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Abstract

In an earlier paper, we presented an iterative algorithm for reconstructing a three di-
mensional density function from a set of two dimensional electron microscopy images. By
minimizing an energy functional consisting of a fidelity term and a regularization term, an
L2-gradient flow was derived. The flow was integrated by an explicit finite element method.
In this paper, we present a semi-implicit finite element method for solving the same flow.
Theoretical analysis for the convergence of the semi-implicit finite element method is pre-
sented.

1 Introduction

The reconstruction problem in computed tomography (CT), or some other application fields,
for instance, electron tomography (ET), electron microscopy (EM), astronomy, geophysics, is to
produce an image from a large number of its line-integral projections from different directions.
In many applications of tomography, the reconstructed image reflects the X-ray attenuation
coefficient when it travels though certain object, and the line integrals are obtained by measuring
the attenuation of photons transmitted through the detected object. It is typically an inverse
problem when we use the observed data though certain deterministic systems to inverse the
degree of attenuation or some kind of physical quantity in actually applications.

The filtered back-projection (FBP) algorithm has been introduced in the medical field by
[17], [19], and in the radio astronomy by [3]. The FBP, one pivotal component of commercial
CT scanners, has remained popular for the past 25 years [15]. Main disadvantage of FBP lies
in the highly computational complexity, particularly when the problem is extended to higher-
resolution or higher-dimension. Great efforts on speed up the method have been made in the
literatures [2], [4]. In addition, the direct Fourier reconstruction (DF) has been investigated, for
instance, [13] and its further development [6], [16], [18]. Generally speaking, FBP is preferred
to DF since the former provided images with better quality [11]. However, the back-projection
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part of FBP raises the computational complexity of the method to O(n3) arithmetic operations,
while DF’s complexity is just O(n2 log n).

In [12], we presented an iterative algorithm for reconstructing a three dimensional density
function from a set of two dimensional electron microscopy images. By minimizing an energy
functional consisting of a fidelity term and a regularization term, an L2-gradient flow was derived.
The flow was integrated by an explicit finite element method. The method are compared with
the weighted back projection, algebraic reconstruction technique and simultaneous iterative
reconstructive technique. The numerical results show that the L2-gradient flow method achieve
a better resolution than the other three methods. However, the theoretical analysis on the
convergence of the iterative method has not been considered.

In this paper, we present a semi-implicit finite element method for solving the same flow.
An approximately optimal temporal step-size is determined which makes the semi-implicit more
efficient than the explicit one. Theoretical analysis for the convergence of the semi-implicit finite
element method is presented, which shows that the presented method is convergent.

The outline of this paper goes as follows. Section 2 sketches an overview of the mathematical
background knowledge on image reconstruction. In Section 3, we first come up with a new
computational method, then describe the detail derivation of our model, and finally give the
concrete numerical computing procedures. The theory analysis of our numerical methods is
given in Section 4.

2 Mathematical Preliminaries

The purpose of this section is to present various integral transforms and therein derive some
their important properties. The material of this section serves as the theoretical basis for the
rest of the paper. For detail derivation, we suggest the interested readers to refer to [8], [10],
[14].

Let f be a function defined on R3, where R3 is the 3-dimensional real space consisting of
3-tuples of real numbers, usually denoted by single letters, x = (x1, x2, x3)

T , y = (y1, y2, y3)
T ,

etc. The inner product and norm in R3 are defined by ⟨x, y⟩ = xT y =
∑n

1 xiyi and ∥x∥ =√
⟨x, x⟩, respectively. In addition, the gradient of f is denoted as ∇f = (fx1 , fx2 , fx3)

T . Let X
be a real Banach space with norm ∥ · ∥X .

