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Abstract

In this paper, we present a method for constructing Loop’s subdivision surface patches
with given G* boundary conditions and a given topology of control polygon of the subdivision
surface, using several fourth-order geometric partial differential equations. These equations
are solved by a mixed finite element method in a functional space defined by the extended
Loop’s subdivision scheme. The method is flexible to the shape of the boundaries. There is
no limitation on the number of boundary curves and on the topology of the control polygon.
Several properties for the basis functions of the finite element space are developed.
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1 Introduction

A surface satisfing a geometric partial differential equation (PDE) is referred to as geometric
PDE surface in this paper. Geometric PDE surfaces, such as minimal surfaces (see [15]), constant
mean-curvature surfaces (see [8, 19]), Willmore surfaces (see [3, 10, 11, 22])) and minimal mean-
curvature variation surfaces (see [26]), are important and preferred in the shape design and
modeling because they share certain optimal properties. For instance, the minimal surfaces
have minimal area, the Willmore surfaces have minimal total squared mean curvature and
minimal mean-curvature variation surfaces have minimal total mean-curvature variation. Here
the terminology total means the integration over the surfaces. Various type geometric PDE
surfaces have been constructed in the literatures (see [24]). Most of them are discrete surfaces
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(triangular or quadrilateral control polygons), a few of them are continuous surfaces. Usually,
the representation of the continuous surfaces are Bezier (see [9]), rational Bezier, B-spline (see
[13, 14]) and NURB surfaces.

Obviously, Bezier surfaces, B-spline or NURB surfaces have to be three- or four-sided. This
is a serious limitation for designing geometric PDE surface with arbitrary shaped boundaries.
In this paper, our intension is to construct geometric PDE subdivision surfaces with piecewise
B-spline curve boundary and normal condition. There is no limitation on the number of spline
pieces. B-spline representation for curves and surfaces have been widely accepted in the CAD
and industrial design. Using B-spline to represent surface boundary is preferable and acceptable.
To represent a surface patch with any topology, subdivision surfaces are the best candidates,
since there is no limitation on the topology of the control polygon. However, subdivision surfaces,
such as Loop’s subdivision surface and Catmull-Clark subdivision surface are traditionally closed,
which cannot be used directly for serving our purpose.

For many surface modeling problems, such as the construction of the bodies of cars and
aircrafts, machine parts and roofs, surfaces are usually constructed in a piecewise manner with
fixed boundaries for each of the pieces. In such a case Loop’s subdivision scheme could not
be applied near the boundary of the control polygon. Therefore, an extension of the Loop’s
scheme to control polygon with boundaries are required. On this aspect, an excellent work has
been done by Biermann et al [2] and that is just sufficient for the aim of constructing piecewise
smooth surface.

In this paper we construct geometric PDE subdivision surface patches with given G' bound-
ary conditions and a given topology of the control polygon using several fourth-order geometric
partial differential equations. These equations are solved by a mixed finite element method in
a functional space defined by the extended Loop’s subdivision scheme. By the term topology of
the control polygon, we mean the connection mode between the vertices of the control polygon.

Fourth-order geometric flows have been used to solve the discrete surface blending problem
and the free-form surface fitting problem (see [4, 20, 21, 25]). In [20, 21], the surface diffusion
flow has been used for fairing/smoothing meshes while satisfying the G' boundary conditions.
The finite element method is used by Clarenz et al. [4] to solve the Willmore flow equation,
based on a new variational formulation of the flow, for the discrete surface restoration.

Problem Description: Given an initial control polygon of a surface patch with some of the
boundary control points fixed. The boundary curve is defined as piecewise cubic B-spline with
the boundary control points as the B-spline control points and equal spaced knots for each piece.
The fixed boundary control points are served as the end-points of the B-spline curves. Our goal
is to construct a geometric PDE subdivision surface that interpolates the boundary curves and
tangents and its control polygon has the same topology as the initial one.

2 Geometric PDEs and Their Weak-form Formulations

To construct smooth geometric PDE subdivision surface patches with G! boundary conditions,
we use three fourth-order equations, namely surface diffusion flow (SDF), Willmore flow (WF)



and quasi-surface flow (QSDF). To describe these equations precisely, we need to introduce a
few notations, the details of them could be found in [24].

