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1 Introduction

We consider a convergence acceleration method for collocation solution of the Volterra

integral equation with vanishing variable delay

u(t) = f(t) +

∫ t

0
k1(t, s, u(s))ds+

∫ θ(t)

0
k2(t, s, u(s))ds, t ∈ J := [0, T ], (1.1)

where θ(t) := t− τ(t) > 0 is such that the continuous delay τ satisfies τ(0) = 0. Equation

(1.1) includes an important special case (see [7, 16]) where τ is the proportional delay

τ(t) = (1− q)t with 0 < q < 1, i.e.,

u(t) = f(t) +

∫ t

0
k1(t, s, u(s))ds+

∫ qt

0
k2(t, s, u(s))ds, t ∈ J := [0, T ]. (1.2)

There are many literature to study delay functional equations frequently encountered in

physical and biological processes, see, for example, [19]-[21], [26] and [28], [30] and [33]. The

analysis to the second-kind Volterra integral equations with proportional delays dates back

to the works in [38](pp. 92-101), [1] and [17]. Some more recent results on this subject can

be found in [14], [16] and [32]. During the past decade, numerical methods for (1.1) or (1.2)

has attracted wide attention of many researchers. Various numerical methods for (1.1)

have been introduced such as quadrature method [3], iterated collocation method [6, 11],

Euler-type method [31] and spectral method [2, 37]. Numerical methods for functional

integral and integro-differential equations of Volterra type have been summarized in [8].

It is well known that Sloan iteration first proposed in [34] can greatly raise the conver-

gence rate of projection-type solutions of compact operator equations. The convergence of

Sloan iteration for integral equations with smooth kernel can be further improved by con-

vergence acceleration methods such as extrapolation method and correction method (see,

for example, [27] and [35]). Two kinds of multilevel correction methods for collocation

solutions of Fredholm integro-differential equations and for discrete collocation solutions

of the Volterra integral equations with constant delay were introduced in [24] and [25],

respectively. For the multilevel correction method, the convergence rate of the multilevel

corrected approximation is much higher than that of the original collocation approxi-

mation. This means that the multilevel correction method has significant advantages for

reducing the cost of calculation and improving the computational efficiency. In the present

paper, we try to develop a multilevel correction method for collocation approximation of

the equation (1.2).

It is well known that for the classical Volterra integral equations (k2 ≡ 0 in (1.2)) the

iterated collocation solution associated with piecewise (m− 1)st degree polynomial spline

collocation based on a uniform mesh possesses the optimal superconvergence order 2m at
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the nodes of the mesh, provided that the collocation parameters are chosen as them Gauss

points in (0, 1). However, it has been shown in [7] and [36] that these superconvergence

properties on uniform meshes do not carry over to equation (1.1) (k2 ̸≡ 0). In fact, it can

be seen from [7] and [36] that for this kind of delay integral equation the optimal (local)

superconvergence order p∗ is at most p∗ = 2m− 1. Fortunately, an important observation

was fall to be escaped. It has been proved in [13] that a properly chosen geometric meshes,

which is similar to the meshes introduced in [4, 23], can generate iterated collocation

solutions possessing the almost optimal local superconvergence order p∗ = 2m − ε at

all mesh points (see also [11]). It is certain that we can consider multilevel correction

method for the collocation solutions based on such geometric meshes. In order to develop

a multilevel correction method, we need to construct a high order interpolation operator

which must be uniform bounded. However, we find that the high order interpolation

operator defined on geometric meshes is not uniform bounded yet. Therefore, we need to

make the change of the distribution of grid points.

In the present paper we introduce a kind of hybrid mesh, which can be viewed as

a combination between the geometric meshes and the uniform meshes. We find that

not only the hybrid mesh can generate collocation solutions possessing the almost optimal

local superconvergence as geometric meshes, but also the high order interpolation operator

defined on such hybrid mesh is uniform bounded. It will be shown that when the collocation

solutions are continuous piecewise polynomials whose degrees are less than or equal to m

(m 6 2), the global accuracy of k time corrected approximation is O(N−(2m(k+1)−ε)),

where N is the number of the nodes and ε is an arbitrary small positive number.

The paper is organized as follows. In section 2, we describe the main result about

multilevel correction for collocation solutions of the linear version of the equation (1.2).

In section 3, we analyze the properties of the collocation method and the high order

interpolation operator based on hybrid meshes. Then we prove a few of auxiliary results.

In section 4, the proof of main results is given. In section 5, some numerical results are

reported to confirm the theoretical result.

2 Main result

The theoretical analysis of the equation (1.2) will be carried out in the Banach space

Cn[a, b] of n times differentiable and continuous functions being real-valued on [a, b]. When

y(t) is k times differentiable, y(k)(t) coincides with the usual notion of derivative: y(k)(t) =
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Dk
t y(t) = dky/dtk. This space is equipped with uniform norm

∥y∥n,∞,[a,b] = sup
a6t6b
06k6n

|y(k)(t)|, ∀ y ∈ Cn[a, b]. (2.1)

Assume that the given function f ∈ C2p+2[0, T ], Ki ∈ C2p+2(Ω)(i = 1, 2) where

Ω = Ω1
∪

Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T}, Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J} and p

is a nonnegative integer (see also [7]). We consider the numerical methods for solving the

linear version of the equation (1.2),

u(t) = f(t) +

∫ t

0
K1(t, s)u(s)ds+

∫ qt

0
K2(t, s)u(s)ds, t ∈ J, (2.2)

where 0 < q < 1. It has been shown in [5] and [13] that the integral equation (2.2) has a

unique solution u ∈ C2p+2[0, T ].

2.1 The collocation method for solving Volterra integral equation

Let N denote the set of all positive integers. For any N ∈ N, let J̃N : 0 = t0 <

t1 < · · · < tN = T denote a mesh (or partition) on the given interval J , and set en :=

[tn−1, tn], hn := tn − tn−1 (n = 1, · · · , N), h := max16n6N hn. The finite-dimensional

collocation space on the meshes J̃N is defined as

S(0)
m (J̃N ) := {v : v ∈ C(J), v |en∈ Pm(en) (n = 1, · · · , N)},

where m ∈ N satisfying m > 1 and Pm(en) denotes the set of polynomials defined on en,

whose degree is less than or equal to m.

The collocation method for solving Volterra integral equation (2.2) concentrates on

looking for ũh ∈ S
(0)
m (J̃N ) satisfying

ũh(t) = f(t) +

∫ t

0
K1(t, s)ũh(s)ds+

∫ qt

0
K2(t, s)ũh(s)ds, t ∈ X̃n( 1 6 n 6 N), (2.3)

where X̃n := {tn,j := tn−1 + cjhn, 0 = c1 < c2 < · · · < cm < cm+1 = 1} (n = 1, · · · , N).

The set X̃(N) :=
∪N

n=1 X̃n will be referred to as the set of collocation points, which is

completely determined by the given mesh J̃N and the collocation parameters {cj}m+1
j=1 .

2.2 Multilevel correction for collocation solution

In the subsection, we introduce a multilevel correction method. For convenience, we

define operators Q̃h and π, which will be referred to repeatedly below. For any function

y ∈ C(J), we set

fy(t) = y(t)−
∫ t

0
K1(t, s)y(s)ds−

∫ qt

0
K2(t, s)y(s)ds.
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The sequence of collocation operators Q̃h : C(J) → S
(0)
m (J̃N ) is defined as Q̃hy ∈ S

(0)
m (J̃N ),

which is the unique solution of the discretic system:

Q̃hy(t) = fy(t)+

∫ t

0
K1(t, s)Q̃hy(s)ds+

∫ qt

0
K2(t, s)Q̃hy(s)ds, t ∈ X̃n( 1 6 n 6 N). (2.4)

Using such definition we know that the collocation solution ũh defined by (2.3) can be

written as ũh = Q̃hu, with u being the analytic solution of the equation (2.2).

A multilevel collocation method will involve a higher order interpolation operator π.

Let the collocation parameters are chosen as Lobatto points. We define π as the sequence

of interpolation operators such that πy(tn) = y(tn)(n = 1, 2, · · · , N) for any y ∈ C(J)

and πy(t) is a piecewise polynomial of higher order which is completely determined by

y(tn)(n = 1, 2, · · · , N). The detailed definition of π will be stated below.

Throughout this paper we let Ci
r denote the combination number defined as usual,

where i is a non-negative integer and r is a positive integer, which satisfy i 6 r.

Let u denote the analytic solution of the equation (2.2), and define

ũh,k = (−1)k
k∑

j=0

(−1)jCj
k+1(πQ̃h)

k−jπũh = (−1)k
k∑

j=0

(−1)jCj
k+1(πQ̃h)

k−jπQ̃hu.

In general the approximation ũh,k has a faster convergence than the original collocation

solution ũh. But the convergence rate of ũh,k (and ũh) depends on the meshes J̃N . Because

of this we need to discuss how to choose a suitable meshes J̃N .

2.3 From geometric meshes to hybrid meshes

We first recall the geometric meshes introduced in [13] and [23].

Definition 2.1. The meshes {J̃N}N>2 is called a sequence of geometric meshes if the

mesh points {tn} = {t(N)
n } satisfy

tn = t(N)
n = dN−nT, n = 1, · · · , N, (2.5)

where d (0 < d < 1; d is independent of n) remains to be determined.

Remark 2.1. Note that the mesh diameter h is given by hN = T (1− d). To guarantee h

satisfying that h → 0 as N → ∞, we require d → 1 as N → ∞. Therefore d will depend

on N .

Since h2/h1 = (t2 − t1)/t1 − t0 = d/1− d → ∞ as N → ∞(d → 1) by the definition

of geometric meshes, not all Lagrange interpolation basic functions defined by geometric

meshes are uniform bounded. Therefore the error estimation of the high order interpolation

operator π is not optimal. To make the interpolation operator π available, we set 2p new
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points t1,1, t1,2, · · · , t1,2p in (t0, t1) and define πy(t) on [t0, t1] as a 2p+1 order polynomial

which is determined by the values of y(t) at the points {t0, t1,1, t1,2, · · · , t1,2p, t1}. That is

to say, we have to define πy(t) on [t0, t1] and [t1, tN ] respectively. As we will see, the high

order interpolation operator π based on such meshes is uniform bounded. Set t1,0 = t0 and

t1,2p+1 = t1. Since [t0, t1] is partitioned by the new points, the set of collocation points

X̃1 must be changed into X1 =
∪2p+1

k=1 X1,k where

X1,k := {t1,k,j := t1,k−1 + cj(t1,k − t1,k−1), 0 = c1 < · · · < cm+1 = 1}(k = 1, · · · , 2p+ 1).