Definition 2.1 The space Lp((0, T0);X) consists of all measurable functions u : [0, T0] → X
with

∥u∥Lp((0,T0);X) :=
(∫ T0

0
∥u(t)∥pX

) 1
p
< ∞,

for 1 ≤ q < ∞, denoted as ∥u∥Lp(x) for short, and

∥u∥L∞((0,T0);X) := ess sup
0≤t≤T0

∥u(t)∥X < ∞,

abbreviated as ∥u∥L∞(x).
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The X-ray transform of a function f ∈ L2(R
3) is defined as

Pθf(y) =

∫
R1

f(sθ + y)ds, y ∈ Θ⊥, (2.1)

where Θ⊥ is the hyperplane passing through the origin and orthogonal to θ. From (2.1), we
can see that the X-ray transform is the integral of f ∈ L2(R

3) over the straight line through
point y ∈ Θ⊥ along the direction θ ∈ S2. Hence we can regard Pf as a function defined on the
tangent bundle T = {(θ, y) : θ ∈ S2, y ∈ Θ⊥}.

The inner product in L2(R
3) can be defined as⟨

u(x), v(x)
⟩

=

∫
R3

u(x)v(x)dx,

where u(x), v(x) ∈ L2(R
3). The analogous inner products in L2(T ) are given by⟨

h1(θ, y), h2(θ, y)
⟩

=

∫
T
h1(θ, y)h2(θ, y)dθdy,

respectively, where

h1(θ, y), h2(θ, y) ∈ L2(T ).

Using the definition Pθ, we obtain the following lemma.

Lemma 2.1 Let Ω2 be a sphere with radius R in R3. R is sufficient large but finite. Then the
projection operator

Pθ : L2(Ω
2) −→ L2(Θ

⊥)

is linear and continuous.

See [?] for the proof.

3 Reconstruction Algorithm

In this paper, we concentrate on the 3-D image reconstruction from the parallel projections
at different angles inasmuch as the reconstruction method proposed can be straightforwardly
generalized to other projection geometries and higher dimensions.

3.1 Reconstruction Model

Let f(x) : Ω ⊂ R3 → R represent an unknown density function of a biomedical image, which
has a bounded support in a cube Ω, namely,

supp(f) ⊆ Ω. (3.1)
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We want to find f ∈ BV (Ω) such that the following energy functional (see [12]) is minimized.

E(f) = E1(f) + λE2(f), (3.2)

where E1(f) stands for the fidelity term of estimate to the observed data, E2(f) stands for
the regularized term obtained from some maximum a posterior estimation or some significant
operations, and λ ≥ 0 is a parameter, balancing the effects of the fidelity term and the regularized
one, BV (Ω) stands for the bounded variation space. For the definition and properties of BV (Ω),
we suggest the interested readers refer to [1], [7]. In this paper E1(f) and E2(f) are given as
follows,

E1(f) =
1

2

p∑
i=1

∫
R2

(
Pθif(y)− gi(y)

)2
dy, (3.3)

E2(f) =

∫
R3

ϕ(∥∇f∥)dx, (3.4)

where θi ∈ S2 is the given i-th projection direction, gi(y) is the corresponding i-th measured
image. The way on how to choose the potential function ϕ can be found in [1], [5]. ϕ is the
engine to remove interfered noise as well as to preserve geometric features.

To derive the reconstruction equations, we first need to variate the regularized model. Using
formulas (3.2), (3.3) and (3.4) and then variating E(f), we have

δ(E(f), h) =

p∑
i=1

∫
R2

(
(Pθif)(y)− gi(y)

)
(Pθih)(y)dy + λ

∫
R3

ϕ′(∥∇f∥)∇fT∇h

∥∇f∥
dx (3.5)

From a theoretical point of view, the model (3.2) is well-posed. We present this result in the
following theorem.

Theorem 3.1 Assuming ϕ is a convex, nondecreasing function from R+ to R+, lims→+∞ ϕ(s) =
+∞. And there exists two constants c > 0 and b ≥ 0 such that cs−b ≤ ϕ(s) ≤ cs+b, ∀s ≥ 0. Let
P : L2(R3) → L2(R2) be a linear continuous operator and P1 ̸= 0. The minimization problem

min
f∈BV (Ω)

(
E1(f) + λE2(f)

)
,

where E1 and E2 is given by (3.3) and (3.4), respectively, admits a unique solution.

