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Abstract
In this paper we are concerned with the computation of a liquid crystal model defined

by a simplified Oseen-Frank energy functional and a (sphere) nonlinear constraint. A
particular case of this model defines the well known harmonic maps. We design an new
iterative method for solving such a minimization problem with the nonlinear constraint.
The main ideas are to linearize the nonlinear constraint by Newton’s method and to
define a suitable penalty functional associated with the original minimization problem.
It is shown that the solution sequence of the new minimization problems with the linear
constraints converges to the desired solutions provided that the penalty parameters are
chosen by a suitable rule. Numerical results confirm the efficiency of the new method.

Keywords: harmonic maps, nonlinear constraint, Newton’s method, regularized func-
tional, saddle points.
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1 Introduction

Let Ω be a bounded and Lipschitz domain in Rd (d = 2, 3), and let E be the simplified
Oseen-Frank energy functional defined by (see, for example, [11])

E(v) =
1
2

∫

Ω
(κ1|∇v|2 + κ2|∇ × v|2)dx, v ∈ H1(Ω)d (d = 2, 3), (1.1)

with κ1 > 0 and κ2 ≥ 0. The target manifold Sd−1 is the sphere

Sd−1 = {v ∈ Rd |F (v) = 0 a.e. in Ω },
with F (v) = |v|2 − 1. We shall study the problem of finding local minima of a constrained
minimization problem of the form:

min
v∈H1

g(Ω;Sd−1)
E(v). (1.2)
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Here, H1
g(Ω; Sd−1) denotes the set of vector fields with values in the manifold Sd−1, and

function values and first derivatives in L2(Ω)d, such that each element v in H1
g(Ω; Sd−1)

satisfies v|∂Ω = g in the sense of trace for a fixed vector field g defined on the boundary ∂Ω.
We assume that the problem (1.2) has a solution u at least. Problems of the form (1.2) can be
found in many practical applications, for example, numerical simulation of liquid crystals. In
particular, when κ2 = 0, the critical points of the functional E over H1

g(Ω; Sd−1) are frequently
referred as harmonic maps from Ω into Sd−1 (see [7] and [8]). For convenience, the critical
points of the functional E over H1

g(Ω; Sd−1) for all κ2 ≥ 0 are called generalized harmonic
maps. The computation of the generalized harmonic maps is a difficult topic, since the target
manifold Sd−1 is not a convex set, the problem (1.2) usually possesses many solutions (when
d = 3), some of which may be non-smooth (see [13] for some details).

The goal of this paper is to develop an iterative method for computing the generalized
harmonic maps. The simplest case of (1.2) with κ2 = 0 has been studied by many researchers
(see, for example, [1], [3], [4] and [16]). It is known that the projection method is the most
natural one for solving this problem. The projection method was first introduced in [1], and
was further developed by [3], [10] (for the Landau-Lifshitz equation) and [16]. A variant of the
projection method was proposed in [4]. An advantage of the projection method is that it is
globally convergent (design of a globally convergent iterative method for solving complicated
nonlinear problems is both important and difficult). However, the discretization version
of the projection method may be not convergent for the general regular and quasi-uniform
triangulation even if κ2 = 0 (see [3] for detailed discussion). To our knowledge, there is few
work to study numerical methods for solving (1.2) with κ2 > 0. The first important attempt
to solve this problem was made in [11] where (1.2) was transformed into a time-evolution
problem with a penalty term by using the heat flow (gradient flow) method [8] and the penalty
method, and the resulting variational problem was solved by the operator-splitting method
after discretization of the time variable. The heat flow method for computation of p harmonic
maps was also studied recently in [5]. The main advantage of the heat flow method is that,
when the time step size is small enough, the resulting nonlinear problem at one time step can
be solved more easily than the original independent-time problem. But, one has to iteratively
solve a nonlinear problem at each time step in the gradient flow method. A general method
for solving (1.2) is the penalty method, namely, use Ginzburg-Landau free energy instead of
E(v) (see, for example, [6]). However, it is difficult to design an efficient iterative method for
solving the variational problem arising from Ginzburg-Landau free energy, since the penalty
term is too complicated. A saddle-point method is studied in [14] for the case d = 2 and
κ2 = 0, but for more general function F .

In this paper we propose a new iterative method for solving a discrete problem associated
with (1.2). We consider the more general case with κ2 ≥ 0. Our main ideas can be described
as follows: use Newton method to linearize the constraint F (v) = 0, and replace the energy
functional E(v) by a new energy functional with a nonstandard penalty term associated with
the constraint F (v) = 0. Then we solve the minimization problems with the penalized energy
on the linearized constraint spaces. We find that the new minimization problem can be solved
easily, and the cost of computation is almost same with that in the projection method. It will
be shown that the resulting solution sequence is always globally convergent without particular
requirement to triangulation, provided that the penalty term is designed properly. Our idea
can be extended to more general liquid crystal model by designing a different penalty term
(which will be done in another paper).
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The outline of this paper is as follows. In Section 2, we give some notations. In Section
3, we introduce a finite element discretization for (1.2), and analyze the convergence of the
resulting approximate solution. In section 4, we describe the motivation to designing the
new iterative method. In Section 5, we present the Newton-penalty method, and prove an
important property of the method: the energy is decreasing. The convergence of the new
method is proved in Section 6. In Section 7, we discuss some details about the solution of the
minimization problem associated with the Newton-penalty method. Some numerical results
are given in Section 8.

2 Notations and Preliminaries

Throughout this paper we use c and C to denote generic positive constants, not necessarily
the same at different occurrences. It is assumed that the constants are independent of the
mesh size h which will be introduced later. For vectors v,w ∈ Rd we use v · w to denote
the Euclidian inner product, while the notation A : B is used to denote the Frobenius inner
product of two matrices A,B ∈ Rd×d. The corresponding norms are given by |v| and |A|,
respectively. For a vector or matrix A, At is the transpose of A.