2.1 Notations

Let S := {x(u!,u?) € R? : (u',u?) € 2 C R?} be a parametric surface. For simplicity, we

assume it is sufficiently smooth and orientable. Let gog = (Xyo,X,s) and bog = (N,X,a,5) be
the coefficients of the first and the second fundamental forms of S with
ox 0°x
Xya = %7 XyauB8 = Wv aaﬁ = ]-327
n = (xy X xp)/ % X %[, (u,0) = (u',4?),
where (-,-), || - || and - x - stand for the usual inner product, Euclidean norm and cross product

in R3, respectively.

Curvatures. To introduce the notions of the mean curvature and the Gaussian curvature, we
use the concept of Weingarten map or shape operator (see [6]). It is a self-adjoint linear map
on the tangent space TxS := span{x,,X,}. In matrix form, it could be represented by a 2 x 2
matrix S = [bag][g*°] with [¢g*°] = [gag] '. The eigenvalues ki and ko of S are principal
curvatures of S and their arithmetic average and product are the mean curvature H and the
Gaussian curvature K, respectively. That is

ki +ka  tr(S)

2 2
Let H = Hn. It is referred to as the mean curvature normal. Now we introduce a few geometric
differential operators.

H =

K = Kkky = det(S).

Tangential gradient opertor. Suppose f € C1(S), where C''(S) stands for a function space
consisting of C! smooth functions on S, then the tangential gradient operator V, acting on f
is defined as

Vsf = [XW Xv][gaﬁ][fm fv]T eRs' (2'1)

For a vector-valued function f = [fi,---, fx]T € CY(S)*, its gradient is defined as Vi f =
[vsfla te 7vsfk] € R?)Xk-

The third tangential operator. Let f € C'(S). Then the third tangential operator @ acting
on f is defined as

of = [xu,xu)[9°7 1S [ fu, fo] " € R

Apart from these two tangential operators, there is another one, called the second tangential
operator (see [24]). Since it is not involved in this work, we do not introduce it.
Divergence operator. Suppose v is a smooth vector field on surface S, then the divergence
operator divg acting on v is defined as
1 [0 0

divy(v) = 7 [871,’ 81}] Wg vad [xu,xv]TV] . (2.2)
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Laplace-Beltrami operator. Let f € C%(S). Then the Laplace-Beltrami operator (LBO) A
acting on f is defined as (see [6], p. 83)

Af = divg(Vsf).

Obviously, Ag is a second order differential operator. It is well known that LBO relates to the
mean curvature vector via the equation: Agx = 2H.

Theorem 2.1 (Green’s formula for LBO) Let S be an orientaable surface, Q a subregion
of S with a piecewise smooth boundary 092. Let n. € TxS (x € 0Q2) be the outward unit normal
along the boundary 0. Then for a given C' smooth vector field v on S, we have

/[(v,vsf> + fdiv(v)]dA —/ f{v,n.)ds. (2.3)
Q oN

2.2 Used Geometric PDEs

For completeness, we describe briefly the equations used and their behaviors. More details on
these equations can be found in [24].

Surface Diffusion Flow

ox
This flow is introduced by Mullins in 1957 (see [16]), to describe the interface motion law of
growing crystal. If S is a closed surface and A stands for its area and V' stands for the enclosed
volume, then by Green’s formula we obtain (see [5, 18] for the change rates of the surface area

and the enclosed volume of the evolved surface):

gA(t) = 2/ AHHAA = —2/ |V H|*dA <0,

de S(t) S(t)

d 2 . 2 T
V=3 [divi(ViH)dA = 5 [(VH) V. (1)dA =0.

Hence surface diffusion flow is volume preserving and area shrinking. The area shrinkage stops
when H is a constant. It is easy to see that surfaces with constant mean curvature are the the
steady solution of (2.4).