This means that the collocation method is carried out on the set X1
∪
(
∪N

n=2 X̃n).

Let JN : 0 = t0 = t1,0 < t1,1 < t1,2 < · · · < t1,2p < t1,2p+1 = t1 < t2 < · · · < tN = T be

the new meshes on J , and let ZN denote the set of the nodes except 0

ZN = {t1,1, · · · , t1,2p+1, t2, · · · , tN}.

Definition 2.2. The meshes {JN}N>2 introduced above is called a sequence of hybrid

meshes, if the nodes {tn}Nn=1 is defined by the geometric meshes on J , and the nodes

{t1,k}2pk=1 ⊂ [t0, t1] is defined by the uniform meshes on [t0, t1].

2.4 Multilevel correction based on the hybrid meshes

Set

e1,k := [t1,k−1, t1,k], h1,k := t1,k − t1,k−1 (1 ≤ k ≤ 2p+ 1)

and

en := [tn−1, tn], hn := tn − tn−1 (1 ≤ n ≤ N).

Consider the finite-dimensional collocation spaces on the meshes JN

S(0)
m (JN ) := {v ∈ C(J) : v |e1,k∈ Pm(e1,k)(1 ≤ k ≤ 2p+ 1), v |en∈ Pm(en)(2 ≤ n ≤ N)},

where m ∈ N, Pm(e1,k) and Pm(en) denote the set of polynomials defined on e1,k and en

respectively, whose degrees are less than or equal to m. We are looking for uh ∈ S
(0)
m (JN )

satisfying

uh(t) = f(t) +

∫ t

0
K1(t, s)uh(s)ds+

∫ qt

0
K2(t, s)uh(s)ds, t ∈ Xn( 1 6 n 6 N), (2.6)

where X1 :=
∪2p+1

k=1 X1,k with

X1,k := {t1,k,j := t1,k−1 + cjh1,k, 0 = c1 < c2 < · · · < cm < cm+1 = 1} (1 ≤ k ≤ 2p+ 1),

and

Xn := {tn,j := tn−1 + cjhn, 0 = c1 < c2 < · · · < cm < cm+1 = 1} (2 ≤ n ≤ N).
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The setX(N) :=
∪N

n=1Xn is referred to as the set of collocation points, which is completely

determined by the given meshes JN and the collocation parameters {cj}m+1
j=1 .

The collocation equation (2.6) defines an unique approximation uh ∈ S
(0)
m (JN ) when-

ever the mesh diameter defined below is sufficiently small. As for classical Volterra integral

equations, the approximation uh will be generated recursively by successive computation of

its restrictions u1,1h , · · · , u1,2p+1
h , u2h, · · · , uNh on the subintervals e1,1, · · · , e1,2p+1, e2, · · · , eN

given by the mesh JN (compare also [15]).

According to the definition of hybrid meshes, the following two assumptions are sup-

posed to hold in the subsequent analysis.

A1 : Let κ be the maximal positive integer satisfying q
1
κ 6 (1− (2p+2)lnN

(m+2)N ), namely,

κ :=

[
lnq

ln(1− (2p+2)lnN
(m+1)N )

]
.

For a fixed q ∈ (0, 1), we have κ > 1 as N → ∞. For such κ, the parameter d in the

equation (2.5) is chosen as d = q
1
κ . Set tn = t

(N)
n = dN−nT (n = 1, · · · , N).

A2 : A uniform partition is further made on [0, t1], and new nodes t1,k ∈ [0, t1] are

generated by t1,k = k·t1
2p+1 (k = 0, 1, · · · , 2p+ 1).

Set

h := max
16k62p+1
26n6N

{h1,k, hn}.

It is easy to check that h satisfies h = hN = T (1− d) → 0 as N → ∞.

For ease of notation, we define the operator K : C(J) → C(J) by setting

Ky(t) :=

∫ t

0
K1(t, s)y(s)ds+

∫ qt

0
K2(t, s)y(s)ds, t ∈ J, ∀y ∈ C(J).

For the new triangulation (hybrid meshes) JN , we define the sequence of collocation op-

erators Qh : C(J) → S
(0)
m (JN ) as follow: for ∀y ∈ C(J), Qhy is the unique solution of the

discrete system

(I −K)Qhy(t) = fy(t), ∀t ∈ X(N), (2.7)

where fy = (I −K)y and I is the identity operator. With the collocation operator Qh, we

have uh = Qhu (compare a similar relation given in Subsection 2.2).

Let N ′ be chosen as N ′ = [N−1
2p+1 ] + 1, and set Ñ ′ = (2p+ 1)(N ′ − 2). Let J be divided

into N ′ subinterval {σr} such that each σr (r = 1, 2, · · · , N ′ − 1) contains 2p+2 points in

ZN , and σN ′ contains N − Ñ ′ points in ZN . Then,

σ1 = [t0, t1], σr = [t(2p+1)(r−2)+1, t(2p+1)(r−1)+1] (2 ≤ r ≤ N ′) and σN ′ = [tÑ ′+1, tN ].
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It is easy to see that N − Ñ ′ > 2p+ 2.

Define

S(p, ZN ) = {v ∈ C(J) : v|σr ∈ P2p+1(σr), r = 1, · · · , N ′ − 1, v|σN′ ∈ PN−Ñ ′−1(σN ′)}.

Let π : C(J) → S(p, ZN ) denote the sequence of the high order interpolation operators

such that πy(t) = y(t) for t ∈ ZN and y ∈ C(J).

In this paper the collocation parameters {cj}m+1
j=1 are chosen as them+1 Lobatto points

on [0, 1]. Let k be a nonnegative integer. For the higher order interpolation operators π̄

introduced above, define k level corrected collocation solution of the equation (2.2)

uh,k = (−1)k
k∑

j=0

(−1)jCj
k+1(πQh)

k−jπQhu = (−1)k
k∑

j=0

(−1)jCj
k+1(πQh)

k−jπuh. (2.8)

Note that, when k = 0, we have uh,k = πQhu = πuh.

The approximation uh,k can be regarded as a proper linear combination of the functions

ujh,k = (πQh)
k−jπQhu (j = 0, 1, · · · , k).

The jth approximation ujh,k can be obtained by the following steps: 1) Obtaining the

collocation solution uh = Qhu defined by the system (2.6); 2) Acting π on Qhu to get the

interpolation approximation; 3) Acting πQh on πQhu for k − j times repeatedly.

Remark 2.2. The reason why the collocation parameters are chosen as Lobatto points

rather than Gauss points is that the high order interpolation operator π is defined on the

nodes ZN . This means that πuh(t) should be determined uniquely by the values of uh(t)

on ZN , so the collocation solution uh(t) must be continuous on the nodes.

As usual, let C denote a generic constant independent of the meshes JN , which may

has different values at different places.

The following result gives a superconvergence of the multilevel correction approxima-

tion uh,k.

Theorem 2.1. Let m 6 2, and let the meshes JN be defined by the assumptions A1 and

A2. Assume that the functions f , Ki (i = 1, 2) have the smoothness f ∈ C2p+2(J), Ki ∈

C2p+2(Ω), where Ω = Ω1
∪

Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T} and Ω2 := {(t, s) : 0 6 s 6
qt, t ∈ J}. Let k be a nonnegative integer satisfying 2m(k+1) 6 2p+2. Then the k level

corrected collocation solution uh,k possesses the superconvergence

∥uh,k − u∥0,∞,J 6 CN−(2(k+1)m−εN ), N → ∞, (2.9)

where εN is an arbitrarily small positive number satisfying limN→∞ εN = 0.
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Remark 2.3. Theorem 2.1 indicates that the multilevel correction approximation uh,k

possesses very high accuracy, even if both m and k are small, for example, m = 1 and

k = 2.

3 Auxiliary Results

The proof of Theorem 2.1 is a bit technical. To give the proof, we first, in the section,

investigate some properties of the collocation method and the high order interpolation

operator based on hybrid meshes.

3.1 Collocation method based on hybrid meshes

In this subsection, we give some properties associated with the collocation method

based on hybrid meshes. The following three Lemmas can be verified as in [13].

Lemma 3.1. Assume that A1 holds. Let k denote any positive integer. Then, for N > 2:

(i)

h1 6 CN− 2p+2
m+2 ; (3.1)

(ii)
N∑

n=2

(hn)
k+1 6 CN−(k−εN,k), (3.2)

with

εN,k := logN

(
((2p+ 2)(lnN)2)k

(m+ 2)k

)
.

Here, εN,k is an arbitrarily small positive number satisfying limN→∞ εN,k = 0.

�

Lemma 3.2. For κ + 1 6 n 6 N , we have qtn = tn−κ∈ZN . Here, κ is defined in the

assumption A1.

�

Lemma 3.3. Let A1 and A2 hold. Assume that the functions f and Ki (i = 1, 2) satisfy

f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪
Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T} and

Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Then

∥uh − u∥0,∞,J ≤ Chm∥u∥m,∞,J (3.3)

�
Let EN,p denote the set of the elements e1,k (1 ≤ k ≤ 2p+ 1) and en (1 ≤ n ≤ N). In

the rest of this paper, we always use σ to denote any element in EN,p.
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Let πh : C(J) → S
(0)
m (JN ) denote the sequence of interpolation operators such that

πhv(t1,k,j) = v(t1,k,j) and πhv(tn,j) = v(tn,j), ∀v ∈ C(J).

(k = 1, · · · , 2p+ 1; n = 2, · · · , N ; j = 1, · · · ,m+ 1)

It is well known that the following inequalities hold for each element σ

∥πhv∥0,∞,σ 6 C∥v∥0,∞,σ, ∀v ∈ C(J), (3.4)

and

∥(πh − I)v∥j,∞,σ 6 Chk−j
σ ∥v∥k,∞,σ, 0 6 j 6 k 6 m, (3.5)

where hσ := means(σ) denotes the length of interval σ.

The following two Lemmas are the standard results in the superconvergence theory of

integral equations. They can be proved by the method in [18] and [22].