For m ≥ 0 we use Hm = Hm(K) to denote the real valued L2– based Sobolev spaces
on domain K ⊂ Rd, with the corresponding norm by ‖ · ‖m,K , and use | · |m,K to denote
the semi norm involving only the mth order derivatives. The subspace Hm

0 is the closure of
C∞

0 (K) in Hm, while H−m is the dual of Hm
0 with respect to an extension of the L2 inner

product (·, ·). The corresponding L∞–based Sobolev spaces are denoted by Wm,∞(K), with
the norm ‖ · ‖m,∞,K . The notation H1(Ω) and W1,∞(Ω) will be used for the vector version
of the corresponding spaces.

In general, we use boldface symbols for vector or matrix valued functions. For convenience,
we give the exact definitions of more notations only for the case with Sd−1 ⊂ R3 (i.e., d = 3)
in the rest of this section. The exact definitions of notations for d = 2 can be given with
obvious modification.

The gradient operator with respect to the spatial variable x = (x1, x2, x3) is denoted as
∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3)t. The gradient of a vector valued function v = (v1, v2, v3)t, ∇v,
is the matrix valued function obtained by taking the gradient row–wise, i.e.,

∇v = (∇v1,∇v2,∇v3)t or (∇v)ij = ∂vi/∂xj .

For two vector valued functions v and w = (w1 w2 w3)t, we define v × ∇w as the matrix
valued function obtained by taking the vector product row–wise, i.e.,

v ×∇w = (v ×∇w1, v ×∇w2, v ×∇w3)t.

It can be verified that
∇(v ×w) = ∇v ×w + v ×∇w. (2.1)

As usual, we use DF to denote the gradient of F , i.e.,

DF (v) = (∂F/∂v1, ∂F/∂v2, ∂F/∂v3)t = (2v1, 2v2, 2v3)t = 2v (d = 3). (2.2)

The corresponding Hessian is denoted by

D2F (v) = (∂2F/∂vi∂vj)3i,j=1 = 2




1 0 0
0 1 0
0 0 1


 . (2.3)
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For the boundary function g of (1.2) we assume that it has been extended into the interior
of Ω such that g ∈ H1(Ω). For such g, we let

H1
g(Ω) = {v ∈ H1(Ω) : v = g on ∂Ω}.

For a functional J : H1(Ω) → R, we use J′(v) : H1(Ω) → R to represent the Gateaux
derivative of J at v ∈ H1(Ω). Similarly, we use J′′(v) : H1(Ω) → H1(Ω) to denote the
second-order Gateaux derivative of J at v ∈ H1(Ω). Let J′(v)w and J′′(v)w denote the
images of the maps J′(v) and J′′(v) at w ∈ H1(Ω), respectively. It is easy to see that

E ′(v)w =
∫

Ω

[
κ1∇v : ∇w + κ2(∇× v) · (∇×w)

]
dx, v ∈ H1(Ω)

and
E ′′(v)w ·w =

∫

Ω

[
κ1∇w : ∇w + κ2(∇×w) · (∇×w)

]
dx, v ∈ H1(Ω).

Note that
0 ≤ ‖∇×w‖2

0,Ω ≤ C‖∇w‖2
0,Ω,

we have
κ1‖∇w‖2

0,Ω ≤ E ′′(v)w ·w ≤ C(κ1 + κ2)‖∇w‖2
0,Ω, v, w ∈ H1(Ω). (2.4)

The critical points of the functional E over H1
g(Ω; Sd−1), i.e., the stationary points of the

minimization problem (1.2), are called generalized harmonic maps from Ω into Sd−1. A vector
field u ∈ H1

g(Ω; Sd−1) is such a critical point if it satisfies

E ′(u)v = 0 (2.5)

for any v in the tangential space of H1
g(Ω; Sd−1) at u, i.e., for any v ∈ H1

0(Ω) such that
DF (u) · v ≡ 0 (refer to [8]).

For a two-dimensional vector v, let v⊥ denote the vector obtained by a rotation of 90
degrees for v. The following result can be obtained directly from the above definition.
Proposition 2.1 The vector function u ∈ H1

g(Ω; Sd−1) is a harmonic map if and only if

E ′(u)(φDF (u)⊥) = 0, ∀φ ∈ C∞
0 (Ω) (d = 2), (2.6)

or
E ′(u)(v ×DF (u)) = 0, ∀v ∈ C∞

0 (Ω) (d = 3). (2.7)

¤

3 The finite element discretizations

In this section we introduce a discrete version of the problem (1.2) and study convergence of
the resulting approximate solution.

In the rest of the paper we assume that the domain Ω ⊂ Rd is a polygon or a polyhedron.
Given a family of shape regular and quasi–uniform triangulation {Th} in Ω with a mesh size
h < 1, let Nh = {pk}N

k=1 denote the set of nodes associated with Th. As usual, we use ϕk to
denote the nodal basis function associated with the node pk.
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We use Vh to denote the space of continuous piecewise linear functions with respect to Th

and Vh,0 = Vh ∩H1
0 (Ω). The notation Vh and Vh,0 will be used for the vector version of the

corresponding spaces. We will use πh to denote the usual nodal interpolation operators onto
the spaces Vh and Vh. Let π∂

h denote the restriction of πh on ∂Ω.
The following inverse inequality for finite element functions in Vh will be used later:

‖vh‖1,Ω ≤ Ch−1‖vh‖0,Ω and ‖vh‖0,∞,Ω ≤ Cβh(d)‖vh‖1,Ω, ∀vh ∈ Vh. (3.1)

Here, βh(d) = log
1
2 (1/h) for d = 2, and βh(d) = h−

1
2 for d = 3.

As in [3], we assume that g is continuous on ∂Ω. Set gh = π∂
hg (on ∂Ω), and define

Vh,g = {v ∈ Vh : v|∂Ω = gh}.
We will consider the following discretized minimization problem:

min
v∈Vh,g

E(v) subject to F (v) = 0 on Nh. (3.2)

Since the minimization functional is convex and continuous, and the set

Kh = {v ∈ Vh,g : F (v) = 0 on Nh}
is closed and compact, the problem (3.2) has a solution at least for a fixed h (refer to Chapter
7 of [17]).