Willmore flow

0

a%( — —2[AH +2H(H® - K)] n. (2.5)
Willmore flow is derived from minimizing total squared mean-curvature |, sH 2dA. Notice that a
factor 2 is added to the original Willmore flow for comparability with other equations used. Since
the constant factor could be absorbed by the parameter ¢ in the equation, there is no influence
on the behavior of the equation by adding this factor. There are sound published research papers



that use this flow (see [3, 10, 11, 22]). There is no volume/area preserving/shrinking property
for this flow. However, if the initial surface is a sphere, Willmore flow keeps the spherical shape
unchanged. Moreover, surfaces with zero mean curvature are the the steady solution of (2.5). A
torus with R/r = /2 is a steady solution of (2.5), where the torus is defined by rotate a circle
with radius r along a another circle with radius R.

Quasi-surface diffusion flow

ox

55 = ~AZx. (2.6)
This flow is introduced in [25], and is used in discrete surface design. It is well-known that
tangent motion of a surface does not alter the surface shape (see [7]). Hence if we remove the

tangential movement of (2.6), we obtain the following geometric flow

g’; =—2[A,H —2H(2H?* - K)|n. (2.7)
If S is a closed surface, then it is easy to derive that
d

—A(t) = _2/ [IIVsH|* 4+ 2H*(2H? — K)| dA < 0.
dt S(t)

Hence, Quasi-surface diffusion flow is area diminishing. Since ||V H|? + 2H?*(2H? — K) = 0
if and only if H = 0, the shrinkage stops when H = 0. Hence, the solution surfaces of (2.6)
approach to the minimal surface.

Note that these three flows share the same fourth-order term —2A;Hn, only the second
order terms are different. However, their behaviors are quite different. This is the reason we
choose to use them to achieving different effect in the shape design.

2.3 Mixed Variational Formulations

Now we present variational form formulations for these equations. The detailed derivations
could be found in [24]. Let y(x) = H(x)n(x) € R3 stand for the mean curvature normal. Then
the mixed variational form of (2.4) is: Find (x,y) € H?(S)? x H'(S)? such that

a—xgb dA + 2/ oy - n(Vs¢)TVsy] ndA =0, Vo € HL(S),
s Ot s

1 1
A S T S A C - 1 (2.8)
/y@bd +2/(Vx) Vs d 2/Bn¢ds 0, VweH(S),

S(0) =Sy, 98(t) =T, n.(x)=n{"(x), ¥xeT,

)

where ng ’ is the given co-normal on the boundary curve I'. The the mixed variational form of
(2.5) and (2.7) are similar. The differences occur only in the first equation. For Willmore flow



(2.5), the first equation of the mixed variational form is as follows.

Sroda+2 [ [poy - n(V.e) V.y]nda
s Ot s (2.9)
+4 / n(H? — K)¢nly dA= 0, Vo € HL(S),

S

For the quasi-surface diffusion flow (2.7), the first equation of the mixed variational form is

a—xqﬁ dA + 2/ [qﬁ Qy — n(Vsd))TVSy] ndA

s Ot s (2.10)

— 4 / n(2H? — K)¢n'y dA= 0, Vo € HL(S),
S

In the next section, systems (2.8)—(2.10) are numerically solved using a mixed finite element
method in a finite element space defined by the extended Loop subdivision scheme.

3 Subdivision Surfaces and Finite Element Space

We consider only the construction of Loop’s subdivision surfaces for triangular control polygons.
The idea for constructing Catmull-Clark surfaces for quadrilateral control polygons is similar.
Note that the Loop’s subdivision scheme is usable only for control polygons without boundary.
Therefore, an extension of the subdivision scheme to control polygons with boundary is required.
We use Biermann et al’s extension (see [2]) to achieve our goal. For saving the space, we do not
describe the well known Loop’s subdivision scheme (see [12]) and Biermann et al’s extension.
The details of this extension could be found in [2].

3.1 Basis Functions and Their Properties

Now let us define the basis functions of the finite element function space, denoted as V.
For each control point x;, including the corner control point and boundary control points, of
a control polygon Sy, we shall associate it with a basis function ¢;, where ¢; is defined as the
limit of the extended Loop’s subdivision scheme applying to the zero control values everywhere
except at x; where it is one.

