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Abstract

We disprove the conjecture of the paper [5] on the Schur-convexity

of the dimension function for the family of Sierpiński pedal triangles.

We also show that this function is not convex and the related area-

ratio function is not concave in their respective domain.
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1 INTRODUCTION

In the paper [5], a family of self-similar fractals called the Sierpiński pedal

triangles were constructed, and some of their basic properties have been ob-

tained. Given any acute triangle △A0B0C0, the corresponding Sierpiński

pedal triangle is formed by deleting the pedal triangle at each step of the

construction, analogous to the definition of the classic Sierpiński triangle.

More specifically, we draw the pedal triangle △A1B1C1 of △A0B0C0 by con-

necting the three feet of altitudes of △A0B0C0, and then delete the interior

of △A1B1C1 from △A0B0C0. The remaining part is the union of three trian-

gles △A0B1C1,△A1B0C1, and △A1B1C0, which are all similar to △A0B0C0.

For each of them we repeat the same procedure, and the remaining set is

the union of 32 similar triangles. This procedure is continued to infinity and

the Sierpiński pedal triangle is just the limiting set of such nested subsets of

△A0B0C0. If the initial triangle△A0B0C0 is a right one, then its pedal trian-

gle △A1B1C1 is degenerated into a line segment, and the resulting Sierpiński

pedal triangle can still be constructed in the same way.

Let x and y denote two angles of the initial triangle △A0B0C0 of the

Sierpiński pedal triangle that will be denoted as SPT(x, y). Because of the

self-similarity property of this fractal associated with the three affine con-

straction constants cosx, cos y, and cos z with z = � − x − y, the fractal

dimension d = d(x, y) of SPT(x, y) is the unique solution of the so-called

Moran equation [1]

cosd x+ cosd y + cosd z = 1. (1)

It is clear that d(x, y) = d(y, z) = d(z, x) whenever x+y+z = �. The dimen-

sion function d(x, y) is also a symmetric function since d(x, y) = d(y, x). Note

that d(�/3, �/3) = ln 3/ ln 2 and d(�/2, y) = d(x, �/2) = d(x, �/2− x) = 2.
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Properties of d(x, y) were first studied in [5]. For example, it was shown

there that the dimension of the Sierpiński triangle is a strict local minimum

of the dimension function for Sierpiński pedal triangles. It was conjectured

in the same paper that ln 3/ ln 2 be the global minimum of the dimension

function. This conjecture has been proved recently in [2].

Denote by

I =
{

(x, y) ∈ ℝ
2 : 0 < x, y <

�

2
,
�

2
< x+ y < �

}

the open triangular region, which is called the index domain that represents

all acute triangles. Note that the boundary of I represents all right triangles.

Based on the fact that the area-ratio function

r(x, y) = −2 cosx cos y cos(x+ y), ∀ (x, y) ∈ I, (2)

which gives the ratio of the area of the pedal triangle △A1B1C1 and the

area of its “mother” triangle △A0B0C0 with two angles x and y, is Schur-

concave, it was further conjectured in [5] that the dimension function d be a

Schur-convex function of (x, y) in its domain. The purpose of this paper is

to disprove the above conjecture.

As another interesting result, in the next section we first prove that the

area-ratio function is not a concave one. Then in Section 3 we provide a

negative answer to the last conjecture of [5] on the Schur-convexity of the

dimension function for Sierpiński pedal triangles. It will further be shown

that this function is not convex, either. We conclude in Section 4.
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2 NON-CONCAVITY OF THE AREA-RATIO

FUNCTION

A real square matrix S is said to be doubly stochastic if it is nonnegative

and each of its row sums and column sums is 1. Thus, a 2 × 2 doubly

stochastic matrix can be written as

S =

⎡

⎣

p 1− p

1− p p

⎤

⎦ , p ∈ [0, 1]. (3)

A real-valued function f of n variables defined on a region D of ℝn is said

to be Schur-convex if for all n× n doubly stochastic matrices S.

f(Sx) ≤ f(x), ∀ x ∈ D. (4)

When D is a plane region, from the expression (3) of 2× 2 doubly stochastic

matrices, f is Schur-convex if and only if for all 0 ≤ p ≤ 1,

f(px+ (1− p)y, (1− p)x+ py) ≤ f(x, y), ∀ (x, y) ∈ D.

Here, we assume that the domain D is convex and satisfies the property that

Sx ∈ D for all x ∈ D and all n× n doubly stochastic matrices S. Similarly

f is said to be Schur-concave if the inequality in (4) is reversed.