For convenience, the critical points of the functional E over the discrete space Kh, i.e.,
stationary points of the minimization problem (3.2), are called discrete generalized harmonic
maps in Kh. It is well known that u∗h ∈ Kh is a stationary point of the minimization problem
(3.2) if and only if there exists a Lagrange multiplier χ = (b1, b2, · · · , bN )t such that

E ′(u∗h)v +
N∑

k=1

bkDF (u∗h(pk)) · v(pk) = 0, ∀v ∈ Vh,0. (3.3)

The following result can be viewed as the discrete version of Proposition 2.1.
Proposition 3.1 A vector function u∗h ∈ Kh is a discrete generalized harmonic map if and
only if u∗h satisfies

E ′(u∗h)πh(φhDF (u∗h)⊥) = 0, ∀φh ∈ Vh,0 (d = 2), (3.4)

or
E ′(u∗h)πh(vh ×DF (u∗h)) = 0, ∀vh ∈ Vh,0 (d = 3). (3.5)

Proof. It suffices to prove that the condition (3.4) or (3.5) is equivalent to the existence of
numbers {bk} satisfying the relation (3.3).

Without loss of generality, we consider only the case of d = 3. Assume that u∗h ∈ Kh

satisfies (3.5). We try to verify (3.3). Let Φr
k ∈ Vh,0 (r = 1, 2, 3) be the three nodal basis

vectors associated with an interior node pk. Namely,

Φ1
k = (ϕk, 0, 0)t, Φ2

k = (0, ϕk, 0)t and Φ3
k = (0, 0, ϕk)t.

In the rest of the proof, we consider only the index k associated to an interior nodes pk. Then
equality (3.5) is equivalent to

E ′(u∗h)πh(Φr
k ×DF (u∗h)) = 0, ∀k (r = 1, 2, 3). (3.6)
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By the definition of πh, one can verify that

πh(Φr
k ×DF (u∗h)) = Φr

k ×DF (u∗h(pk)).

Thus one gets from (3.6) that

E ′(u∗h)(Φr
k ×DF (u∗h(pk))) = 0, ∀k (r = 1, 2, 3).

It can be verified, by the above equality, that the vector

(E ′(u∗h)Φ1
k, E ′(u∗h)Φ2

k, E ′(u∗h)Φ3
k)

t

is parallel to the vector DF (u∗h)(pk). Thus, there exists a number bk such that

E ′(u∗h)Φr
k = −bk

[
DF (u∗h)(pk) · Φr

k(pk)
]
, ∀k (r = 1, 2, 3). (3.7)

This implies (3.3) because in the sum, the terms corresponding to boundary nodes vanish.
On the other hand, the equality (3.5) obviously follows by (3.3).

Remark 3.1 From (2.2), we have |DF (u∗h(pk))|2 = 4 6= 0. It follows by (3.7) that

bk = −E
′(u∗h)(DF (u∗h(pk))ϕk)
|DF (u∗h(pk))|2

for each interior node pk. The stationary point u∗h is a local strict minimizer of (3.2) if and
only if u∗h satisfies the condition (for such bk)

E ′′(u∗h)v · v +
N∑

k=1

bkD2F (u∗h(pk))v(pk) · v(pk) > 0, (3.8)

for all v ∈ {v : DF (u∗h(z)) · v(z) = 0, ∀z ∈ Nh}. Some details on this result can be found in
Chapter 8 of [17].

In the rest of this section, we derive some approximate properties of uh. To this end, we
first give two simple lemmata.

Lemma 3.1 For any vh ∈ Kh, we have F (vh) ≤ 0 in Ω.

Proof. Let ϕk be the basis function on the node pk. Then,

vh(p) =
N∑

k=1

vh(pk)ϕk(p), ∀p ∈ Ω. (3.9)

Since

ϕk(p) > 0 and
N∑

k=1

ϕk(p) = 1,

we get by (3.9) and the convexity of the functional F

F (vh(p)) ≤
N∑

k=1

ϕk(p)F (vh(pk)) ≤ 0.

¤
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Lemma 3.2 Let wh ∈ Kh. Assume that the sequence {|wh|1,Ω} is uniformly bounded with
h. Then the sequence {‖wh‖1,Ω} is also uniformly bounded with h. Moreover, we have

‖DF (wh)‖0,∞,Ω ≤ C, |DF (wh)|1,Ω ≤ C, (3.10)

and
|F (wh)|1,Ω ≤ C. (3.11)

Proof. Since F (wh) = 0, we have |wh|2 = 1 in Ω. We further get by (2.2)

|DF (wh)|2 = 4 in Ω. (3.12)

These imply the first conclusion of the lemma and the first inequality in (3.10).
The second inequality of (3.10) follows by (2.2) and the assumption.
It can be verified that

|F (wh)|1,Ω ≤ C‖DF (wh)‖0,∞,Ω · ‖∇wh‖0,Ω. (3.13)

Then we deduce (3.11) by (3.12) and the assumption.
¤

Theorem 3.1 Let uh ∈ Kh be a discrete harmonic map associated with the mesh size h.
Assume that the sequence {|uh|1,Ω} is bounded with respect to h. Then

(i) there exists a subsequence of the sequence {uh}h>0, which is denoted by {uh}h>0 itself,
such that {uh}h>0 converges to u ∈ H1

g(Ω; Sd−1) weakly in H1 and strongly in L4;

(ii) u is a harmonic map.

Proof. (i) By Lemma 3.2, the sequence {‖uh‖1,Ω} is also uniformly bounded with h. Thus
there exists a subsequence of the sequence {uh}h>0, which converges to a u ∈ H1(Ω) weakly
in H1 and strongly in L4. It suffices to prove u ∈ H1

g(Ω, Sd−1).
Since πhF (uh) = 0, we have

‖F (uh)‖0,Ω = ‖(I − πh)F (uh)‖0,Ω ≤ Ch|F (uh)|1,Ω. (3.14)

This, together with (3.11), leads to

‖F (uh)‖0,Ω ≤ Ch → 0+ when h → 0+. (3.15)

On the other hand, we have

F (u)− F (uh) = 2uh · (u− uh) + |u− uh|2.

Hence

‖F (u)− F (uh)‖0,Ω ≤ C(‖u− uh‖0,Ω + ‖u− uh‖2
L4(Ω)) → 0+ when h → 0+.