The control polygon Sy, as a piecewise linear surface, is served as the domain of the basis
function ¢;. The mapping from S; to ¢; is defined by a dual subdivision schemes. More
precisely, when the extended Loop’s subdivision scheme is applied to the control function values
recursively, the linear subdivision scheme (each triangle is partitioned into four equal-sized sub-
triangles) is applied to the control polygon correspondingly. The limit of the former is ¢; and
that of later is Sy itself.

The basis functions share some properties with the well known B-spline basis. These prop-
erties are important in our finite element method. Now let us describe these properties.



. Positivity. The weights of the extended subdivision rules are positive. Hence the basis
function ¢; is nonnegative everywhere and positive around x;.

. Locality. It is known that the limit value at a control point is a linear combination of the
one-ring neighbor values. Hence, the limit value is zero at a control point if the control
values on the one-ring neighbor control points are zeros. Therefore, the support of the
basis function is within the two-ring neighborhood.

. Partition of Unity. Since the all the subdivision rules have the properties that the weights
are summed to one. Therefore, if we choose all the control values as one. The control values
after one subdivision step are still one. This implies that > ", ¢; = 1. This property is
called partition of unity.

. Interpolatory Properties at the Boundary. The extended subdivision rules on the bound-
ary do not involve the interior control points. Hence the basis functions for the interior
control points are zero at the boundary. This means that the given boundary curves are
interpolated.

. Tangential Property. Let x; be a control point, with non of its one-ring neighbor control
points is boundary control points. Then V;¢; vanishes on the boundary. This fact could be
observed by considering the eigen-decomposition of the control points. Let p*) ¢ R(+1)x3
be a vector consisting of one-ring neighbor control points of ng) at the subdivision level
k, S € RtDX(n+1) the Jocal subdivision matrix that convert p® to p*t1, i.e.,

pth = gp) = ghp() =12, ...

(

Here n stands for the valence of xik). Suppose p(!) is decomposed into

p(l) = eoaOT + elalT + ezazT + -+ ena£7 a; € jo

where e, e, -+, e, are the eigenvectors of S. Here we assume that these eigenvectors
are arranged in the order of non-increasing eigenvalues ;. Then

pFtD = Nregal + Mejal + Mesal + .. + \e,al,

where \g = 1, \; = Ao < 1. It is well-known that the limit position at the center is ag.
The tangent direction at this point are a; and ap, and a; is given by af = éfp(l). e, are
T

the left eigenvectors of S with normalized condition €; e; = 1.

The analysis above is valid for control function values.

. Linear independency. As a set of basis functions, {¢;}"; must be linearly independent.
For Loop’s subdivision scheme, this fact is implied by a result from [23] on the solvability
of interpolation problem:



For the given function values { f;}7*, find the control function values {g;}]" such that
m
j=1

where v; is the limit position of the subdivision surface corresponding to the control point
X;.

Theorem 3.2 (see [23]) The interpolation problem (3.1) always has a unique solution.

This theorem clearly implies that {¢;}/" is linearly independent. For the extended Loop’s
subdivision scheme, this fact can be similarly proved. We do not focus the proof in this

paper.

3.2 Spatial Discretizations

Suppose ¢; is a basis function of Vg corresponding to control point x;, ¢ =0,--- ,m. Assume
X1, , Xmo are the interior control points, and Xy, 41, - - -, Xm are the boundary control points.
Then x(t) € S(t) could be represented as

x(t) =Y %+ > %)y, x;(t) R, (3.2)
j=1 j=mo+1
and therefore,
Vex(t) =Y Vil (0] + Y Vegilxi(0)]", x,(t) € R, (3.3)
j=1 j=mo+1

The mean curvature vector of the surface is represented approximately as

m

y(t) =Y yit)dy, vi €R®, Vay() =Y Vidily;(0)7 € R, (3.4)
j=1 Jj=1

Since the boundary control points are fixed and the interior control points are to be deter-
mined, the coefficients x; in the first term of (3.2) are unknowns, while the coefficients x; in the
second term are the given control points on the boundary. Furthermore, since the curvature on
the surface boundary involves the unknown interior control points, hence all the coefficients in
(3.4) are treated as unknowns.

