r

Fig. 7. Ratio of ‖e1‖JGSEC to ‖e1‖JGS on 2 × 2 subgrids. Left: the three largest
error terms have been compensated, right: the six largest error terms have been
compensated.

tured grids. The idea of compensation can be used to obtain corresponding
parallel versions of SOR and SSOR smoothers. For example, SOR smoother

vm+1
ij =

ω

4
(h2fij + vm+1

i−1,j + vm+1
i,j−1 + vm

i,j+1 + vm
i+1,j) + (1 − ω)vm

ij

has its own error propagation formula as

e1
ij =

ω

4
[(b1

i−1,j − v1
i−1,j) + (b1

i,j−1 − v1
i,j−1)], (xi, yj) ∈ Ω2

h.

References

[1] Mark F. Adams, A Distributed Memory Unstructured Gauss-Seidel

Algrorithm for Multigrid Smoothers, in: ACM/IEEE Proceedings of SC01:
High Performance Networking and Computing, 2001.

[2] Mark Adams, Marian Brezina, Jonathan Hu,
Ray Tuminaro, Parallel multigrid smoothing: polynomial versus Gauss-Seidel

, Journal of Computational Physics 188(2003) 593-610.

[3] William L. Briggs, Van Emden Henson, Steve F. McCormick, A Multigrid
Tutorial, SIAM 2000.

[4] L. R. Scott and Dexuan Xie, Parallel Linear Stationary Iterative Methods,
Math. Comp. (1995)

[5] U. Trottenberg, C.W. Oosterlee, A. Shüller, Multigrid, Academic Press, 2001.

[6] Van Emden Henson, Ulrike Meier Yang, BoomerAMG: A parallel algebraic

multigrid solver and preconditioner, Technical Report UCRL-JC- 139098,
Lawrence Livermore National Laboratory, 2000.

[7] Dexuan Xie, New parallel symmttric SOR preconditioners by mulit-type

partitioning, International Journal of Computer Mathematics, Vol.86, No.
2, February 2009, 287-300.

11

[8] D. Xie and L. Adams, New Parallel SOR Method by Domain Partitioning,
SIAM J. on Scientific Computing, Vol. 20, No. 6, pp. 2261-2281, 1999.

[9] D. Xie, Analysis of a class of parallel multigrid smoothers, BIT Numerical
Mathematics, Vol. 44, pp.813-828, 2004.

[10] D. Xie, A new block parallel SOR method and its analysis, SIAM J. Sci.
Comput., Vol. 27, No. 5, pp. 1513-1533, 2006.

[11] D. Xie, New parallel symmetric SOR preconditioners by multi-type

partitioning, Journal of Computer Mathematics, Vol. 86, No. 2, pages 287-
300, 2009.

12