This, together with (3.15), yields
‖F (u)‖0,Ω = 0.
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Thus F (u) = 0 a.e. in Ω. Similarly, we can prove u|∂Ω = g (refer to [3]), and so u ∈
H1

g(Ω, Sd−1).
(ii) The proof is similar to that of Theorem 3.8 in [3]. Let v ∈ C∞

0 (Ω), and set vh =
πhv ∈ Vh,0. It follows by Proposition 3.1 that

E ′(u)(v ×DF (u)) = E ′(u)(v ×DF (u))− E ′(uh)πh(vh ×DF (uh))
= [E ′(u)(v ×DF (u))− E ′(uh)(v ×DF (uh))]
+ [E ′(uh)(v ×DF (uh))− E ′(uh)(vh ×DF (uh))]
+ [E ′(uh)(vh ×DF (uh))− E ′(uh)πh(vh ×DF (uh))]
= I1 + I2 + I3. (3.16)

We first verify I2, I3 → 0 when h → 0+. In fact, we have by the assumption

|I2| = |E ′(uh)((v − vh)×DF (uh))|
≤ C|uh|1,Ω · |(v − vh)×DF (uh)|1,Ω

≤ C|(v − vh)×DF (uh)|1,Ω. (3.17)

It follows by (2.1) that

|(v − vh)×DF (uh)|1,Ω ≤ 2[‖∇(v − vh)×DF (uh)‖0,Ω + ‖(v − vh)×∇(DF (uh))‖0,Ω]
≤ C‖DF (uh)‖0,∞,Ω · |v − vh|1,Ω + |DF (uh)|1,Ω · |v − vh|0,∞,Ω.

Thus, by (3.10) and the convergence of the interpolation operator, we get

|(v − vh)×DF (uh)|1,Ω → 0+ (h → 0+).

This, together with (3.17), leads to I2 → 0 (h → 0+). Similarly, we have I3 → 0 (h → 0+).
Now we consider the term I1. By the definitions, we have

I1 = [
∫

Ω
∇u : (∇v ×DF (u))dx−

∫

Ω
∇uh : (∇v ×DF (uh))dx]

+ [
∫

Ω
(∇× u) : ((∇× v)×DF (u))dx−

∫

Ω
(∇× uh) : ((∇× v)×DF (uh))dx]

= I11 + I12. (3.18)

Here we have used the equalities DF (u) = 2u and DF (uh) = 2uh.
It is clear that

I11 =
∫

Ω
∇(u− uh) : (∇v ×DF (u))dx +

∫

Ω
∇uh : (∇v × (DF (u)−DF (uh)))dx. (3.19)

Since v ∈ C∞(Ω), we have ∇v ×DF (u) ∈ L2(Ω), therefore the linear functional

J(·) =
∫

Ω
(∇ ·) : (∇v ×DF (u))dx

is bounded on H1(Ω). Thus we get by the result (i)
∫

Ω
∇(u− uh) : (∇v ×DF (u))dx → 0 (h → 0+). (3.20)
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On the other hand, we have by (2.2)

‖DF (u)−DF (uh)‖0,Ω = 2‖u− uh‖0,Ω.

Then we can obtain by using Holder inequality

|
∫

Ω
∇uh : (∇v × (DF (u)−DF (uh)))dx| ≤ |uh|1,Ω · ‖∇v‖0,∞,Ω · ‖DF (u)−DF (uh)‖0,Ω

≤ C|uh|1,Ω · ‖v‖1,∞,Ω · ‖u− uh‖0,Ω.

Hence, by the assumption and the conclusion (i), we get
∫

Ω
∇uh : (∇v × (DF (u)−DF (uh)))dx → 0 (h → 0+).

Substituting (3.19) by (3.20) and the above relation, we obtain I11 → 0 (h → 0+). Similarly,
we have I12 → 0 (h → 0+). All these, together with (3.18), yields I1 → 0 (h → 0+).

Finally we obtain the desired result by (3.16).
¤

4 Motivations

In the rest of the paper, we develop an efficient method to solve the problem (3.2). To explain
our idea more clearly, we first investigate two possible methods.

In the commonly used penalty approach, c.f. [11], one is seeking a minimizer for the
following regularized problem:

min
vh∈Vh,g

E(v) +
1
2ε

∫

Ω
|πhF (vh)|2dx,

where the penalty parameter ε > 0 is small. Formally, the necessary equilibrium condition
for this problem is: Find uε

h ∈ Vh,g, such that
∫

Ω
∇uε

h : ∇vhdx +
1
ε

∫

Ω
πhF (uε

h)πhDF (uε
h) · vhdx = 0, vh ∈ Vh,0.

A difficulty with this approach is that the penalty parameter ε needs to be chosen sufficiently
small in order to resolve the constraint, and usually it also needs to be related to the dis-
cretization parameter h. However, for small penalty parameters, numerical instabilities may
occur. Moreover, the functional defined by the above regularized problem is not convex, which
increase the difficulty for solving the corresponding nonlinear variational problem.

It is well known that the difficulty on the problem (3.2) is to find an efficient method to
deal with the constraint πhF (v) = 0. A possible way is to use Newton method to linearize the
constraint and then solve a minimization problem with a linear constraint. More specifically,
let un be a solution obtained at iteration n, we need to find a new iterative solution un+1

from un. The constrain we shall impose for un+1 is

DF (un) · (un+1 − un) = −F (un) on Nh. (4.1)

i.e. un+1 does not satisfy the full constraint πhF (un+1) = 0, instead, we require un+1 to
satisfy a linearized constraint which is coming from a Newton’s linearization of πhF (v) = 0
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at un. We also need un+1 to minimize the energy functional. Thus, it is necessary to let un+1

be the solution of the following problem:

min
vh∈Vh,g

E(vh) subject to DF (un) · (vh − un) = −F (un) on Nh. (4.2)

This minimization problem (with linear constraint) can be solved more easily, but it seems
that the solution sequence {un+1} does not converge except in some particular situations.