Lemma 3.4. For 1 6 k 6 2m, assume that ψ∈Cm(σ) and φ∈Ck(σ). If the collocation

parameters {cj}m+1
j=1 are chosen as the m + 1 Lobatto points in [0, 1], then the following

estimate is valid for each element σ

|
∫
σ
ψ(t)(πh − I)φ(t)dt |6 Chk+1

σ ∥ψ∥m,∞,σ · ∥φ∥k,∞,σ. (3.6)

�

Lemma 3.5. Assume that p and m are two non-negative integers such that m 6 p. Let

φ ∈ C2p+2(σ) and ψ ∈ C2p+2−m(σ). Then we have for each element σ

∫
σ
(πh − I)φ · ψdt =

p∑
j=m

h2jσ

2j∑
i=m+1

Ci,j

∫
σ
D2j−i

t (Di
tφ · ψ)dt+O(h2p+3

σ ), (3.7)

∫
σ
Dα

t (πh − I)φ · ψdt =

α∑
r=1

α2∑
j=α1

h2jσ

2j+r−1∑
i=m+1

Ci,j,r

∫
σ
D2j+r−i

t (Di+α−r
t φ · ψ)dt

+

α2∑
j=m

h2jσ

2j∑
i=m+1

Ci,j

∫
σ
D2j−i

t (Di+α
t φ · ψ)dt+O(h2α2+3

σ ). (3.8)

Here, 1 6 α 6 m, α1 = [(m − r + 2)/2], α2 = [p − α/2]; Ci,j, Ci,j,r are constants

independent of the meshes JN . Dt denotes the differential operator.

�
By Lemma 3.4, we can obtain an almost optimal superconvergence property of Ke(t)

at hybrid mesh points.

10



Theorem 3.1. Let A1 and A2 hold. Assume that the functions f and Ki (i = 1, 2) satisfy

f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪
Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T} and

Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. If uh ∈ S
(0)
m (JN ) denotes the collocation approximation

determined by the equation (2.6), then the resulting error e := uh − u satisfies

max
t∈ZN

|Ke(t)| 6 CN−(k−εN,k)∥u∥k,∞,J , N → ∞, ∀1 6 k 6 2m, (3.9)

where εN,k is an arbitrarily small positive number, which satisfies lim
N→∞

εN,k = 0.

Proof. Since uh ∈ S
(0)
m (JN ), it follows by the definition of πh that πhuh = uh. The

equalities (2.2) and (2.6) may be written in the operator form as

u = Ku+ f, (3.10)

and

uh = πhKuh + πhf. (3.11)

Let e := uh − u. Subtraction of (3.10) from (3.11) leads to

e = πhKe+ (πh − I)(Ku+ f).

Hence, by observing (3.10), we can lead to

e = πhKe+ (πh − I)u. (3.12)

In the following, we prove the inequality (3.9) for two cases: 1 6 k 6 m + 1, and

m+ 2 6 k 6 2m. For the case with 1 6 k 6 m+ 1, it follows by (3.12) that we have for

any ψ∈Cm(σ)

|
∫
σ
ψ(s)e(s)ds |6 C

∫
σ
|ψ(s)| · |Ke(s)|ds+ |

∫
σ
ψ(s)(I − πh)u(s)ds | .

This, together with (3.3) and (3.6), yields

|
∫
σ
ψ(s)e(s)ds | 6 C(h2σ∥ψ∥0,∞,σ · ∥e∥0,∞,σ + hk+1

σ ∥ψ∥m,∞,σ · ∥u∥k,∞,σ

6 Chσ(h
k+1
σ ∥ψ∥0,∞,σ · ∥u∥k,∞,σ + hkσ∥ψ∥m,∞,σ · ∥u∥k,∞,σ)

6 Chk+1
σ (hσ∥ψ∥0,∞,σ + ∥ψ∥m,∞,σ) · ∥u∥k,∞,σ (3.13)

6 Chk+1
σ ∥ψ∥m,∞,σ∥u∥k,∞,σ.

It is easy to check that

N

lnN
− N

(lnN)2
=

N

lnN
(1− 1

lnN
) → ∞, N → ∞.

For a sufficient large N , we have[
lnq

ln(1− (2p+2)(lnN)2

(m+2)N )

]
+ 1 <

[
lnq

ln(1− (2p+2)lnN
(m+2)N )

]
= κ.

11



Thus,

1− d = 1− q
1
κ <

(2p+ 2)(lnN)2

(m+ 2)N
. (3.14)

From the assumption A1, we can obtain

hn = tn − tn−1 = TdN−n(1− d) 6 CdN−n (2p+ 2)(lnN)2

(m+ 2)N
, (n = 2, · · · , N).

Since 0 < d < 1, we have

hkn 6 C
(2p+ 2)k(lnN)2k

(m+ 2)k
N−(k), (n = 2, · · · , N). (3.15)

Set

b :=
(2p+ 2)k(lnN)2k

(m+ 2)k
. (3.16)

By the inequality (3.15) and the identity b = N logN b, we can get

hkn 6 CN−(k−logN b), N → ∞, (n = 2, · · · , N). (3.17)

For a given constant k, we have from the equation (3.16)

εN,k = logNb =
lnb

lnN
→ 0, N → ∞.

This, together with (3.17), leads to (1 6 k 6 m+ 1)

hkn 6 CN−(k−εN,k), N → ∞, (n = 2, · · · , N).

It is obvious that hk1,l 6 hk1 6 N−k for any 1 6 l 6 2p+ 1. Thus, the inequality

hkσ 6 CN−(k−εN,k), N → ∞, (3.18)

is valid for any σ ∈ {e1,1, e1,2, · · · , e1,2p+1, e2, e3, · · · , eN}. This, together with (3.13),

yields

|
∫
σ
ψ(s)e(s)ds |6 Chσ(N

−(k−εN,k)∥ψ∥m,∞,σ)∥u∥k,∞,σ, N → ∞. (3.19)

As to the case with m + 2 6 k 6 2m, it can be proved (refer to [13]) that the following

inequality is valid for any function ψ ∈ Cm(σ)

|
∫
σ
ψ(s)e(s)ds |6 Chσ(N

−(k−εN,k)∥ψ∥0,∞,σ + hkσ∥ψ∥m,∞,σ)∥u∥k,∞,σ. (3.20)

Now we are ready to prove Theorem 3.1. By (3.19), (3.20) and Lemma 3.1, we obtain

|
∫ tn

0
ψ(s)e(s)ds |6 CN−(k−εN,k)∥ψ∥m,∞,[0,tn]∥u∥k,∞,[0,tn], ∀ψ ∈ Cm[0, tn], 1 6 n 6 N.

In particular, we find that

|
∫ tn

0
K1(tn, s)e(s)ds |6 CN−(k−εN,k)∥u∥k,∞,[0,tn], 1 6 n 6 N, (3.21)
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and

|
∫ qtn

0
K2(tn, s)e(s)ds |6 CN−(k−εN,k)∥u∥k,∞,[0,qtn], κ+ 1 6 n 6 N. (3.22)

When 1 6 n 6 κ, we have qtn 6 t1. According to (3.5) and (3.1), we can lead to

|
∫ qtn

0
K2(tn, s)e(s)ds | 6 Ct1h

k
1∥u∥k,∞,e1

6 Chk+1
1 ∥u∥k,∞,e1 (3.23)

6 CN−k∥u∥k,∞,e1 , 1 6 n 6 κ.

In a similar manner, we can prove

|
∫ t1,l

0
K1(t1,l, s)e(s)ds |6 CN−k∥u∥k,∞,e1 , 1 6 l 6 2p+ 1, (3.24)

and

|
∫ qt1,l

0
K2(t1,l, s)e(s)ds |6 CN−k∥u∥k,∞,e1 , 1 6 l 6 2p+ 1. (3.25)

These, together with (3.21), (3.22) and (3.23), give the desired result.

The following result gives some properties of πh

Theorem 3.2. Let A1 and A2 hold. Assume that the functions f and Ki (i = 1, 2) satisfy

f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪
Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T} and

Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Let πh : C(J) → S
(0)
m (JN ) denote the sequence of

interpolation operators defined on ZN .

1) When 2 6 n 6 N , the integral K(πh − I)u(tn) has the following expansion

K(πh − I)u(tn) =

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), (3.26)

where F k
j ∈ C2p+2−2j(J)(k = 1, · · · , N). And there are functions Fj ∈ C2p+2−2j(J)

(j = m, · · · , p) satisfying Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, · · · , N) and

∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+ 2− 2j). (3.27)

2) When 1 6 k 6 2p+ 1, the integral K(πh − I)u(t1,k) can be written as

K(πh − I)u(t1,k) = O(N−(2p+2)). (3.28)

Proof. It is easy to see that K(πh − I)u(t) can be written as

K(πh − I)u(t) = K1(πh − I)u(t) +K2(πh − I)u(t), (3.29)

where

K1(πh − I)u(t) =

∫ t

0
K1(t, s)(πh − I)u(s)ds,
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and

K2(πh − I)u(t) =

∫ qt

0
K2(t, s)(πh − I)u(s)ds.

Without loss of generality, we only need to verify that the second term in the right side

of the equation (3.29) can be written as (3.26) or (3.28) at the mesh points.

When n > κ+ 2, we have∫ qtn

0
K2(tn, s)(πh − I)u(s)ds =

∫ tn−κ

0
K2(tn, s)(πh − I)u(s)ds

=

n−κ∑
k=2

∫
ek

K2(tn, s)(πh − I)u(s)ds (3.30)

+

2p+1∑
l=1

∫
e1,l

K2(tn, s)(πh − I)u(s)ds.

By Lemma 3.5, we get the following equality∫
ek

K2(tn, s)(πh − I)u(s)ds

=

p∑
j=m

h2jk

2j∑
i=m+1

Ci,j

∫
ek

D2j−i
s (Di

su(s)K2(tn, s))ds+O(N−(2p+2)) (3.31)

=

p∑
j=m

h2jk F
k
j (tn) +O(N−(2p+2)), k = 2, 3, · · · , N,

where

F k
j (t) =

2j∑
i=m+1

Ci,j

∫
ek

D2j−i
s (Di

su(s)K2(t, s))ds, k = 2, 3, · · · , N, j = m,m+ 1, · · · , p.