Clearly a Schur-convex or Schur-concave function must be symmetric,

in other words, f(Px) = f(x) for all x ∈ D, where P is any permutation

matrix. From Schur’s theorem (Theorem 3.A.4 in [3]), if f is a symmetric and

continuously differentiable function of two variables, then f is Schur-convex

if and only if

(x− y)(fx(x, y)− fy(x, y)) ≥ 0, ∀ (x, y) ∈ D. (5)

Similarly, f is Schur-concave if and only the above inequality is reversed.
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We recall that a function f defined on a convex set D is convex if

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y), ∀ x,y ∈ D, p ∈ [0, 1],

and concave if the above inequality is reversed. If f is second order continu-

ously differentiable in an n-dimensional open convex domain D, then f is a

convex (or concave) function in D if and only if its Hessian matrix is positive

(or negative) semi-definite in D (Theorem 3.4.6 in [4]).

A Schur-convex function may not be convex, as the example f(x, y) =

−xy shows. Conversely, a convex function may not be Schur-convex. For ex-

ample, the function f(x, y) = x2+2y2 is convex but not Schur-convex. More

properties of Schur-convex functions and their relation to convex functions

can be seen from the monograph [3].

Although the area-ratio function r defined by (2) is Schur-concave [5], we

show that it is not concave in its domain. A simple computation gives

rxx(x, y) = 2(cos 2x+cos 2z), rxy(x, y) = 2 cos 2z, ryy(x, y) = 2(cos 2y+cos 2z),

and thus
∣

∣

∣

∣

∣

∣

rxx(x, y) rxy(x, y)

rxy(x, y) ryy(x, y)

∣

∣

∣

∣

∣

∣

= 4(cos 2x cos 2y + cos 2y cos 2z + cos 2z cos 2x).

If we let x = y = �/2− � and z = 2�, then

cos 2x cos 2y + cos 2y cos 2z + cos 2z cos 2x = cos2 2�− 2 cos 2� cos 4� < 0

for � > 0 small enough. This shows that the Hessian matrix of r is not

negative semi-definite in I, therefore r is not a concave function.
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3 NON-CONVEXITY OF THE DIMENSION

FUNCTION

Although an analytic expression of the dimension function d = d(x, y)

defined for the family of Sierpiński pedal triangles is not available, the clas-

sic implicit function theorem [4] ensures that this function is continuously

differentiable in the index domain I. As a matter of fact, the implicit differ-

entiation to the equation (1) gives the first order partial derivatives

dx =
d(cosd x tanx− cosd z tan z)

A
(6)

and

dy =
d(cosd y tan y − cosd z tan z)

A
, (7)

where

A = cosd x ln cos x+ cosd y ln cos y + cosd z ln cos z.

Since the value d(x, y) approaches 2 as the point (x, y) ∈ I approaches the

boundary of the region I, and since

lim
z→�

2

cosd z tan z = 0

and

lim
z→�

2

cosd z ln cos z = 0,

we can easily see that the function d is continuously differentiable on the

closure of I.

Now we calculate the second order partial derivative dxx of the function

d with respect to x. From the expression (6),

Adx = d(cosd x tanx− cosd z tan z).
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Taking derivative with respect to x gives

Axdx + Adxx

= dx(cos
d x tanx− cosd z tan z) + d

[

cosd x(dx ln cosx− d tanx) tan x

+ cosd x sec2 x− cosd z(dx ln cos z + d tan z) tan z + cosd z sec2 z
]

= dx(cos
d x tanx− cosd z tan z) + d

[

dx cos
d x tanx ln cosx+ (1− d) cosd x tan2 x

+ cosd x− dx cos
d z tan z ln cos z + (1− d) cosd z tan2 z + cosd z

]

= dx
[

cosd x tan x(1 + d ln cosx)− cosd z tan z(1 + d ln cos z)
]

+ d
[

cosd x(1 + (1− d) tan2 x) + cosd z(1 + (1− d) tan2 z)
]

.

Since

Ax = dx(cos
d x ln2 cosx+ cosd y ln2 cos y + cosd z ln2 cos z)

− cosd x tan x(1 + d ln cosx) + cosd z tan z(1 + d ln cos z),

Axdx = d2x(cos
d x ln2 cosx+ cosd y ln2 cos y + cosd z ln2 cos z)

− dx[cos
d x tanx(1 + d ln cosx)− cosd z tan z(1 + d ln cos z)].

It follows that

Adxx = 2dx[cos
d x tan x(1 + d ln cosx)− cosd z tan z(1 + d ln cos z)]

+ d[cosd x(1 + (1− d) tan2 x) + cosd z(1 + (1− d) tan2 z)]

− d2x(cos
d x ln2 cos x+ cosd y ln2 cos y + cosd z ln2 cos z)

= 2dx[cos
d x tan x(1 + d ln cosx)− cosd z tan z(1 + d ln cos z)]

+ d[cosd−2 x(1− d sin2 x) + cosd−2 z(1 − d sin2 z)]

− d2x(cos
d x ln2 cos x+ cosd y ln2 cos y + cosd z ln2 cos z)

=
2d(u− v)

A
(a− b) + d(p+ q)−

[

d(u− v)

A

]2

B,

7



where

u = cosd x tanx, v = cosd z tan z,

a = u(1 + d ln cosx), b = v(1 + d ln cos z),

p = cosd−2 x(1− d sin2 x), q = cosd−2 z(1 − d sin2 z),

and

B = cosd x ln2 cosx+ cosd y ln2 cos y + cosd z ln2 cos z.