In the following we propose another way to solve (3.2) based on an important observation.
As we will see in Lemma 5.1, we have

πhF (v) ≥ 0 if DF (un) · (v − un) = −F (un) on Nh. (4.3)

Due to this special property, one can add a particular regularization term into the cost
functional of (4.2) and consider the following minimization problem:

min
vh∈Vh,g

[E(vh) + γ(h)
∫

Ω
πhF (vh)dx]

subject to DF (un) · (vh − un) = −F (un) on Nh. (4.4)

Here, γ(h) is a nonnegative real number. The parameter γ(h) should be chosen as γ(h) ∼= h−2

except some particular cases. Note that γ(h)
∫
Ω πhF (v)dx is not the standard penalty term.

Such design enhances the global convexity of the minimization functional of (4.4).
The solution of (4.4) is still denoted by un+1. Fortunately, we can prove that the new

solution sequence {un+1} possesses global convergence for an initial data u0 ∈ Vh,g which
satisfies πhF (u0) ≥ 0. Since the constraint for the problem (4.4) is linear, we can use a
Lagrange multiplier to deal with the constraint.

We emphasize that the regularization term

γ(h)
∫

Ω
πhF (v)dx

is related to the original nonlinear constraint πhF (vh) = 0, instead of the current linear
constraint

DF (un) · (vh − un) = −F (un) on Nh.

This means that the new method is neither augmented Lagrange method nor penalty method
associated with the current linear constraint. For convenience, we call the new method as
Newton-penalty method.

5 Minimization problems with a penalized functional

For a given triangulation Th, we want to compute a sequence {un} ⊂ Vh,g, such that {un}
converges to a discrete harmonic map. As pointed in the last section, this sequence is deter-
mined by new minimization problems with penalized cost functional and linear constraints.
The energy decreasing property of the sequence {un} will play a key role in its convergence.
This section is devoted to designing the penalty term mentioned in the last section, which
can guarantee the decreasing energy of the sequence {un}.

10



5.1 Main result

Before defining the penalty term, we give some properties of the linear constraint spaces. Let
un ∈ Vh,g such that F (un) = |un|2 − 1 ≥ 0 on Nh, and define the linear constraint space

Kn = {v ∈ Vh,g : DF (un) · v = DF (un) · un − F (un) on Nh}
= {v ∈ Vh,g : 2un · v = |un|2 + 1 on Nh}. (5.1)

The new minimization problem at (n + 1)th step will be defined in the constraint space Kn.

Lemma 5.1 The constraint space Kn possesses the following properties:

(a) For any v ∈ Kn, F (v) ≥ 0 on Nh.

(b) For any v ∈ Kn, we have

DF (v) · v ≥ 2 > 0 and |DF (v)|2 ≥ 4 > 0 on Nh. (5.2)

Proof. Since v ∈ Kn, we have

F (un) + DF (un) · (v − un) = 0 on Nh.

Thus, we get by the generalized Taylor formula and (2.3)

F (v) = F (un) + DF (un) · (v − un) +
1
2
D2F (ξ)(v − un) · (v − un)

≥ |v − un|2 ≥ 0 on Nh,

which implies (a).
Note that F (v) = |v|2 − 1, we deduce (b) by (2.2) and (a) directly.
¤
It follows, by Lemma 5.1 (a), that πhF (v) ≥ 0 for any v ∈ Kn. As pointed out in the last

section, one can consider the regularization term γ(h)
∫
Ω πhF (vh)dx. But, in practice, the

integration
∫
Ω πhF (vh)dx needs to be computed by some quadrature formula. Thus, we do not

consider γ(h)
∫
Ω πhF (vh)dx itself, instead, we design a discrete version of γ(h)

∫
Ω πhF (vh)dx.

To define the new penalty term, we need more notations.
Let ϕk denote the nodal basis function of the k-th node pk ∈ Nh (k = 1, · · · , N), and set

aij =
∫

Ω
∇ϕi · ∇ϕjdx (i, j = 1, · · · , N).

Given a node pk, we use Ok to denote the set of other nodes that are neighbor to pk. Define

ρd,k =
∑

r 6=k

(akr + |akr|) and ρ̃d,k = −akk +
∑

pr∈Ok

(akkarr)
1
2 . (5.3)

Proposition 5.1 For each k, we have

ρ̃d,k ≥ ρd,k ≥ 0. (5.4)

Proof. For every r 6= k the sub-matrix
(

arr ark

akr akk

)

11



is symmetric and positive semi-definite, so its determinent is nonnegative, i.e., arrakk ≥ a2
kr.

Moreover, we have
N∑

r=1
akr = 0. Thus

ρ̃d,k ≥
∑

r 6=k

akr +
∑

pr∈Ok

|akr|,

which together with the fact that akr = 0 for r 6∈ Ok gives (5.4).
¤
Based on the notations described above, we define the local penalty parameter γd,k by

γd,k =
1
2
(κ1ρd,k + κ2ρ̃d,k).

Let Gd
h(·) be the linear functional defined by

Gd
h(φ) =

N∑

k=1

γd,kφ(pk), φ ∈ C(Ω).

Then the new penalty term is designed as Gd
h(F (v)). Define

Eh(v) = E(v) + Gd
h(F (v)).

For convenience, we assume that the initial guess u0 satisfies πhF (u0) = 0. Let Kn be the
set defined in (5.1). The Newton-penalty method is to consider the following minimization
problem: to find un+1 ∈ Kn, such that

Eh(un+1) = min
v∈Kn

Eh(v). (5.5)

Due to the strict convexity of Eh and the linearity of the constraint, the minimization problem
(5.5) has a unique solution for every n. Moreover, the minimizer satisfies a saddle-point
system, which can be solved easily (see Section 7). Note that, when the functional Gd

h ≡ 0,
the method described by (5.5) becomes Newton linearization method.

Theorem 5.1 (Decreasing energy) Let un+1 be the solution of (5.5). Then F (un+1) =
|un+1|2 − 1 ≥ 0 on Nh and

Eh(un+1) ≤ Eh(un) ≤ · · · ≤ Eh(u0) = E(u0). (5.6)

The above theorem will be proved in the next subsection. As we will see, this theorem
is the key result of the paper. Based on this result, we can prove that the sequence {un}
converges to a discrete harmonic map in some sense (see Section 6 below). A natural question
is whether the simple Newton linearization method may possess the decreasing energy? The
following result gives a reply to the question.
Corollary 5.1. Assume that κ2 = 0. If akr ≤ 0 for every r 6= k (k = 1, · · · , N), then
E(un+1) ≤ E(un).
Proof. Since akr ≤ 0, which yields |akr| = −akr, we deduce ρd,k = 0. Then, we get γd,k = 0
for each k by the assumption κ2 = 0. Thus, Gd

h ≡ 0, which implies that Eh(un) = E(un). The
desired result follows directly by Theorem 5.1.