Now let us discretize equations (2.8)-(2.10) in the finite space V(. Since these equations
are similar in form, we treat them together. Let S be the limit surface of the extended Loop’s
subdivision scheme for the control polygon Sy. Substituting (3.2)-(3.4) into (2.8)—(2.10), and



taking the test functions ¢ as ¢;(i = 0,--- ,mg), ¥ and ¢;(i =0,--- ,m), and finally noting that
a%p = 0 if j > myg, we obtain the following matrix representations of (2.8)—(2.10):

(3.5)

MO LY, (1)~
MPv,.¢)  + LPXn.(t) = B,

(X (1), xf ()] e R3UHY,
T
0

[y (t)7 T ’y;J?.;(t)]T € R3(m+1)a

are matrices consisting of control points for the surface and curvature, respectively, and
B = [boTa“' T e R3(m+1),

Mys) = (maTe)7og MY = (myTa)7

W= () = ()

are the coefficient matrices. The elements of these matrices are defined as follows:

mij = /¢z’¢j dA,
s

lg;) for SDF,

(S SR / [n(H? - K)$;i¢;]nTdA  for WF,
1 —4 j [n(2H? — K)$i¢;] n"dA for QSDF,
S

1
1 = 5 [19.:0979.0,] a4

1
bi = /nc@ dS, (36)
2 Jr

with
lz(]s') = 2/5 [¢i @ ¢ — (Vi) Vg n dA.

Moving the terms related to the known control points X, 41, - - -, Xy, in the second equation of
(3.5) to the equations’s right-hand side, we can rewrite (3.5) as

ot

(3.7)
M2V t) + L X (t) = B,

{ M 2Xma® 4 LWy, () =0,



Note that, matrices M,(,%g and M,g,% ) are symmetric and positive definite. The integrals in defining
the matrix elements are computed using Gaussian quadrature formulas over the domain triangles.
The knots in the barycentric coordinate form and weights of the Gaussian quadrature formulas
can be found in [1].

In the boundary integrals (3.6), n. is the co-normal of the surface, it is infeasible to compute
these co-normals from the previous approximation, since they do not satisfy the given boundary
condition. The right way is to replace n. with ng). That is

b; = 1/ngr>¢i ds.
2Jr

3.3 Temporal Direction Discretization

Suppose we have approximate solutions xk = Xmo (tx) and v = Y. (tr) at t = t. We want
to obtain approximate solutions X,(f;r b and Yn(lkﬂ) at t =141 =tk + 7 (k) using a forward FEuler

scheme. Specifically, we use the following approximation
Xmo (tk-i-l) - Xmo (tk) —~ 8Xm0
7(k) ot

The matrices M), M@ LM and L® in (3.7) are computed using the surface data at t = t.

This yields a linear system with X,(,!f; Y and Y,%Hl) as unknowns:

M) T<k>L£7P] [X,(,ffl)]

L M | |HE B®)

70 B4 Mggngg]

Though the matrices M) and M@ are symmetric and positive definite, the total matrix is
neither symmetric nor positive definite. However the coefficient matrix of this system is highly
sparse, hence a stable iterative method for its solution is desirable. We use Saad’s iterative
method, namely GMRES (see [17]), to solve our sparse linear system. The numerical tests show
that this iterative method works very well.

Remark 3.1 In each step of the iteration, the matrices MO, M2 LV gnd L@ need to
be recomputed, since they depend on the evolved surface S(t). However, the basis function ¢;
and their partial derivatives (up to the second orders) do not change in the evolution. Hence,
function values and partial derivatives of each ¢; could be pre-computed at the knots of the
Gaussian quadrature. Furthermore, the boundary terms b; are fived during the iterations, since

both ng) and ¢; are fized.

4 Conclusions

Mesh subdivision technology can provide a simple and efficient method to construct surfaces with
any topology structure, at the same time satisfy some smoothness requirement. In this paper,
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we construct geometric PDE Loop’s subdivision surfaces, with given G' boundaries condition,
using three fourth order geometric flows. A numerical solution method of the finite element
based on the extended Loop’s subdivision scheme is adopted. The geometric PDE surfaces can
be efficiently constructed through our method, and our numerical method is also convergent.
The results are satisfactory.
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