The proof of existence and uniqueness of a solution for the minimization problem is similar to
that of [21]. Hence, we do not give the proof because of nonessential difference.

3.2 Numerical Computing

The model introduced by us is a typical integro-differential equation. The formulas are highly
nonlinear, so the Fourier analysis method is useless here. The frequently used solving manner
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is resort to gradient flow, i.e., converting the elliptic differential equation to a time-dependent
parabolic one in the domain [0, T0] × Ω, T0 ≫ 0. When the parabolic differential equation
achieves its steady state solution, we obtain the solution of Euler-Lagrange equation. Therefore,
in what follows our solving problem is∫

R3

[
∂f

∂t
h+

λϕ′(∥∇f∥)∇f

∥∇f∥
∇h

]
dx+

p∑
i=1

∫
R2

(Pθif − gi)Pθihdy = 0, (3.6)

with a given f0 = f(x, y, 0). To preserve the geometric features of the reconstructed image, we
need to choose the regularization function ϕ(s).

From a geometry point of view, the regularization term can remove the noise while preserving
the geometric features very well, which is shown in [?]. In this paper, we choose

ϕϵ(s) =
√

s2 + ϵ2, (3.7)

and use a semi-implicit finite element method to solve (3.6), where ϵ is a small positive constant.
Let Th be a pixel or voxel mesh of Ω with mesh size h ∈ (0, 1). Let

Vh = span{ϕ0, ϕ1, · · · , ϕN}

be the finite element space, where ϕi ∈ C1(R3) are the basis functions with compact support Ωi.
We assume ∂Ωi is regular (piecewise smooth). In this paper, we use tri-cubic B-spline function
space defined on the uniform mesh Th. That is, ϕi is defined as follows:

ϕα(n+1)2+β(n+1)+γ(x) = Nα(x)Nβ(y)Nγ(z), x = [x, y, z]T ,

with α = 0, 1, · · · , n, β = 0, 1, · · · , n, γ3 = 0, 1, · · · , n, where Nα are the one dimensional cubic
B-spline basis function defined on the knots [−2 + α,−1 + α, α, 1 + α, 2 + α] . It is easy to see
that

Nα(x) = N0(x− α). (3.8)

Then Ωi is a hypercube. Let

Ω = ∪N
i=0Ωi, N = (n+ 1)3 − 1.

Then

f(x) =
N∑
i=0

fiϕi(x), x ∈ R3,

has compact support Ω.
Let {tm}Mm=0 be a partition of [0, T0] with mesh sizes

τm = tm − tm−1 ∈ (0, 1), k = max
1≤m≤M

τm.
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We assume τm ≪ 1. In the following, we use the following notation

dtf
m :=

fm − fm−1

τm
,

namely, we use Euler forward scheme with respect to temporal variable t. Then the semi-implicit
finite element discretization for the gradient flow (3.6) is given as follows: Find Fm ∈ V h for
m = 1, 2, · · · ,M such that

∫
R3

[
dtF

mvh+
λϕ′

ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∇Fm ·∇vh

]
dx+

p∑
i=1

∫
R2

(PθiF
m−gi)Pθivhdy = 0, ∀vh ∈ V h,

(3.9)

with some initial value F 0 ∈ V h that approximates f0.

Representing Fm(x) as
∑N

k=0 f
(m)
k ϕk(x) and taking the test function vh(x) = ϕj(x), we can

write (3.9) as a linear system of algebraic equations.