¤
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Remark 5.1 Assume that κ2 = 0. If Th is an acute triangulation (see [3] and [18] for
details), then akr ≤ 0 for every r 6= k (k = 1, · · · , N). Then, the conditions in Corollary
5.1 are satisfied. This means that the simple Newton linearization method possesses the
decreasing energy for the case with κ2 = 0, provided that the triangulation Th has some
particular structure.

Remark 5.2 In the design of the penalty term Gd
h(F (v)), we need to define the parameters

γd,k carefully. For smaller γd,k, Theorem 5.1 may be not valid. For larger γd,k, Theorem 5.1
is still valid, but the sequence {un} converges more slowly.

5.2 Analysis

In the analysis of Theorem 5.1, we shall associate un with a special function ūn which is
defined below.

By induction and by Lemma 5.1 (a), we have F (un) = |un|2 − 1 ≥ 0 on Nh. By (5.2) we
get

DF (un) · un ≥ 2 > 0 on Nh for all n.

Thus we can define αn ∈ Vh,0 and ūn ∈ Vh,g by

αn =
F (un)

DF (un) · un
=
|un|2 − 1
2|un|2 and ūn = (1− αn)un on Nh.

Namely,

αn = πh(
|un|2 − 1
2|un|2 ) and ūn = πh((1− αn)un). (5.7)

It is clear that
0 ≤ αn <

1
2

< 1 (on Nh).

Moreover, αn(p) = 0 if and only if F (un(p)) = 0 (p ∈ Nh).
It is easy to verify that the linearized constraint set Kn is the tangential plane at ūn for

the following level set:
{v ∈ Vh,g : F (v) = F (ūn) on Nh}.

In order to prove Theorem 5.1, we need to estimate E(ūn)−E(un) carefully. To this end,
we first derive some auxiliary results.

For convenience, we define αn,k = αn(pk) and un,k = un(pk) (k = 1, · · · , N) in the rest of
this subsection.

Lemma 5.2 For i 6= j, set

rij = [(2αn,i − α2
n,i)− (αn,i + αn,j − αn,iαn,j)]|un,i|2

+ [(2αn,j − α2
n,j)− (αn,i + αn,j − αn,iαn,j)]|un,j |2.

Then,
rij ≥ 0. (5.8)

13



Proof. By the direct calculation, we get

rij = (αn,i − αn,j)(1− αn,i)|un,i|2 + (αn,j − αn,i)(1− αn,j)|un,j |2. (5.9)

By the definition of αn,k, we have

1− αn,k =
|un,k|2 + 1
2|un,k|2 (k = i, j) (5.10)

and
αn,i − αn,j =

1
2
( 1
|un,j |2 −

1
|un,i|2

)
, αn,j − αn,i =

1
2
( 1
|un,i|2 −

1
|un,j |2

)
. (5.11)

It follows by (5.10) that

(1− αn,k)|un,k|2 =
1
2
(|un,k|2 + 1) (k = i, j).

Using (5.9), together with the above equality and (5.11), yields

rij =
1
4
( |un,i|2
|un,j |2 − 1

)
+

1
4
( |un,j |2
|un,i|2 − 1

)
=

1
4
( |un,i|
|un,j | −

|un,j |
|un,i|

)2 ≥ 0.

¤
The following result gives a simple equality, which will be used later repeatedly.

Lemma 5.3 Let Λ be a set of finite ordered indices k. Let ηk denote a number depending
on the index k ∈ Λ, and let τij denote a number depending on two different indices i, j in Λ.
Then, ∑

k

∑

r 6=k

τkrηk =
∑

i<j

(τijηi + τjiηj). (5.12)

In particular, when τij = τji, we have
∑

k

∑

r 6=k

τkrηk =
∑

i<j

τij(ηi + ηj). (5.13)

Proof. The equality (5.12) can be derived by direct calculations.
¤

Lemma 5.4 Let αn be defined by (5.7), and let ρd,k be defined by (5.3). Then,

−2
∫

Ω
∇un : ∇πh(αnun)dx +

∫

Ω
|∇πh(αnun)|2dx ≤

N∑

k=1

ρd,k[2αn(pk)− α2
n(pk)]|un(pk)|2,

(5.14)
where ρd,k denotes the parameter defined by (5.3).

Proof. Let aij be the real numbers defined in the last subsection. It can be verified that

∫

Ω
∇un : ∇πh(αnun)dx =

∫

Ω
(

N∑

k=1

un,k(∇ϕk)t) : (
N∑

k=1

αn,kun,k(∇ϕk)t)dx

14



=
N∑

k=1

akkαn,k|un,k|2 +
∑

i<j

aij(αn,i + αn,j)un,i · un,j ,

and

∫

Ω
|∇πh(αnun)|2dx =

∫

Ω
|

N∑

k=1

αn,kun,k(∇ϕk)t|2dx

=
N∑

k=1

akkα
2
n,k|un,k|2 + 2

∑

i<j

aijαn,iαn,jun,i · un,j .

Then,

−2
∫
Ω∇un : ∇πh(αnun)dx +

∫
Ω |∇πh(αnun)|2dx

= −
N∑

k=1

akk(2αn,k − α2
n,k)|un,k|2 − 2

∑
i<j

aij(αn,i + αn,j − αn,iαn,j)un,i · un,j

≤ −
N∑

k=1

akk(2αn,k − α2
n,k)|un,k|2 + 2

∑
i<j
|aij |(αn,i + αn,j − αn,iαn,j)|un,i| · |un,j |.