Note that the constants Ci,j are independent of the choice of ek. Similarly, we have∫
e1,l

K2(tn, s)(πh − I)u(s)ds =

p∑
j=m

h2j1,lF
1,l
j (tn) +O(N−(2p+2)) (3.32)

=

p∑
j=m

(
h1

2p+ 1
)2jF 1,l

j (tn) +O(N−(2p+2)),

where

F 1,l
j (t) =

2j∑
i=m+1

Ci,j

∫
e1,l

D2j−i
s (Di

su(s)K2(t, s))ds, l = 1, 2, · · · , 2p+ 1.
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Together with (3.30), (3.31) and (3.32), we can obtain∫ qtn

0
K2(tn, s)(πh − I)u(s)ds

=
n−κ∑
k=2

∫
ek

K2(tn, s)(πh − I)u(s)ds+

2p+1∑
l=1

∫
e1,l

K2(tn, s)(πh − I)u(s)ds

=

n−κ∑
k=2

p∑
j=m

h2jk F
k
j (tn) +

2p+1∑
l=1

p∑
j=m

h1
2p+ 1

F 1,l
j (tn) +O(N−(2p+2)) (3.33)

=

p∑
j=m

[(
h1

2p+ 1
)2j

2p+1∑
l=1

F 1,l
j (tn) +

n−κ∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2))

=

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n−κ∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)),

where F 1
j (t) =

∑2p+1
l=1 F 1,l

j (t). We can write F 1
j (t) as

F 1
j (t) =

2p+1∑
l=1

F 1,l
j (t)

=

2p+1∑
l=1

2j∑
i=m+1

Ci,j

∫
e1,l

D2j−i
s (Di

su(s)K2(t, s))ds

=

2j∑
i=m+1

Ci,j

∫
e1

D2j−i
s (Di

su(s)K2(t, s))ds.

Letting

Fj(t) =

2j∑
i=m+1

Ci,j

∫ t

0
D2j−i

s (Di
su(s)K2(t, s))ds,

we can obtain that Fj ∈ C2p+2−2j(J), F k
j ∈ C2p+2−2j(J) (k = 1, 2, · · · , N ; j = m,m +

1, · · · , p) and Fj(tn) =
∑n

k=1 F
k
j (tn). By the definition of Fj(t), it is obvious that

∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+ 2− 2j).

When n = κ+ 1, we have∫ qtn

0
K2(tn, s)(πh − I)u(s)ds =

∫ t1

0
K2(tn, s)(πh − I)u(s)ds

=

2p+1∑
l=1

∫
e1,l

K2(tn, s)(πh − I)u(s)ds.

It follows by (3.32) that∫ qtκ+1

0
K2(tκ+1, s)(πh − I)u(s)ds =

p∑
j=m

(
h1

2p+ 1
)2jF 1

j (tκ+1) +O(N−(2p+2)). (3.34)

When t ∈ ZN ∩ {t | t 6 tκ}, we have qt < t1. According to (3.1) and (3.5), we can get

|
∫ qt

0
K2(t, s)(πh − I)u(s)ds| 6 Ct1h

m+1
1 ∥u∥m+1,∞,e1

6 Chm+2
1 ∥u∥m+1,∞,e1 (3.35)

6 CN−(2p+2)∥u∥m+1,∞,e1 .
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This, together with (3.33) and (3.34), allows us to deduce that the following expansion is

valid for κ+ 1 6 n 6 N ,

K2(πh − I)u(tn) =

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n−κ∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)). (3.36)

where F k
j ∈ C2p+2−2j(J)(k = 1, 2, · · · , N). Furthermore, by the definition of Fj(t), we

have Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, 3, · · · , N). From (3.34) and (3.35), we have

K2(πh − I)u(tn) = O(N−(2p+2)), 1 6 n 6 κ, (3.37)

and

K2(πh − I)u(t1,k) = O(N−(2p+2)), 1 6 k 6 2p+ 1. (3.38)

By a similar manner, we are led to

K1(πh − I)u(tn) =

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), 2 6 n 6 N,

K1(πh − I)u(t1,k) = O(N−(2p+2)), 1 6 k 6 2p+ 1,

where F k
j ∈ C2p+2−2j(J)(k = 1, 2, · · · , N). Moreover, there are functions Fj ∈ C2p+2−2j(J)

(j = m,m+1, · · · , p) such that ∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+2− 2j) and

Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, 3, · · · , N).

Now, we have proved the theorem 3.2.

Remark 3.1. Theorem 3.2 is a version of Lemma 3.5. Both of them are the general

form of the usual integral expansion (refer to [29]), while this theorem is helpful for us to

consider the Volterra integral equation with proportional delays. The complete analysis to

the multilevel correction will be based on this theorem.

3.2 Error estimate of high order interpolation operator

In the subsection, we derive an error estimate of the high order interpolation operator.

For the convergence, set

H1 = t1 − t0, HN ′ = tN − tÑ ′+1

and

Hr = t(2p+1)(r−1)+1 − t(2p+1)(r−2)+1 (2 ≤ r ≤ N ′ − 1).

Lemma 3.6. For a given positive integer µ satisfying 1 6 µ 6 2p + 2, assume that

∀y ∈ Cµ(J). Let π : C(J) → S(p, ZN ) be the sequence of the higher order interpolation

operators. Then

∥y − πy∥k,∞,σr 6 CHµ−k
r ∥y∥µ,∞,σr . (3.39)

16



Here, C is a constant independent of the meshes JN , 0 6 k 6 min{µ, 2p+1} and 1 6 r 6
N ′.

Proof. Without loss generality, we only need to analysis π on a subinterval σr (r =

2, 3, · · · , N ′ − 1). Let nr = (2p + 1)(r − 2) + 1. Then the restriction of πv on σr is

determined completely by the values of v at the nodes {tnr , tnr+1, · · · , tnr+2p+1}. We can

regard t(2p+1)(r−2)+1 = tnr < tnr+1 < · · · < tnr+2p+1 = t(2p+1)(r−1)+1 as the partition of σr.

Let µ be any given positive integer such that 1 6 µ 6 2p+ 2. For a function y ∈ Cµ(J),

πy can be written as

πy(t) =

2p+1∑
j=0

y(tnr+j)L
r
j(t), ∀t ∈ σr,

where Lr
j(t) =

∏2p+1
l=0,l ̸=j(t− tnr+l)/(tnr+j − tnr+l) is the jth Lagrange basic function on σr.

It is obvious that

2p+1∑
j=0

(tnr+j)
kLr

j(t) = tk, ∀ t ∈ σr, ∀ 0 6 k 6 2p+ 1. (3.40)

From the equality (3.40), we can deduce

2p+1∑
j=0

(t− tnr+j)
kLr

j(t) = 0, ∀ t ∈ σr, ∀ 0 6 k 6 2p+ 1.

Noting y ∈ Cµ(σr), we can write y(t)−y(tnr+j) as Taylor expansion with integral remain-

der

y(t)− y(tnr+j) =

∫ t

tnr+j

y′(s)ds

= y′(s)(s− tnr+j)|s=t
s=tnr+j

−
∫ t

tnr+j

y′′(s)(s− tnr+j)ds

= y′(t)(t− tnr+j) + · · ·+ (−1)µ−2

(µ− 1)!
y(µ−1)(t)(t− tnr+j)

µ−1 (3.41)

+
(−1)µ−1

(µ− 1)!

∫ t

tnr+j

y(µ)(s)(s− tnr+j)
µ−1ds.

Both sides of the equality (3.41) are multiplied by Lr
j(t) respectively, and they are summed

over all j (j = 0, 1, · · · , 2p+ 1). The error can be written as

R(t) = y − πy =
(−1)µ−1

(µ− 1)!

2p+1∑
j=0

Lr
j(t)

∫ t

tnr+j

y(µ)(s)(s− tnr+j)
µ−1ds, ∀ t ∈ σr. (3.42)

Thus, the derivative of R(t) is

R′(t) =
(−1)µ−1

(µ− 1)!
{
2p+1∑
j=0

DtL
r
j(t)

∫ t

tnr+j

y(µ)(s)(s− tnr+j)
µ−1ds

+

2p+1∑
j=0

Lr
j(t)y

(µ)(t)(t− tnr+j)
µ−1}, ∀ t ∈ σr. (3.43)
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Since y(µ)(t) in the equation (3.43) is independent of j, the second term of the right side

vanishes. By the same manipulation, we can deduce that the following equality is valid

for any integer k satisfying 0 6 k 6 min{µ, 2p+ 1},

Dk
t (y − πy)(t) =

(−1)µ−1

(µ− 1)!

2p+1∑
j=0

Dk
t L

r
j(t)

∫ t

tnr+j

y(µ)(s)(s− tnr+j)
µ−1ds. (3.44)

Therefore

|Dk
t (y − πy)(t)| 6 1

(µ− 1)!
|
2p+1∑
j=0

Dk
t L

r
j(t)

∫ t

tnr+j

y(µ)(s)(s− tnr+j)
µ−1ds|

6 1

µ!
∥y∥µ,∞,σr

2p+1∑
j=0

|Dk
t L

r
j(t)(t− tnr+j)

µ| (3.45)

6 1

µ!
Hµ

r ∥y∥µ,∞,σr

2p+1∑
j=0

|Dk
t L

r
j(t)|.

For 2 6 r 6 N ′ − 1, the jth Lagrange basic function on σr is

Lr
j(t) =

2p+1∏
l=0
l ̸=j

t− t(2p+1)(r−2)+1+l

t(2p+1)(r−2)+1+j − t(2p+1)(r−2)+1+l
, j = 0, 1, · · · , 2p+ 1.

Since the mesh on σr is geometric, we have

t(2p+1)(r−1)+1 − t(2p+1)(r−1)

t(2p+1)(r−2)+2 − t(2p+1)(r−2)+1
=
dN−[(2p+1)(r−1)+1](1− d)T

dN−[(2p+1)(r−2)+2](1− d)T
= d−2p.

By the definition of d, there is a positive number δ such that 0 < δ < d < 1. Therefore

1 6
t(2p+1)(r−1)+1 − t(2p+1)(r−1)

t(2p+1)(r−2)+2 − t(2p+1)(r−2)+1
6 δ−2p. (3.46)

Because of the inequality (3.46), we can find a constant C which is independent of JN

such that

|Lr
j(t)| 6 C, |Dk

t L
r
j(t)| 6 C/Hk

r , ∀t ∈ σr, 0 6 k 6 2p+ 1, 0 6 j 6 2p+ 1. (3.47)

It follows by (3.45) and (3.47) that for ∀t ∈ σr,

|Dk
t (y − πy)(t)| 6 1

µ!
Hµ

i ∥y∥µ,∞,σr

2p+1∑
j=0

|Dk
t L

r
j(t)|.

6 CHµ
rH

−k
r ∥y∥µ,∞,σr . (3.48)

6 CHµ−k
r ∥y∥µ,∞,σr ,

where 0 6 k 6 min{µ, 2p+ 1} and 2 6 r 6 N ′ − 1.

In an analogous way with above, we can prove that the inequality (3.39) is valid for

r = 1 and r = N ′.
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By Lemma 3.6, we can get an error estimate of the interpolation π on J .