N∑
k=0

(mjk + τm(qjk + rjk)) f
(m)
k =

N∑
k=0

mjkf
(m−1)
k + τmbj , j = 0, · · · , N, (3.10)

where

mjk =

∫
R3

ϕj(x)ϕk(x)dx, (3.11)

qjk = λ

∫
R3

[ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∇ϕk · ∇ϕj

]
dx, (3.12)

rjk =

p∑
i=1

∫
R2

(Pθiϕk)(Pθiϕj)dy, (3.13)

bj =

p∑
i=1

∫
R2

gi(y)(Pθiϕj)(y)dy. (3.14)

Notice that since the basis functions are locally supported, the coefficient matrices M :=
{mjk}Nj,k=0, and Q := {qjk}Nj,k=0 of the systems are sparse. However, matrix R := {rjk}Nj,k=0 is

not sparse. Also note that the matrices M , R and B = [b0, · · · , bN ]T do not depend on F (m−1).
They can be previously computed.

3.3 Compute Temporal Step-size τm and Approximate Solution

In matrix form, equation (3.10) can be written as

(M + τm(Q+R))X(m) = MX(m−1) + τmB, (3.15)
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where

X(m) = [f
(m)
0 , · · · , f (m)

N ]T , m = 1, 2, · · · ,M.

Let

X(m) = X(m−1) + τmY + τ2mZ +O(τ3m),

with

Y = [y0, y1, · · · , yN ]T ,

Z = [z0, z1, · · · , zN ]T .

Substitute X(m) into (3.15), we have

(M + τm(Q+R))(Y + τmZ +O(τ2m)) = B − (Q+R)X(m−1).

Then

Y + τmZ +O(τ2m) =
(
I + τmM−1(Q+R)

)−1
M−1

(
B − (Q+R)X(m−1)

)
=
(
I − τmM−1(Q+R) +O(τ2m)

)
M−1

(
B − (Q+R)X(m−1)

)
. (3.16)

We obtain

Y = M−1
(
B − (Q+R)X(m−1)

)
, (3.17)

Z = −M−1(Q+R)M−1
(
B − (Q+R)X(m−1)

)
= −M−1(Q+R)Y. (3.18)

Let

y(x) =

N∑
j=0

yjϕj(x), z(x) =

N∑
j=0

zjϕj(x).

Then

Fm(x) = Fm−1(x) + τm y(x) + τ2m z(x) +O(τ3m).

Substitute Fm(x) into (3.2), we have

e(τm) := E
(
Fm−1 + τmy(x) + τ2mz(x) +O(τ3m)

)
Compute the power series expansion of e(τm) with respect to τm,

e(τm) = e0 + e1τm +
1

2
e2τ

2
m + · · · ,
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where

e1 =

p∑
i=1

∫
R2

(PθiF
m−1 − gi)(Pθiy)dy + λ

∫
R3

ϕ′(∥∇Fm−1∥)∇Fm−1 · ∇y

∥∇Fm−1∥
dx, (3.19)

e2 =

p∑
i=1

∫
R2

(Pθiy)
2 + 2(PθiF

m−1 − gi)(Pθiz)dy

+λ

∫
R3

ϕ′′(∥∇Fm−1∥)(∇Fm−1 · ∇y)2

∥∇Fm−1∥2
dx

+λ

∫
R3

ϕ′(∥∇Fm−1∥)
[
∥∇y∥2 + 2∇Fm−1 · ∇z

∥∇Fm−1∥
− (∇Fm−1 · ∇y)2

∥∇Fm−1∥3

]
dx. (3.20)

Then from

e′(τm) = 0,

we obtain a linear equation. Solving the equation, we obtain τm as follows.

τm = −e1
e2

. (3.21)

Having τm, Y and Z, X(m) can be approximated as

X(m) ≈ X(m−1) + τmY + τ2mZ. (3.22)

Now we summarize the iteration scheme as the following algorithm.