(5.15)

Here we have used the fact that (since αn,k ∈ [0, 1
2 ])

αn,i + αn,j − αn,iαn,j ≥ 0. (5.16)

Note that
akk = −

∑

r 6=k

akr (k = 1, · · · , N),

we have

−
N∑

k=1

akk(2αn,k − α2
n,k)|un,k|2 =

N∑

k=1

∑

r 6=k

akr(2αn,k − α2
n,k)|un,k|2

=
N∑

k=1

ρd,k(2αn,k − α2
n,k)|un,k|2

−
N∑

k=1

∑

r 6=k

|akr|(2αn,k − α2
n,k)|un,k|2. (5.17)

Plugging (5.17) in (5.15), leads to

−2
∫

Ω
∇un : ∇πh(αnun)dx+

∫

Ω
|∇πh(αnun)|2dx =

N∑

k=1

ρd,k(2αn,k−α2
n,k)|un,k|2+RN , (5.18)

where

RN = −
N∑

k=1

∑

r 6=k

|akr|(2αn,k − α2
n,k)|un,k|2 + 2

∑

i<j

|aij |(αn,i + αn,j − αn,iαn,j)|un,i| · |un,j |.

15



It suffices to estimate RN . Note that akr = ark, we get by (5.13)
N∑

k=1

∑

r 6=k

|akr|(2αn,k − α2
n,k)|un,k|2 =

∑

i<j

|aij |
{
(2αn,i − α2

n,i)|un,i|2 + (2αn,j − α2
n,j)|un,j |2

}
.

Moreover, we have

2|un,i| · |un,j | = |un,i|2 + |un,j |2 − (|un,i| − |un,j |)2.
Using the above two equalities and (5.16), we deduce

RN = −
∑

i<j

|aij |rij −
∑

i<j

|aij |(αn,i + αn,j − αn,iαn,j)(|un,i| − |un,j |)2 ≤ −
∑

i<j

|aij |rij , (5.19)

where rij is defined by Lemma 5.2. Combining (5.19) and (5.8), yields RN ≤ 0. Then the
inequality (5.14) follows by (5.18).

¤

Lemma 5.5 Let e be an element. For the basis ϕk associated with a vertex pk of the element
e, set

ae
kk =

∫

e
|∇ϕk|2dx = ‖∇ϕk‖2

0,e.

Let pi and pj be two different vertices of the element e, define

re
ij = (

ae
jj

ae
ii

)
1
2 [(α2

n,i − 2αn,i) + (αn,i + αn,j − αn,iαn,j)]‖un,i ×∇ϕi‖2
0,e

+( ae
ii

ae
jj

)
1
2 [(α2

n,j − 2αn,j) + (αn,i + αn,j − αn,iαn,j)]‖un,j ×∇ϕj‖2
0,e.

Then,
re
ij ≤ 0. (5.20)

Proof. Since each ϕk is linear on the element e, each complement of the vector ∇ϕk|e is a
number independent of the coordinate variables. It is known that

un,k ×∇ϕk|e = 0

if un,k is parallel to ∇ϕk|e. Thus, without loss of generality, we assume that

un,k⊥∇ϕk|e. (5.21)

Otherwise, un,k can be decomposed into a sum of two vectors, one of which is parallel to
∇ϕk|e, and another one is orthogonal to ∇ϕk|e.

By direct calculations, and using the assumption (5.21), we obtain

‖un,k ×∇ϕk‖2
0,e = |un,k|2 · ‖∇ϕk‖2

0,e. (5.22)

Then,

(
ae

jj

ae
ii

)
1
2 ‖un,i ×∇ϕi‖2

0,e = (ae
iia

e
jj)

1
2 |un,i|2 and (

ae
ii

ae
jj

)
1
2 ‖un,j ×∇ϕj‖2

0,e = (ae
iia

e
jj)

1
2 |un,j |2.

By the definitions of rij and re
ij , we have

re
ij = −(ae

iia
e
jj)

1
2 rij .

Now, the inequality (5.20) is a direct result of (5.8).
¤
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Lemma 5.6 Let αn be defined by (5.7). Then,

−2
∫
Ω(∇× un) · (∇× πh(αnun))dx +

∫
Ω |∇ × πh(αnun)|2dx

≤
N∑

k=1

ρ̃d,k[2αn(pk)− α2
n(pk)]|un(pk)|2, (5.23)

where ρ̃d,k is defined by (5.3).

Proof. We use a similar idea with the proof of Lemma 5.3. But, there are some necessary
changes, since the underlying integrations involve a different operator. We need to estimate
the integrations in elements instead of in the global domain Ω. For an element e, let Ve denote
the set of d + 1 vertices of e, and set

Λe = {(i, j) : i < j, pi and pj are two vertices of e}.

It is easy to see that

∫

e
(∇× un) · (∇× πh(αnun))dx =

∫

e
(

N∑

k=1

un,k ×∇ϕk) · (
N∑

k=1

αn,kun,k ×∇ϕk)dx

=
∑

pk∈Ve

αn,k

∫

e
|un,k ×∇ϕk|2dx +

∑

(i,j)∈Λe

(αn,i + αn,j)
∫

e
(un,i ×∇ϕi) · (un,j ×∇ϕj)dx,

and

∫

e
|∇ × πh(αnun)|2dx =

∫

e
|

N∑

k=1

αn,kun,k ×∇ϕk|2dx

=
∑

pk∈Ve

α2
n,k

∫

e
|un,k ×∇ϕk|2dx + 2

∑

(i,j)∈Λe

αn,iαn,j

∫

e
(un,i ×∇ϕi) · (un,j ×∇ϕj)dx.

Thus,

−2
∫

e
(∇× un) · (∇× πh(αnun))dx +

∫

e
|∇ × πh(αnun)|2dx

=
∑

pk∈Ve

(α2
n,k − 2αn,k)

∫

e
|un,k ×∇ϕk|2dx

+2
∑

(i,j)∈Λe

(αn,iαn,j − αn,i − αn,j)
∫

e
(un,i ×∇ϕi) · (un,j ×∇ϕj)dx

≤
∑

pk∈Ve

(α2
n,k − 2αn,k)‖un,k ×∇ϕk‖2

0,e

+2
∑

(i,j)∈Λe

(αn,i + αn,j − αn,iαn,j)‖un,i ×∇ϕi‖0,e · ‖un,j ×∇ϕj‖0,e. (5.24)

Let Ok be defined as in Subsection 5.1, and set

δe
d,k =

∑

pr∈Ok

(
ae

rr

ae
kk

)
1
2 (pk ∈ Ve).
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Then,
∑

pk∈Ve

(α2
n,k − 2αn,k)‖un,k ×∇ϕk‖2

0,e =
∑

pk∈Ve

δe
d,k(α

2
n,k − 2αn,k)‖un,k ×∇ϕk‖2

0,e

+
∑

pk∈Ve

(1− δe
d,k)(α

2
n,k − 2αn,k)‖un,k ×∇ϕk‖2

0,e.