Theorem 3.3. For a given positive integer µ satisfying 1 6 µ 6 2p + 2, assume that

∀y ∈ Cµ(J). Let π : C(J) → S(p, ZN ) be the sequence of the higher order interpolation

operators. Then

∥y − πy∥k,∞,J 6 CN−(µ−k−εN,µ−k)∥y∥µ,∞,J , N → ∞. (3.49)

Here, εN,µ−k is an arbitrarily small positive number, which satisfies lim
N→∞

εN,µ−k = 0, and

0 6 k 6 min{µ, 2p+ 1}.

Proof. By Lemma 3.6, we only need to prove Hλ
r 6 CN−(λ−εN,λ) for any positive integer

λ.

For the case of r = 1, we have Hλ
1 = (

∑2p+1
l=1 h1,l)

λ = hλ1 . Since 2p + 2 > m + 2, it

follows by (3.1) that

Hλ
1 = hλ1 6 CN− 2p+2

m+2
·λ 6 CN−λ. (3.50)

When 2 6 r 6 N ′ − 1, we get

Hλ
r = (

2p+1∑
k=1

h(2p+1)(r−2)+1+k)
λ

6 C

2p+1∑
k=1

hλ(2p+1)(r−2)+1+k .

From the assumption A1 and the inequality (3.14), we obtain

h(2p+1)(r−2)+1+k = t(2p+1)(r−2)+1+k − t(2p+1)(r−2)+k

= TdN−((2p+1)(r−2)+1+k)(1− d)

6 CdN−((2p+1)(r−2)+1+k) (2p+ 2)(lnN)2

(m+ 2)N
.

Thus

Hλ
r 6 C

2p+1∑
k=1

hλ(2p+1)(r−2)+1+k

6 C
(1− d2p+1)((2p+ 2)(lnN)2)λ

(1− dλ)(m+ 2)λ
N−λ, N → ∞. (3.51)

Because of the fact that d→ 1 as N → ∞, we have

lim
N→∞

1− d2p+1

1− dλ
= lim

d→1

1− d2p+1

1− dλ
=

2p+ 1

λ
. (3.52)

Since 0 < d < 1, it follows by (3.52) that there is a constant C independent of the meshes

JN such that
1− d2p+1

1− dλ
6 C.
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By the inequality (3.51), we can lead to

Hλ
r 6 C

((2p+ 2)(lnN)2)λ

(m+ 2)λ
N−λ, N → ∞. (3.53)

Set

b̃ :=
((2p+ 2)(lnN)2)λ

(m+ 2)λ
.

By the identity b̃ = N logN b̃, the inequality (3.53) can be written as

Hλ
r 6 CN−(λ−logN b̃), N → ∞. (3.54)

For a given constant λ, we have

εN,λ = logN b̃ =
lnb̃

lnN
→ 0, N → ∞.

This, together with the inequality (3.54), yields

Hλ
r 6 CN−(λ−εN,λ), N → ∞, 2 6 r 6 N ′ − 1. (3.55)

Similarly, we can prove that

Hλ
N ′ 6 CN−(λ−εN,λ), N → ∞.

This, together with (3.50), (3.55) and (3.39), yields (3.49).

3.3 Multilevel correction for collocation solution on hybrid meshes

In the subsection, we derive an estimate of ∥[π(Qh − I)]k+1u∥0,∞,J .

It follows by (3.12) that

e = πhKe+ (πh − I)u

= Ke+ (πh − I)(Ke+ u)

= K1e+K2e+ πhKe+ (πh − I)(Ke+ u)

= K1e+ Ã,

where

Ã = K2e+ πhKe+ (πh − I)(Ke+ u).

The standard Volterra theory implies that the resolvent kernel R1 of K1 inherits the

smoothness of the Kernel K1 and satisfies

e = Ã+RÃ,

where

RÃ =

∫ t

0
R1(t, s)Ã(s)ds.
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Furthermore, we have

e = K2e+ (πh − I)(Ke+ u) +R[K2e+ (πh − I)(Ke+ u)]

= (I +R)K2e+ (I +R)(πh − I)(Ke+ u) (3.56)

= (I +R)(πh − I)u+ [(I +R)K2 + (I +R)(πh − I)K]e.

Let A = (I +R)(πh − I) and B = B1 +B2 with

B1 = (I +R)K2, B2 = (I +R)(πh − I)K. (3.57)

It is clear that the equality (3.56) can be simplified as

e = Au+Be

= Au+BAu+B2e (3.58)

=

l−1∑
i=0

BiAu+Ble,

where l is any positive integer.

Lemma 3.7. Let the assumptions A1 and A2 hold. Assume that m 6 2 and the functions

f , Ki (i = 1, 2) satisfy f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪

Ω2, Ω1 := {(t, s) :

0 6 s 6 t 6 T} and Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Let i denote any nonnegative

integer.

1) When 2 6 n 6 N , the term BiAu(tn) possesses the following expansion

BiAu(tn) =

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), (3.59)

where F k
j ∈ C2p+2−2j(J)(k = 1, · · · , N). And there are functions Fj ∈ C2p+2−2j(J)

(j = m, · · · , p) satisfying Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, · · · , N) and

∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+ 2− 2j). (3.60)

2) When 1 6 k 6 2p+ 1, the term BiAu(t1,k) can be written as

BiAu(t1,k) = O(N−(2p+2)). (3.61)

Proof. When i = 0, by a similar way in the proof of Theorem 3.2, we can deduce the

following equalities

R(πh − I)u(tn) =

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), 2 6 n 6 N

and

R(πh − I)u(t1,k) = O(N−(2p+2)), 1 6 k 6 2p+ 1,
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where F k
j ∈ C2p+2−2j(J)(k = 1, · · · , N). Moreover, there are functions Fj ∈ C2p+2−2j(J)

(j = m,m+1, · · · , p) such that ∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+2− 2j) and

Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, 3, · · · , N). Thus, by the definition of A and πh, we can

obtain

Au(tn) = R(πh − I)u(t) |t=tn + (πh − I)u(t) |t=tn

= R(πh − I)u(tn)

=

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +
n∑

k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), 2 6 n 6 N

and

Au(t1,k) = R(πh − I)u(t) |t=t1,k + (πh − I)u(t) |t=t1,k

= R(πh − I)u(t1,k)

= O(N−(2p+2)), 1 6 k 6 2p+ 1.

When i = 1, we first verify that B1Au can be written as (3.59) or (3.61) at the mesh

points. In fact, changing the order of the integration, leads to

K1R(πh − I)u(t) =

∫ t

0
K1(t, x)[

∫ x

0
R1(x, s)(πh − I)u(s)ds]dx

=

∫ t

0
[

∫ t

s
K1(t, x)R1(x, s)dx](πh − I)u(s)ds (3.62)

=

∫ t

0
K1(t, s)(πh − I)u(s)ds,

where K1(t, s) =
∫ t
s K1(t, x)R1(x, s)dx. In the same way, we have

K2R(πh − I)u(t) =

∫ qt

0
K2R(t, s)(πh − I)u(s)ds, (3.63)

RK2(πh − I)u(t) =

∫ qt

0
RK2(t, s)(πh − I)u(s)ds, (3.64)

and

RK2R(πh − I)u(t) =

∫ qt

0
RK2R(t, s)(πh − I)u(s)ds, (3.65)

where

K2R(t, s) =

∫ qt

s
K2(t, x)R1(x, s)dx, RK2(t, s) =

∫ t

s/q
K2(t, x)R1(x, s)dx,

and

RK2R(t, s) =

∫ t

s/q
R1(t, x1)[

∫ qx1

s
K2(x1, x2)R1(x2, s)dx2]dx1.
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By the definition of A and B1, we can write B1Au as

B1Au(t) = (I +R)K2(I +R)(πh − I)u

= K2(πh − I)u+K2R(πh − I)u

+RK2(πh − I)u+RK2R(πh − I)u

=

∫ qt

0
K̃2(t, s)(πh − I)u(s)ds,

where

K̃2(t, s) = K2(t, s) +K2R(t, s) +RK2(t, s) +RK2R(t, s).

Furthermore, as in the proof of Theorem 3.2, we can deduce that B1Au can be written as

(3.59) or (3.61) at the mesh points.

Secondly, we verify that B2Au can be written as (3.59) or (3.61) at the mesh points.

By the equalities (3.7) and (3.8), we can prove that R(πh − I)K(πh − I)u and R(πh −

I)KR(πh − I)u have the expansion (3.26) or (3.28) at the mesh points in an analogous

way with the proof of Theorem 3.2. By the definition of A and B2, we obtain

B2Au(tn) = (I +R)(πh − I)K(I +R)(πh − I)u(t)|t=tn

= R(πh − I)K(I +R)(πh − I)u(t)|t=tn + (πh − I)K(I +R)(πh − I)u(t)|t=tn

= R(πh − I)K(πh − I)u(t)|t=tn +R(πh − I)KR(πh − I)u(t)|t=tn

=

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)] +O(N−(2p+2)), 2 6 n 6 N

and

B2Au(t1,k) = (I +R)(πh − I)K(I +R)(πh − I)u(t)|t=t1,k

= R(πh − I)K(I +R)(πh − I)u(t)|t=t1,k

+ (πh − I)K(I +R)(πh − I)u(t)|t=t1,k

= R(πh − I)K(πh − I)u(t)|t=t1,k +R(πh − I)KR(πh − I)u(t)|t=t1,k

= O(N−(2p+2)), 1 6 k 6 2p+ 1,

where F k
j ∈ C2p+2−2j(J)(k = 1, · · · , N). Moreover, there are functions Fj ∈ C2p+2−2j(J)

(j = m,m+1, · · · , p) such that ∥Fj∥λ,∞,J 6 C∥u∥λ+2j,∞,J (λ = 0, 1, · · · , 2p+2− 2j) and

Fj(tn) =
∑n

k=1 F
k
j (tn) (n = 2, 3, · · · , N). Since B = B1 + B2, we deduce that BAu can

be written as (3.59) or (3.61) at the mesh points.

When i > 2, we can prove that BiAu can be written as (3.59) or (3.61) at the mesh

points by the same manipulation with above.

Remark 3.2. When we prove that R(πh − I)K(πh − I)u and R(πh − I)KR(πh − I)u can

be written as (3.26) or (3.28) at the mesh points, we need to use the condition that m 6 2,

which seems necessary. A similar situation has appeared in [25].
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Set l = (2p+ 3)(2p+m+ 3) in the equality (i.e., (3.58))

e =
l−1∑
i=1

BiAu+Ble.