Algorithm 3.1 Semi-implicit Finite Element Method

1. Set m = 0, set the initial B-spline coefficients X(0) = 0.

2. Compute M = {mjk} and B = {bj} using (3.11) and (3.14), respectively.

3. Compute Q = {qjk} using (3.12).

4. Compute Y and Z using (3.17) and (3.18), respectively.

5. Compute e1 and e2 using (3.19) and (3.20) and then compute τm using (3.21).

6. Compute X(m) using (3.22).

7. Check the terminate condition, if it is satisfied, stop the iteration, otherwise, set m to be
m+ 1, return to step 3.

Remark 3.1 In (3.22), if we take Z = 0, then the obtained X(m) is the same as the one
obtained from the explicit finite element method for the given τm. Hence our method can be
regarded as a correction of the explicit finite element method by adding a second order term
τ2mZ. Even higher order terms can be computed from (3.16). But since τm in general is small,
these terms are negligible.
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3.4 The Computation of RX

In the above algorithm, we need to compute the multiplication of R and a vector X. In general,
matrix R is not sparse. Hence if the size of N is large, for instance N = 5123, the required space
for storing R, which is N2 = 5126, may beyond the capacity of the used computer. Hence, it is
impractical to compute directly the multiplication of R and a vector X = [x0, · · · , xN ]T . What
we suggest is to represent RX as follows

RX =

p∑
i=1

∫
R2

N∑
k=0

xk(Pθiϕk)(y)(Pθiϕj)(y)dy.

Hence, we first compute

Xi(y) :=

N∑
k=0

xk(Pθiϕk)(y), i = 1, · · · , p, (3.23)

then compute

yij :=

∫
R2

Xi(y)(Pθiϕj)(y)dy, for i = 1, · · · , p, j = 0, · · · , N. (3.24)

Finally, RX is computed as

RX =

[
p∑

i=1

yi0, · · · ,
p∑

i=1

yiN

]T
. (3.25)

3.5 Algorithm Details and Analysis of Computational Complexity

We present algorithm details and analyze the computational complexity for Algorithm 3.1 from
step 2 to step 6. The costs for the first and last step is relatively small.

1. Matrix M is sparse, its elements has close form representation. Utilizing the the tensor
product structure of the basis functions, we only need to store and inverse a n×n matrix.
Hence, the computational cost of the inversion of M is O(n3). Let p be the number of
projections, then using the translation property (3.8) of the basis functions, we know that
Pθiϕj can be computed from Pθiϕ0. Since Pθiϕj has compact support, the computational
cost for bj is O(p). Hence, the computational complexity for B is O(pn3). All these
computations in step 2 are out of the m-iteration loop in Algorithm 3.1. They can be
previously computed.

2. The cost for computing Q in step 3 is in the same order as computing M . It is O(n3).
Since qjk depends on Fm−1, it needs to be recomputed in each of the m-iterations.
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3. To compute Y and Z in step 4, we need to first compute QX(m−1) and RX(m−1). Since Q
is a sparse matrix, the cost for computing QX(m−1) is O(n3). RX(m−1) is computed using
(3.23)–(3.25). The cost for computing one Xi(y) using (3.23) is O(n3). For computing
all Xi(y), i = 1, · · · , p, the cost is O(pn3). Since Pθiϕj is local supported, the cost
for computing yij is O(1). Hence the total cost for computing {yij} is O(pn3). Finally,
computing RX using (3.25) requires O(pn3) arithmetic operations. Adding these together,
the total cost for computing RX is O(pn3). The cost for computing the multiplication
M−1 with a vector is O(n3) using the property that M−1 is approximately a band matrix.
In summary, Y can be computed with the complexity O(pn3). After Y is computed, Z is
similarly computed via (3.18). Again, the cost is O(pn3).

4. Now we consider the computations of e1 and e2 in step 5. The cost for computing all the
Pθiy is O(pn3). The cost for computing ∇Fm−1 and ∇y is O(n3). Hence the order for
computing e1 and e2 using (3.19) and (3.20) is O(pn3).

5. The cost for computing X(m) in step 6 using (3.22) is O(n3). Hence, for one m-iteration,
the total cost is in the order of O(pn3).