Let x = z = �/4 + � and y = �/2 − 2�. Then a = b and u = v. Since

d(�/4, �/2) = 2, and since dx(�/4, �/2) = 0 from (6) and dy(�/4, �/2) =

2/ ln 2 from (7),

d
(�

4
+ �,

�

2
− 2�

)

= d
(�

4
,
�

2

)

+ dx

(�

4
,
�

2

)

�− 2dy

(�

4
,
�

2

)

�+O(�2)

= 2− 4

ln 2
�+O(�2)

for small � > 0. Now, since

1− d sin2
(�

4
+ �
)

= 1− d

2
(1 + sin 2�)

= 1− 1

2

[

2− 4

ln 2
�+O(�2)

]

[

1 + 2�+O(�2)
]

= 1−
[

1 + 2�− 2

ln 2
�+O(�2)

]

=

(

2

ln 2
− 2

)

�+O(�2) > 0

for � > 0 small enough,

p = q = cosd−2
(�

4
+ �
) [

1− d sin2
(�

4
+ �
)]

> 0,

which ensures that, since A < 0 everywhere,

dxx

(�

4
+ �,

�

2
− 2�

)

=
2dp

A
< 0.

This shows that the Hessian matrix of d is not positive semi-definite in I, so

the dimension function d is not convex on its domain.
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In the following we further show that the dimension function d is also

not Schur-convex in I, thus disproving the Schur-convexity conjecture of [5].

Since d is symmetric and continuously differentiable in the open set I, by

(5), d is a Schur-convex if and only if

(x− y)[dx(x, y)− dy(x, y)] ≥ 0, ∀ (x, y) ∈ I.

From (6) and (7),

A(x− y)[dx(x, y)− dy(x, y)] = (x− y)(cosd x tan x− cosd y tan y).

Since A < 0, in order to disprove the conjecture, it is equivalent to show that

there is a point (x0, y0) ∈ I with x0 > y0 such that

cosd x0 tan x0 > cosd y0 tan y0. (8)

Let � > 0 be small and x = �/4 + �, y = �/4. Then d(�/4, �/4) = 2 and

dx(�/4, �/4) = −2/ ln 2 by (6), so

d
(�

4
+ �,

�

4

)

= d
(�

4
,
�

4

)

+ dx

(�

4
,
�

4

)

�+O(�2) = 2− 2

ln 2
�+O(�2).

It follows that

cosd x tan x = cosd−1 x sin x =

[√
2

2
(cos �− sin �)

]d−1 √
2

2
(cos �+ sin �)

=

(√
2

2

)d

(cos �− sin �)d−1(cos �+ sin �)

and

cosd y tan y =

(√
2

2

)d

.
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Since

(cos �− sin �)d−1(cos �+ sin �)

=

[

1− �− �2

2
+O(�3)

]1− 2

ln 2
�+O(�2) [

1 + �− �2

2
+O(�3)

]

= 1 +

(

2

ln 2
− 2

)

�2 +O(�3) > 1

for � small enough, (8) is satisfied by a point (x0, y0) ∈ I with x0 = �/4 + �0

and y0 = �/4 for some small positive number �0.

In summary, we have proved the following assertion.

Theorem 3.1 The dimension function d for the Sierpiński pedal triangles

is neither Schur-convex nor convex in its whole domain I.

4 CONCLUSIONS

In this paper we disproved the last conjecture of the paper [5] that the di-

mension function d for the Sierpiński pedal triangles be Schur-convex in its

domain. However, since dxx(�/3, �/3) = 2(ln 3/ ln 2− 4/3) > 0 and

∣

∣

∣

∣

∣

∣

dxx(x, y) dxy(x, y)

dxy(x, y) dyy(x, y)

∣

∣

∣

∣

∣

∣

(�

3
,
�

3

)

= 3

(

ln 3

ln 2
− 4

3

)2(
ln 3

ln 4

)2

> 0,

d is convex in a neighborhood of its global minima (�/3, �/3). It would be an

interesting problem to find the maximal subregion Ω of the index domain I on

which the dimension function d is convex and characterize the boundary of Ω.

Based on our above analysis and solution to the conjecture of [5], we propose

the following new conjecture: The dimension function d is both Schur-convex

and convex everywhere in I except for the points near the boundary of I.
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