Let B1 and B2 be defined by (3.57). It is clear that Ble can be written as

Ble = (B1 +B2)
le =

l∑
i=0

Bl−i,ie,

where Bl−i,i is the sum of Ci
l terms, with each term being a product between l−i operators

B1 and i operators B2, which have different order in any two terms. We need to estimate

the norm ∥Bl−i,ie∥0,∞,J for each i.

We first consider the case with 2p+ 2 6 i 6 l. As usual, we define the norms

∥Bk∥C(J)→C(J) := sup
∀v∈C(J)

∥v∥0,∞,J ̸=0

∥Bkv∥0,∞,J

∥v∥0,∞,J
, (k = 1, 2),

and

∥Bk∥C1(σ)→C1(σ) := sup
∀v∈C(J)∩C1(σ)

∥v∥1,∞,σ ̸=0

∥Bkv∥1,∞,σ

∥v∥1,∞,σ
, (k = 1, 2).

Lemma 3.8. Let A1 and A2 hold. Assume that the functions f and Ki (i = 1, 2) satisfy

f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪
Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T} and

Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Let i and l denote two given positive integers such that

2p+ 2 6 i 6 l. Then

∥Bl−i,ie∥0,∞,J 6 CN−(2p+2−εN,2p+2)∥u∥1,∞,J , (3.66)

where εN,2p+2 is an arbitrarily small positive number, which satisfies lim
N→∞

εN,2p+2 = 0.

Proof. By the definition of the operator K2, we can deduce that

∥K2v∥2,∞,σ 6 C∥v∥1,∞,σ, ∀v ∈ C(J) ∩ C1(σ).

Therefore,

∥B2v∥1,∞,σ 6 C∥(I − πh)K2v∥1,∞,σ 6 Chσ∥K2v∥2,∞,σ 6 Chσ∥v∥1,∞,σ.

Thus we obtain

∥B2∥C1(σ)→C1(σ) 6 Chσ.

It is easy to check that

∥B1∥C(J)→C(J) 6 C, ∥B1∥C1(σ)→C1(σ) 6 C. (3.67)
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Since i > 2p+ 2, we can deduce

|Bl−i,ie(t)| 6 C∥B2∥iC1(σ)→C1(σ)∥e∥1,∞,σ 6 CN−(2p+2−εN,2p+2)∥u∥1,∞,σ, ∀t ∈ σ.

Furthermore, we get

∥Bl−i,ie∥0,∞,J 6 CN−(2p+2−εN,2p+2)∥u∥1,∞,J , i > 2p+ 2.

In the following we consider the case with 0 6 i 6 2p+ 1. For this case, we have

l − i > (2p+ 3)(2p+ 2 +m).

Set l∗ = l−(2p+2+m), then l∗−i > (2p+2)(2p+2+m). It means that l∗−i
2p+2 > 2p+2+m.

Therefore Bl−i,i e can be written as

Bl−i,ie =
l∗−i∑
r=0

i∑
j=0

Br,jB
2p+2+m
1 B̃l∗−i−r,i−je =

l∗−i∑
r=0

i∑
j=0

Br,jB̃
r,j ,

where Br,j is the sum of Cr
r+j terms, with each term being a product between r op-

erators B1 and j operators B2, which have different order in any two terms, B̃r,j =

B2p+2+m
1 B̃l∗−i−r,i−je ∈ C2p+2(J) and B̃l∗−i−r,i−j is the sum of C l∗−i−r

l∗−r−j terms, with each

term being a product between l∗ − i− r operators B1 and i− j operators B2, which does

not contain the operator B2p+2+m
1 .

If j > 1, we can prove that Br,jB̃
r,j can be written as (3.59) or (3.61) at the mesh

points by the similar manipulation in the proof of the Lemma 3.7, since B̃r,j ∈ C2p+2(J).

If j = 0, since ∥B1∥C(J)→C(J)is bounded, we only need to estimate Bm
1 Bl∗−i−r,ie, where r

is a integer such that 0 6 r 6 l∗ − i, and Bl∗−i−r,i is the sum of Ci
l∗−r terms, with each

term being a product between l∗ − i − r operators B1 and i operators B2, which have

different order in any two terms.

Lemma 3.9. Let A1 and A2 hold. Assume that m 6 2 and the functions f , Ki (i = 1, 2)

satisfy f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪

Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T}

and Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Let i, r and l∗ denote three given positive integers

such that 0 6 i 6 2p+ 1, i+ (2p+ 2)(2p+ 2 +m) 6 l∗ and 0 6 r 6 l∗ − i . Then

∥Bm
1 Bl∗−i−r,ie∥0,∞,J 6 CN−(2m−εN,2m)∥u∥2m,∞,J , N → ∞. (3.68)

Here εN,2m is an arbitrarily small positive number such that limN→∞ εN,2m = 0.

Proof. We write Bm
1 Bl∗−i−r,ie as

Bm
1 Bl∗−i−r,ie = πBm

1 Bl∗−i−r,ie+ (I − π)Bm
1 Bl∗−i−r,ie. (3.69)
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For i = 0, we have Bm
1 Bl∗−i−r,ie = Bl∗−r+m

1 e, where m 6 l∗ − r+m. By the definition of

B1, we can change the order of integration to write Bl∗−r+m
1 e as

Bl∗−r+m
1 e =

l∗−r+m∑
i=1

∫ qit

0
B

i,i
1 (t, s)e(s)ds := B1e,

where B
i,j
1 (t, s) is the sum of Cr

r+j terms, with each term being a multiple integral whose

integrand is a product between i functions K2 and j functions R1, which have different

order in any two terms (also see [12]). By a similar method with the proof of Theorem

3.1, we can obtain

∥πBl∗−r+m
1 e∥0,∞,J 6 ∥πB1e∥0,∞,J

6 C max
t∈ZN

∥B1e∥0,∞,J (3.70)

6 CN−(2m−εN,2m)∥u∥2m,∞,J .

For 1 6 i 6 2p+ 1, we have

πBm
1 Bl∗−i−r,ie = πBm+µ

1 B2Bl∗−i−r−µ,i−1e = πBm+µ
1 B2vµ,i−1, 0 6 µ 6 l∗ − i− r,

where µ is a integer, vµ,i−1 = Bl∗−i−r−µ,i−1e, and Bl∗−i−r−µ,i−1 is the sum of Ci−1
l∗−r−µ−1

terms, with each term being a product between l∗−i−r−µ operators B1 and i−1 operators

B2, which have different order in any two terms. It is easy to check that vµ,i−1 ∈ C(J). By

the definition of B1 and B2, we can change the order of integration to write Bm+µ
1 B2vµ,i−1

as

Bm+µ
1 B2vµ,i−1 = Bm+µ

1 (I +R)(πh − I)Kvµ,i−1

= Bm+µ
1 (πh − I)Kvµ,i−1 +Bm+µ

1 R(πh − I)Kvµ,i−1

=

m+µ∑
j=1

∫ qjt

0
B

j,j
1 (t, s)(πh − I)Kvµ,i−1ds (3.71)

+

m+µ∑
j=1

∫ qjt

0
B

j,j+1
1 (t, s)(πh − I)Kvµ,i−1ds.

When κ+ j+1 6 n, we can deduce that tn−j is a mesh point and tn−j = qjtn > t1. Using

Lemma 3.4, the inequalities (3.3), (3.18) and the smoothness Kvµ,i−1 ∈ C(J) ∩ Cm(σ),
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we deduce

|
∫ qjtn

0
B

j,j
1 (tn, s)(πh − I)Kvµ,i−1ds |

6 C

n−j∑
k=2

|
∫
ek

B
j,j
1 (tn, s)(πh − I)Kvµ,i−1ds | +C

2p+1∑
k=1

|
∫
e1,k

B
j,j
1 (tn, s)(πh − I)Kvµ,i−1ds |

6 C

n−j∑
k=2

N−(2m−εN,2m)∥Kvµ,i−1∥m,∞,ek + C

2p+1∑
k=1

N−(2m−εN,2m)∥Kvµ,i−1∥m,∞,e1,k

6 C

n−j∑
k=2

N−(2m−εN,2m)∥e∥m−1,∞,ek + C

2p+1∑
k=1

N−(2m−εN,2m)∥e∥m−1,∞,e1,k (3.72)

6 C

n−j∑
k=2

N−(2m−εN,2m)hk∥u∥m,∞,ek + C

2p+1∑
k=1

N−(2m−εN,2m)h1,k∥u∥m,∞,e1,k

6 CN−(2m−εN,2m)∥u∥m,∞,J .

When 1 6 n 6 κ+ j, we have qjtn 6 t1. Note that 2(n+1)m 6 2p+2, we have m 6 p+1.

According to (3.5) and (3.1), we can lead to

|
∫ qjtn

0
B

j,j
1 (tn, s)(πh − I)Kvµ,i−1ds | 6 Ct1h

m
1 ∥u∥m,∞,e1

6 Chm+1
1 ∥u∥m,∞,e1 (3.73)

6 CN−2m∥u∥m,∞,e1 .

Similarly, we can deduce that the following inequality is valid for any integer k satisfying

1 6 k 6 2p+ 1,

|
∫ qjt1,k

0
B

j,j
1 (t1,k, s)(πh − I)Kvµ,i−1ds |6 CN−2m∥u∥m,∞,e1 . (3.74)

By the inequalities (3.72), (3.73) and (3.74), we obtain

∥π[
∫ qjt

0
B

j,j
1 (t, s)(πh − I)Kvµ,i−1ds]∥0,∞,J 6 CN−(2m−εN,2m)∥u∥m,∞,J . (3.75)

By the same way, we can deduce

∥π[
∫ qjt

0
B

j,j+1
1 (t, s)(πh − I)Kvµ,i−1ds]∥0,∞,J 6 CN−(2m−εN,2m)∥u∥m,∞,J . (3.76)

Combining (3.71) and (3.75) with (3.76), we have

∥πBm+µ
1 B2vµ,i−1∥0,∞,J 6 CN−(2m−εN,2m)∥u∥m,∞,J , 1 6 i 6 2p+ 1. (3.77)

By the inequalities (3.70) and (3.77), we get

∥πBm
1 Bl∗−i−r,ie∥0,∞,J 6 CN−(2m−εN,2m)∥u∥m,∞,J , 0 6 i 6 2p+ 1. (3.78)
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By interpolation error estimate (3.49) and Lemma 3.3, we can lead to

∥(I − π)Bm
1 Bl∗−i−r,ie∥0,∞,J 6 CN−(m−εN,m)∥Bm

1 Bl∗−i−r,ie∥m,∞,J

6 CN−(m−εN,m)∥Bl∗−i−r,ie∥0,∞,J (3.79)

6 CN−(m−εN,m)∥e∥0,∞,J

6 CN−(2m−εN,2m)∥u∥m,∞,J .

It follows by (3.69), (3.78) and (3.79) that

∥Bm
1 Bl∗−i−r,ie∥0,∞,J 6 CN−(2m−εN,2m)∥u∥2m,∞,J , N → ∞.