Remark 3.2 The analysis above shows that the computational complexity of the semi-implicit
scheme is O(pn3) for one iteration. This is in the same order as the explicit finite element
method presented in [12]. However, since the semi-implicit scheme requires less iterations in
general than the explicit scheme, the presented method is more efficient.

4 Convergence of semi-implicit finite element discretization

In this section, we give the convergent analysis of finite element discretization for semi-implicit
scheme.

Lemma 4.1 Assume that f0 ∈ L2(R3) with support Ω, gi ∈ L2(R2) and ∂Ω is sufficiently
regular. Then, for each fixed ϵ > 0, {Fm} derived from semi-implicit scheme (3.9) satisfies

l∑
m=1

[
τm∥dtFm∥2L2(R3)+

τ2m
2

p∑
i=1

∥dt(PθiF
m−gi)∥2L2(R2)

]
+Jλ,ϵ(F

l) ≤ Jλ,ϵ(F
0), 1 ≤ l ≤ M. (4.1)

Proof. To verify (4.1), testing (3.9) with dtF
m yields

∥dtFm∥2L2(R3)+

∫
R3

λ
[ϕ′

ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∇Fm ·∇dtF
m
]
dx+

p∑
i=1

∫
R2

(PθiF
m−gi)dtPθiF

mdy = 0.

(4.2)

Considering the last term on the left-hand of (4.2), we derive∫
R2

(PθiF
m − gi)dtPθiF

mdy =
dt∥PθiF

m − gi∥2L2(R2)

2
+

τm∥dt(PθiF
m − gi)∥2L2(R2)

2
, (4.3)
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and similarly,

∇Fm · ∇dtF
m =

dt∥∇Fm∥2 + τm∥∇dtF
m∥2

2
. (4.4)

Hence, using (4.3) and (4.4), (4.2) becomes

∥dtFm∥2L2(R3) +

∑p
i=1 dt∥PθiF

m − gi∥2L2(R2)

2
+

τm
∑p

i=1 ∥dt(PθiF
m − gi)∥2L2(R2)

2

+
1

2

∫
R3

λϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

(
dt∥∇Fm∥2 + τm∥∇dtF

m∥2
)
dx = 0. (4.5)

Noting that the forth term on the left-hand side of (4.5), we have (using the formula a2 − b2 =
2b(a− b) + (a− b)2)

1

2

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

dt∥∇Fm∥2dx =
1

τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)(∥∇Fm∥ − ∥∇Fm−1∥)dx

+
1

2τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

(∥∇Fm∥ − ∥∇Fm−1∥)2dx. (4.6)

Using Cauchy inequality ∇Fm · ∇Fm−1 ≤ ∥∇Fm∥∥∇Fm−1∥ and ϕ′
ϵ(s) ≥ 0, we obtain

1

2τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

(∥∇Fm∥−∥∇Fm−1∥)2dx ≤ 1

2

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

τm∥∇dtF
m∥2dx. (4.7)

Substituting (4.6)-(4.7) into (4.5), we obtain

∥dtFm∥2L2(R3) +

∑p
i=1 dt∥PθiF

m − gi∥2L2(R2)

2
+

τm
∑p

i=1 ∥dt(PθiF
m − gi)∥2L2(R2)

2

+
λ

τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)(∥∇Fm∥ − ∥∇Fm−1∥)dx

+
λ

τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

(∥∇Fm∥ − ∥∇Fm−1∥)2dx ≤ 0. (4.8)

We can show that (see [?] for details of this derivation)∫
R3

ϕ′
ϵ(∥∇Fm−1∥)(∥∇Fm∥ − ∥∇Fm−1∥)dx+

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

(∥∇Fm∥ − ∥∇Fm−1∥)2dx

≥
∫
R3

ϕ′
ϵ(∥∇Fm∥)(∥∇Fm∥ − ∥∇Fm−1∥)dx (4.9)

Using the convexity of ϕϵ(s), the term on the right-hand side of (4.9) is bounded by∫
R3