The following Theorem 3.4 plays key role in the proof of Theorem 2.1.

Theorem 3.4. Let A1 and A2 hold. Assume that m 6 2 and the functions f , Ki (i = 1, 2)

satisfy f ∈ C2p+2(J), Ki ∈ C2p+2(Ω), where Ω = Ω1
∪

Ω2, Ω1 := {(t, s) : 0 6 s 6 t 6 T}

and Ω2 := {(t, s) : 0 6 s 6 qt, t ∈ J}. Let k denote a given positive integer such that

2(k+1)m 6 2p+2. Then, for any positive integer λ satisfying 2km+1 6 λ 6 2(k+1)m,

we have

∥[π(Qh − I)]k+1u∥0,∞,J 6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞. (3.80)

Here εN,λ is an arbitrarily small positive number such that limN→∞ εN,λ = 0.

Proof. The inequality (3.80) will be proved by the induction principle.

When k = 1, noting the equality (3.12)

(Qh − I)u = uh − u = e = πhKe+ (πh − I)u,

we have

π(Qh − I)u = πKe.

For any positive integer λ satisfying 1 6 λ 6 2m, it follows by Theorem 3.1 that there is

a constant C independent of the meshes JN such that

∥[π(Qh − I)]u∥0,∞,J = ∥πKe∥0,∞,J

6 C max
t∈ZN

|(Ke)(t)|.

6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞.

When 1 6 k 6 n, we assume that the inequality

∥[π(Qh − I)]k+1u∥0,∞,J 6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞, (3.81)
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is valid for any positive integer λ satisfying 2km+ 1 6 λ 6 2(k + 1)m.

In the following we prove that the inequality (3.80) is valid for k = n+ 1.

Set l = (2p+ 3)(2p+m+ 3) in the equality (3.58), and write [π(Qh − I)]n+2u as

[π(Qh − I)]n+2u = [π(Qh − I)]n+1πe

= [π(Qh − I)]n+1π[

l−1∑
i=1

BiAu+

l∑
i=0

Bl−i,ie]

= [π(Qh − I)]n+1π[

l−1∑
i=1

BiAu+

2p+1∑
i=1

l∗−i∑
r=0

i∑
j=1

Br,jB̃
r,j ]

+[π(Qh − I)]n+1π[

2p+1∑
i=0

l∗−i∑
r=0

Br,0B̃
r,0] (3.82)

+[π(Qh − I)]n+1π[

l∑
i=2p+2

Bl−i,ie]

= G1 +G2 +G3,

where

G1 = [π(Qh − I)]n+1π[

l−1∑
i=1

BiAu+

2p+1∑
i=1

l∗−i∑
r=0

i∑
j=1

Br,jB̃
r,j ],

G2 = [π(Qh − I)]n+1π[

2p+1∑
i=0

l∗−i∑
r=0

Br,0B̃
r,0]

and

G3 = [π(Qh − I)]n+1π[

l∑
i=2p+2

Bl−i,ie].

In the following we estimate ∥G1∥0,∞,J , ∥G2∥0,∞,J and ∥G3∥0,∞,J respectively.

Firstly, we estimate ∥G1∥0,∞,J . Note that B̃r,j ∈ C2p+2(J) and j > 1. Then, it is easy

to verify, as in the proof of the Lemma 3.7, that Br,jB̃
r,j can be written as (3.59) or (3.61)

at the mesh points. Furthermore, we obtain by Lemma 3.7

G1 = [π(Qh − I)]n+1π[
l−1∑
i=1

BiAu+

2p+1∑
i=1

l∗−i∑
r=0

i∑
j=1

Br,jB̃
r,j ]

= [π(Qh − I)]n+1
N∑

n=2

p∑
j=m

[(
h1

2p+ 1
)2jF 1

j (tn) +

n∑
k=2

h2jk F
k
j (tn)]Ln(t) +O(N−(2p+2)),

where Ln(t) is the Lagrange basic function of the point tn. Since Fj(tn) =
∑n

k=1 F
k
j (tn)

and Fj ∈ C2p+2−2j(J), we get
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∥G1∥0,∞,J 6 C

p∑
j=m

h2j∥[π(Qh − I)]n+1
N∑

n=2

n∑
k=1

F k
j (tn)Ln∥0,∞,J

6 C

p∑
j=m

h2j∥[π(Qh − I)]n+1πFj∥0,∞,J (3.83)

6 C

p∑
j=m

h2j∥[π(Qh − I)]n+1[Fj + (π − I)Fj ]∥0,∞,J

6 C

p∑
j=m

h2j∥[π(Qh − I)]n+1Fj∥0,∞,J + C

p∑
j=m

h2j∥(π − I)Fj∥0,∞,J .

In the following, we estimate ∥[π(Qh−I)]n+1Fj∥0,∞,J with j satisfyingm 6 j 6 p. Because

of the limitation of the smoothness of the functions Fj , this will be done for different cases

of j.

By the assumption in this Lemma, we know that 2 6 2(n + 1)m 6 2p + 2. Then

0 6 p+ 1− (n+ 1)m 6 p. When j satisfies

p+ 1− (n+ 1)m < j 6 p,

we have n+ 1 > p+1−j
m . It means that n+ 1 > [p+1−j

m ] + 1. It is easy to verify that both

∥Qh∥C(J)→C(J) and ∥π∥C(J)→C(J) are bounded. Therefore ∥π(Qh − I)∥C(J)→C(J) is also

bounded. Furthermore, by the inequality (3.18) and the inductive assumption (3.81), we

deduce (note that n+ 1 > [p+1−j
m ] + 1)

h2j∥[π(Qh − I)]n+1Fj∥0,∞,J 6 Ch2j∥[π(Qh − I)][
p+1−j

m
]+1Fj∥0,∞,J

6 CN−(2j−εN,2j)∥[π(Qh − I)][
p+1−j

m
]+1Fj∥0,∞,J

6 CN−(2j−εN,2j)N−(2m( p+1−j
m

)−εN,2(p+1−j))∥Fj∥2p+2−2j,∞,J

6 CN−(2p+2−εN,2p+2)∥Fj∥2p+2−2j,∞,J , N → ∞. (3.84)

If p+ 1− (n+ 1)m < m, then we have p+ 1− (n+ 1)m < j 6 p since m ≤ j ≤ p. For

this case, we have gotten the estimate of ∥[π(Qh− I)]n+1Fj∥0,∞,J by the inequality (3.84).

When m 6 p+ 1− (n+ 1)m, by the inequality (3.84), we only need to consider the case

with j satisfying m 6 j 6 p+1− (n+1)m. For this case, we have 2p+2−2j > 2(n+1)m.

Since 2nm+1 6 λ 6 2(n+1)m and Fj ∈ C2p+2−2j(J), the norm ∥Fj∥λ,∞,J is well defined.

Thus, using the inductive assumption (3.81), we get

∥[π(Qh − I)]n+1Fj∥0,∞,J 6 CN−(λ−εN,λ)∥Fj∥λ,∞,J , 2nm+ 1 6 λ 6 2(n+ 1)m.
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This, together with (3.18), (3.27) and (3.60), allows us to deduce

h2j∥[π(Qh − I)]n+1Fj∥0,∞,J 6 Ch2jN−(λ−εN,λ)∥Fj∥λ,∞,J

6 CN−(2j−εN,2j)N−(λ−εN,λ)∥Fj∥λ,∞,J (3.85)

6 CN−(λ+2j−εN,λ+2j)∥u∥λ+2j,∞,J , N → ∞.

Next, we estimate ∥(π−I)Fj∥0,∞,J (m 6 j 6 p). From Theorem 3.3 and the inequality

(3.18), we have

h2j∥(π − I)Fj∥0,∞,J 6 CN−(2p+2−εN,2p+2)∥Fj∥2p+2−2j,∞,J , N → ∞.

This, together with (3.83), (3.84) and (3.85), allows us to deduce

∥G1∥0,∞,J 6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞, 2(n+ 1)m+ 1 6 λ 6 2(n+ 2)m. (3.86)

Secondly, we estimate ∥G2∥0,∞,J . By the definition of G2, we have

∥G2∥0,∞,J = ∥[π(Qh − I)]n+1π[

2p+1∑
i=0

l∗−i∑
r=0

Br,0B̃
r,0]∥0,∞,J

6 C ∥[π(Qh − I)]n+1π[

2p+2∑
i=0

l∗−i∑
r=0

Br
1B

2p+2+m
1 Bl∗−i−r,ie]∥0,∞,J .

Then, we get by (3.81)

∥G2∥0,∞,J 6 C

2p+2∑
i=0

l∗−i∑
r=0

∥[π(Qh − I)]n+1π[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J

6 C

2p+2∑
i=0

l∗−i∑
r=0

∥[π(Qh − I)]n+1[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J

+C

2p+2∑
i=0

l∗−i∑
r=0

∥[π(Qh − I)]n+1(π − I)[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J

6 C

2p+2∑
i=0

l∗−i∑
r=0

N−(λ−εN,λ)∥B2p+2+m+r
1 Bl∗−i−r,ie∥λ,∞,J (3.87)

+C

2p+2∑
i=0

l∗−i∑
r=0

∥(π − I)[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J

= C(I21 + I22), N → ∞,

where

I21 =

2p+2∑
i=0

l∗−i∑
r=0

N−(λ−εN,λ)∥B2p+2+m+r
1 Bl∗−i−r,ie∥λ,∞,J , 2nm+ 1 6 λ 6 2(n+ 1)m,

and

I22 =

2p+2∑
i=0

l∗−i∑
r=0

∥(π − I)[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J .
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Noting that 2(n+ 1)m 6 2p+ 2 and the inequality (3.67), we have

I21 6 C

2p+2∑
i=0

l∗−i∑
r=0

N−(λ−εN,λ)∥B2p+2+m+r
1 Bl∗−i−r,ie∥2(n+1)m,∞,J

6 C

2p+2∑
i=0

l∗−i∑
r=0

N−(λ−εN,λ)∥B2p+2+m+r−2(n+1)m
1 Bl∗−i−r,ie∥0,∞,J (3.88)

6 C

2p+2∑
i=0

l∗−i∑
r=0

N−(λ−εN,λ)∥Bm
1 Bl∗−i−r,ie∥0,∞,J .