ϕ′
ϵ(∥∇Fm∥)(∥∇Fm∥ − ∥∇Fm−1∥)dx ≥ τm dt

∫
R3

ϕϵ(∥∇Fm∥)dx. (4.10)
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According to (4.8), (4.9) and (4.10), we get

∥dtFm∥2L2(R3) +

∑p
i=1 dt∥PθiF

m − gi∥2L2(R2)

2
+

τm
∑p

i=1 ∥dt(PθiF
m − gi)∥2L2(R2)

2

+ λdt

∫
R3

ϕϵ(∥∇Fm∥)dx ≤ 0. (4.11)

Applying the summation operator
∑l

m=1 τm to the above inequality, we get (4.1).
For finite element solution {Fm}, in what follows we give its constant and linear interpolation

in temporal direction t [9]

F
ϵ,h,k

(x, t) := Fm−1(x), ∀t ∈ [tm−1, tm), 1 ≤ m ≤ M, (4.12)

F
ϵ,h,k

(x, t) :=
t− tm−1

τm
Fm(x) +

tm − t

τm
Fm−1(x), ∀t ∈ [tm−1, tm], 1 ≤ m ≤ M. (4.13)

Obviously, F
ϵ,h,k

is continuous in spatial x but discontinuous in t. However, F
ϵ,h,k

is continuous
in both x and t.

Theorem 4.1 Assume that f0 ∈ L2(R3) with support Ω and sufficiently regular boundary ∂Ω,
gi ∈ L2(R2) . Then under the following initial value constraint

lim
h→0

∥f0 − F 0∥L2(R3) = 0,

there exits f ϵ ∈ L∞((0, T );BV (Ω)) ∩H1((0, T );L2(R3)) such that

lim
h,k→0

∥f ϵ − F
ϵ,h,k∥L∞((0, T0);Lp(R3)) = 0, (4.14)

lim
h,k→0

∥f ϵ − F
ϵ,h,k

∥L∞((0, T0);Lp(R3)) = 0, (4.15)

uniformly in ϵ for any p ∈ [1, n
n−1).

Proof. To show (4.14)-(4.15), we first notice that (4.1) implies the following (uniform in both
h, k and ϵ) estimates

∥F
ϵ,h,k

t ∥L2(L2(R3)) =
( M∑

m=1

τm∥dtFm∥2L2(R3)

) 1
2 ≤ C, (4.16)

∥PθiF
ϵ,h,k∥L∞(L2(R2)) ≤ ∥PθiF

ϵ,h,k
∥L∞(L2(R2))

= max
0≤m≤M

∥PθiF
m∥L2(R2)

≤ max
0≤m≤M

∥PθiF
m − gi∥L2(R2) + ∥gi∥L2(R2) ≤ C, (4.17)
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∥∇F
ϵ,h,k∥L∞(L1(R3)) ≤ ∥∇F

ϵ,h,k
∥L∞(L1(R3)) = max

0≤m≤M
∥∇Fm∥L1(R3)

≤ max
0≤m≤M

∫
R3

ϕϵ(∥∇Fm∥)dx ≤ C, (4.18)

M∑
m=1

p∑
i=1

∥PθiF
m −PθiF

m−1∥2L2(R2)

=

M∑
m=1

τ2m

p∑
i=1

∥dt(PθiF
m − gi)∥2L2(R2) ≤ C, if λ ̸= 0, (4.19)

where C is a sufficiently large constant.
Then, testing (3.9) with Fm yields∫
R3

[
dtF

m ·Fm+
λϕ′

ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∇Fm ·∇Fm
]
dx+

p∑
i=1

∫
R2

(PθiF
m−gi)PθiF

mdy = 0. (4.20)

Noting the first and the last terms in the integration of (4.20), we derive

dtF
m · Fm =

Fm − Fm−1

τm
Fm =

dt|Fm|2

2
+

τm|dtFm|2

2
, (4.21)

and ∫
R2

(PθiF
m − gi)PθiF

mdy =
∥PθiF

m − gi∥2L2(R2) + ∥PθiF
m∥2L2(R2) − ∥gi∥2L2(R2)

2
, (4.22)

Using (4.21) and (4.22), (4.20) becomes

dt∥Fm∥2L2(R3)

2
+

τm∥dtFm∥2L2(R3)

2
+ λ

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∥∇Fm∥2dx

+

∑p
i=1 ∥PθiF

m − gi∥2L2(R2)

2
+

∑p
i=1 ∥PθF

m∥2L2(R2)

2
=

∑p
i=1 ∥gi∥2L2(R2)

2
.

(4.23)

Therefore, applying the summation operator 2
∑l

m=1 τm to the resulting equality (4.23), we
obtain

∥F l∥2L2(R3) +

l∑
m=1

τ2m∥dtFm∥2L2(R3) + λ

l∑
m=1

τm

∫
R3

ϕ′
ϵ(∥∇Fm−1∥)
∥∇Fm−1∥

∥∇Fm∥2dx

+

l∑
m=1

τm

p∑
i=1

∥PθiF
m − gi∥2L2(R2) +

l∑
m=1

τm

p∑
i=1

∥PθF
m∥2L2(R2)

≤

(
l∑

m=1

τm

)
p∑

i=1

∥gi∥2L2(R2) + ∥F 0∥2L2(R3), ∀1 ≤ l ≤ M. (4.24)
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Since
∑l

m=1 τm ≤ T0, we have(
l∑

m=1

τm

)
p∑

i=1

∥gi∥2L2(R2) + ∥F 0∥2L2(R3) ≤ T0

p∑
i=1

∥gi∥2L2(R2) + ∥F 0∥2L2(R3) ≤ C, ∀1 ≤ l ≤ M.

(4.25)

Hence, according to (4.24) and (4.25), we get

∥F ϵ,h,k∥L∞(L2(R3)) ≤ ∥F
ϵ,h,k

∥L∞(L2(R3)) = max
0≤m≤M

∥Fm∥L2(R3) ≤ C, (4.26)

M∑
m=1

∥Fm − Fm−1∥2L2(R3) =
M∑

m=1

τ2m∥dtFm∥2L2(R3) ≤ C. (4.27)

Then, based on (4.16), (4.18), (4.26) and (4.27), there exists a convergent subsequence of

{F
ϵ,h,k

} (denoted by the same notation) [9][20] and a function f ϵ ∈ L∞((0, T );BV (Ω)) ∩
H1((0, T );L2(R3)) such that as h, k → 0

F
ϵ,h,k

−→ f ϵ weakly ⋆ in L∞((0, T0); L
2(R3)),

weakly in L2((0, T0); L
2(R3)),

strongly in Lp(Ω), 1 ≤ p <
n

n− 1
, for a.e. t ∈ [0, T0],

(4.28)

and

F
ϵ,h,k

t −→ f ϵ
t weakly in L2((0, T0); L

2(R3)). (4.29)

Here we have used the fact that BV (Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < n
n−1 .

Notice that the assumption on F 0 implies that f ϵ(0) = f0. Therefore, the proof of (4.14) is
completed.

Using (4.1), we have

M∑
m=1

τm∥dtFm∥2L2(R3) ≤ C.

According to above formula, it is easy to show that

∥F
ϵ,h,k

− F
ϵ,h,k∥2L2(L2(R3)) =

∫ T0

0
∥F

ϵ,h,k
− F

ϵ,h,k∥2L2(R3)dt

=
1

3

M∑
m=1

τ3m∥dtFm∥2L2(R3)

≤ k2

3

M∑
m=1

τm∥dtFm∥2L2(R3) ≤ Ck2. (4.30)

Using (4.14) and (4.30), we obtain (4.15). Therefore, for semi-implicit scheme (3.9) the proof of
convergence is completed.
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