It follows, by the inequality (3.88) and Lemma 3.9, that the following inequality is valid

for any integer λ satisfying 2nm+ 1 6 λ 6 2(n+ 1)m

I21 6 CN−(λ−εN,λ)N−(2m−εN,2m)∥u∥2m,∞,J , N → ∞.

This means that

I21 6 CN−(λ−εN,λ)∥u∥2m,∞,J , N → ∞, 2(n+ 1)m+ 1 6 λ 6 2(n+ 2)m. (3.89)

By interpolation error estimate (3.49) and the inequalities (3.67), (3.3), we have

I22 6 C

2p+2∑
i=0

i∑
r=0

∥(π − I)[B2p+2+m+r
1 Bl∗−i−r,ie]∥0,∞,J

6 C

2p+2∑
i=0

i∑
r=0

N−(2p+2−εN,2p+2)∥B2p+2+m+r
1 Bl∗−i−r,ie∥2p+2,∞,J

6 C

2p+2∑
i=0

i∑
r=0

N−(2p+2−εN,2p+2)∥Br
1Bl∗−i−r,ie∥0,∞,J (3.90)

6 CN−(2p+2−εN,2p+2)∥e∥0,∞,J

6 CN−(2p+2−εN,2p+2)∥u∥m,∞,J .

Combining (3.87), (3.89) and (3.90), we obtain

∥G2∥0,∞,J 6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞, 2(n+ 1)m+ 1 6 λ 6 2(n+ 2)m. (3.91)

Finally, we estimate ∥G3∥0,∞,J . From the inequality (3.66), it is obvious that

∥G3∥0,∞,J = ∥[π(Qh − I)]n+1π[
l∑

i=2p+2

Bl−i,ie]∥0,∞,J

6 C∥
l∑

i=2p+2

Bl−i,ie∥0,∞,J (3.92)

6 CN−(2p+2−εN,2p+2)∥u∥1,∞,J .

This, together with (3.82), (3.86) and (3.91), allows us to deduce

∥[π(Qh−I)]n+2u∥0,∞,J 6 CN−(λ−εN,λ)∥u∥λ,∞,J , N → ∞, 2(n+1)m+1 6 λ 6 2(n+2)m.

Namely, the inequality (3.80) is valid for k = n+ 1.

Now we prove the inequality (3.80) by the induction principle.
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4 Proof of the main result

In this section, we prove Theorem 2.1 by using the auxiliary results given in the last

section.

Proof. For convenience, we set Th = πQh − I. It is easy to check that

T k+1
h u = (πQh − I)k+1u

=

k∑
j=0

(−1)jCj
k+1(πQh)

k−jπQhu− (−1)ku

= (−1)k(uh,k − u).

Therefore

∥uh,k − u∥0,∞,J = ∥T k+1
h u∥0,∞,J .

Let λ denote a positive integer number. When λ = 1, we have

T λ
h u = Thu

= (πQh − I)u

= π(Qh − I)u+ (π − I)u.

First, we prove inductively that the following equation is valid for λ > 2

T λ
h u = [π(Qh − I)]λu+

λ−2∑
l=0

(−1)2λ−l[π(Qh − I)]λ−1−lu+ (−1)λ+1(π − I)u. (4.1)

When λ = 2, we get

T 2
hu = (πQh − I)[π(Qh − I)u+ (π − I)u]

= π(Qh − I)π(Qh − I)u+ (πQh − I)(π − I)u

= π(Qh − I)π(Qh − I)u+ π(Qh − I)(π − I)u− (π − I)u.

We assume that the equation

T λ
h u = [π(Qh − I)]λu+

λ−2∑
l=0

(−1)2λ−l[π(Qh − I)]λ−1−lu+ (−1)λ+1(π − I)u, (4.2)

is valid for λ (λ > 2). Now we only need to prove that

T λ+1
h u = [π(Qh − I)]λ+1u+

λ−1∑
l=0

(−1)2(λ+1)−l[π(Qh − I)]λ−lu+ (−1)λ+2(π − I)u. (4.3)
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In fact, T λ+1
h u can be written as T λ+1

h u = Th(T
λ
h u). It follows by the inductive assumption

(4.2) that

T λ+1
h u = Th(T

λ
h u)

= (πQh − I){[π(Qh − I)]λu

+
λ−2∑
l=0

(−1)2λ−l[π(Qh − I)]λ−1−lu (4.4)

+(−1)λ+1(π − I)u}

= G1 +G2 +G3,

where G1 = (πQh − I)[π(Qh − I)]λu, G2 = (πQh − I){
∑λ−2

l=0 (−1)2λ−l[π(Qh − I)]λ−1−lu}

and G3 = (πQh − I){(−1)λ+1(π − I)u}. It is easy to obtain that

G1 = (πQh − I)[π(Qh − I)]λu

= [π(Qh − I)]λ+1u+ (π − I)[π(Qh − I)]λu (4.5)

= [π(Qh − I)]λ+1u,

and

G2 = (πQh − I){
λ−2∑
l=0

(−1)2λ−l[π(Qh − I)]λ−1−lu}

=

λ−2∑
l=0

(−1)2λ−l([π(Qh − I)]λ−lu+ (π − I)[π(Qh − I)]λ−1−lu) (4.6)

=

λ−2∑
l=0

(−1)2λ−l([π(Qh − I)]λ−lu,

and

G3 = (πQh − I){(−1)λ+1(π − I)u}

= (−1)λ+1([π(Qh − I)](π − I)u− (π − I)u) (4.7)

= (−1)λ+1[π(Qh − I)](π − I)u+ (−1)λ+2(π − I)u.

By using (4.4)-(4.7), we deduce (4.3). It then follows by the induction principle that the

equation (4.1) is valid.

Now we can readily prove Theorem 2.1. Set λ = k + 1. Therefore the following

inequality is a direct consequence of Theorem 3.4

∥[π(Q− I)]k+1u∥0,∞,J 6 CN−(2(k+1)m−εN,2(k+1)m)∥u∥2(k+1)m,∞,J . (4.8)

For 0 6 n 6 λ− 2 = k − 1, we have

∥(−1)2k+2−n[π(Q− I)]k−n(π − I)u∥0,∞,J

6 CN−(2(k−n)m−εN,2(k−n)m)∥(π − I)u∥2(k−n)m,∞,J (4.9)

6 CN−(2(p+1)−εN,2(p+1))∥u∥2(p+1),∞,J , N → ∞,
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and

∥(−1)k+2(π − I)u∥0,∞,J 6 CN−(2(p+1)−εN,2(p+1))∥u∥2(p+1),∞,J . (4.10)

Combining (4.1), (4.8), (4.9) and (4.10), we lead to

∥T k+1
h u∥0,∞,J 6 CN−(2(k+1)m−εN,2(k+1)m)∥u∥2(k+1)m,∞,J , N → ∞.

By the definition of εN,k and the fact that 2(k+1)m 6 2p+2, we have εN,2(k+1)m 6 εN,2p+2.

Letting εN = εN,2(p+1), we can obtain

∥uh,k − u∥0,∞,J 6 CN−(2(k+1)m−εN )∥u∥2(k+1)m,∞,J , N → ∞,

where εN is an arbitrarily small positive number such that lim
N→∞

εN = 0.

5 Numerical examples

For the numerical verification of the result stated in section 2, we consider

u(t) = f(t)−
∫ t

0
u(s)ds+

1

2

∫ qt

0
u(s)ds, t ∈ [0, T ], (5.1)

where the function f is chosen as f(t) = 1
2(1 + e−qt) such that the exact solution is

u(t) = e−t; the delay parameter q is chosen as q = 0.9, q = 0.5, or q = 0.2. We set T = 10.

The equation (5.1) is solved by two collocation methods on different meshes using the

space S0
1(JN ) (m = 1).

The first methodM1 is the multilevel correction method based on the geometric meshes

and the Lobatto collocation parameters: c1 = 0.0, c2 = 1.0; the second method M2 is the

multilevel correction method which uses the hybrid meshes introduced in this paper and

the Lobatto collocation parameters c1 and c2. For convenience, we let ∥ · ∥0,∞ denote the

uniform norm ∥·∥0,∞,J . The L
∞ errors are reported in Table 1 (q = 0.9), Table 2 (q = 0.5)

and Table 3 (q = 0.2).

TABLE 1 (q = 0.9)

M1 M1 M2 M2 M2

N ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,2 − u∥0,∞
200 8.08D−5 3.08D−8 3.24D−4 2.41D−6 1.87D−6

400 1.31D−2 1.79D−5 8.08D−5 3.26D−8 8.88D−9

800 3.99D−6 1.80D−3 2.02D−5 1.92D−9 2.72D−11

1600 1.10D−5 1.30D−1 5.05D−6 1.20D−10 9.92D−14

TABLE 2 (q = 0.5)

M1 M1 M2 M2 M2

N ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,2 − u∥0,∞
200 4.35D−5 1.30D−8 1.94D−4 2.62D−7 3.92D−8

400 1.36D−5 1.50D−5 5.43D−5 2.04D−8 1.02D−9

800 4.21D−6 6.05D−3 1.74D−5 2.09D−9 1.03D−11

1600 9.05D−6 3.03D−0 5.00D−6 1.71D−10 8.74D−14
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TABLE 3 (q = 0.2)

M1 M1 M2 M2 M2

N ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,0 − u∥0,∞ ∥uh,1 − u∥0,∞ ∥uh,2 − u∥0,∞
200 4.89D−5 1.61D−8 2.15D−4 3.24D−7 5.31D−8

400 1.52D−5 1.06D−5 6.22D−5 2.61D−8 1.14D−9

800 4.63D−6 4.22D−3 1.88D−5 2.37D−9 8.78D−12

1600 1.45D−6 4.44D−0 5.60D−6 2.10D−10 8.48D−14

The above numerical results show that the correction approximations u1,2 and uh,2

based on the hybrid meshes introduced in this paper possess the superconvergence orders

4− εN and 6− εN respectively (with εN ∈ [0, 0.678]), which clearly confirm the multilevel

correction estimates given in Theorem 2.1 and reveal that the method M2 is effective

for widely varying parameter values q ∈ (0, 1). Note that such high superconvergence is

obtained without expensive cost, since only the lowest piecewise polynomial (m = 1) is

used in the collocation space. But the errors between the analytic solution u and the

correction approximation uh,1 based on the original geometric meshes are not monotonic

decreasing with mesh refinement. This is just the reason why we need to introduce the

hybrid meshes to guarantee that the resulting k level corrected approximation possesses

an ideal superconvergence order (see Section 2 for the details).
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