Applying (5.12) to the first sum in the right hand side of the above equality, we further have

∑

pk∈Ve

(α2
n,k − 2αn,k)‖un,k ×∇ϕk‖2

0,e =
∑

(i,j)∈Λe

{
(
ae

jj

ae
ii

)
1
2 (α2

n,i − 2αn,i)‖un,i ×∇ϕi‖2
0,e

+ (
ae

ii

ae
jj

)
1
2 (α2

n,j − 2αn,j)‖un,j ×∇ϕj‖2
0,e

}

+
∑

pk∈Ve

(δe
d,k − 1)(2αn,k − α2

n,k)‖un,k ×∇ϕk‖2
0,e.

Combining this with (5.24), leads to

−2
∫
e(∇× un) · (∇× πh(αnun))dx +

∫
e |∇ × πh(αnun)|2dx

≤ Re
N +

∑
pk∈Ve

(δe
d,k − 1)(2αn,k − α2

n,k)‖un,k ×∇ϕk‖2
0,e, (5.25)

with

Re
N =

∑
(i,j)∈Λe

{
(

ae
jj

ae
ii

)
1
2 (α2

n,i − 2αn,i)‖un,i ×∇ϕi‖2
0,e + ( ae

ii
ae

jj
)

1
2 (α2

n,j − 2αn,j)‖un,j ×∇ϕj‖2
0,e

−2(αn,i + αn,j − αn,iαn,j)‖un,i ×∇ϕi‖0,e · ‖un,j ×∇ϕj‖0,e

}
.

It suffices to estimate Re
N . By direct calculations, we deduce

Re
N =

∑
(i,j)∈Λe

{
re
ij − (αn,i + αn,j − αn,iαn,j)[(

ae
jj

ae
ii

)
1
4 ‖un,i ×∇ϕi‖0,e − ( ae

ii
ae

jj
)

1
4 ‖un,j ×∇ϕj‖0,e]2

}

≤ ∑
(i,j)∈Λe

re
ij .

This, together with Lemma 5.5 and (5.16), leads to Re
N ≤ 0. We further get by (5.25) and

(5.22)

−2
∫

e
(∇× un) · (∇× πh(αnun))dx +

∫

e
|∇ × πh(αnun)|2dx

≤
∑

pk∈Ve

(δe
d,k − 1)(2αn,k − α2

n,k)|un,k|2 · ‖∇ϕk‖2
0,e

=
∑

pk∈Ve

[
∑

pr∈Ok

(ae
rra

e
kk)

1
2 − ae

kk](2αn,k − α2
n,k)|un,k|2. (5.26)

Note that, when the assumption (5.21) does not hold and we have to make the orthogonal
decomposition for un,k, the final equality at the above would become an inequality, since the
module of the orthogonal part of un,k is not larger than the module of un,k itself.

For a node pk, let Ξk denote the set of elements that contain pk as a vertex. Then,

∑
e

∑

pk∈Ve

=
N∑

k=1

∑

e∈Ξk

.
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Besides, we have ∑

e∈Ξk

(ae
rra

e
kk)

1
2 ≤ (

∑

e∈Ξk

ae
rr)

1
2 (

∑

e∈Ξk

ae
kk)

1
2 .

Now the inequality (5.23) follows by summing (5.26) over all elements e.
¤
Proof of Theorem 5.1. By the definitions of E and ūn, we can deduce that

E(ūn) = E(un) +
κ1

2
[−2

∫

Ω
∇un : ∇πh(αnun)dx +

∫

Ω
|∇πh(αnun)|2dx]

+
κ2

2
[−2

∫

Ω
(∇× un) · (∇× πh(αnun))dx +

∫

Ω
|∇ × πh(αnun)|2dx]

}
. (5.27)

This, together with Lemma 5.4 and Lemma 5.6, leads to

E(ūn) ≤ E(un) +
1
2

N∑

k=1

(κ1ρd,k + κ2ρ̃d,k)[2αn(pk)− α2
n(pk)]|un(pk)|2.

By the definition of γd,k, we further get

E(ūn) ≤ E(un) +
N∑

k=1

γd,k[2αn(pk)− α2
n(pk)]|un(pk|2. (5.28)

On the other hand, we have by the definitions of F and ūn

F (ūn) = (1− αn)2|un|2 − 1 on Nh.

Thus, by the definition of the functional Gd
h(·), we deduce

Gd
h(F (ūn)) =

N∑

k=1

γd,kF (ūn(pk))

=
N∑

k=1

γd,k[(1− 2αn(pk) + α2
n(pk))|un(pk)|2 − 1].

Together with (5.28), this leads to

E(ūn) + Gd
h(F (ūn)) ≤ E(un) +

N∑

k=1

γd,k[|un(pk)|2 − 1] = E(un) + Gd
h(F (un)).

This means that
Eh(ūn) ≤ Eh(un). (5.29)

It is easy to see that ūn ∈ Kn. Since un+1 is the minimizer of (5.5), we get by (5.29)

Eh(un+1) ≤ Eh(ūn) ≤ Eh(un), n = 0, 1, · · · .

¤
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6 Convergence of the solution sequence {un}
This section is devoted to proving convergence of the sequence {un} generated by the mini-
mization problem (5.5). To this end, we introduce an auxiliary minimization problem.

For the sequence un generated by (5.5), define

K̄n = {v ∈ Vh,0 : DF (un) · v = 0 on Nh}.

Let ūn be defined by (5.7). Consider the minimization problem: Find wn ∈ K̄n, such that

Eh(ūn + wn) = min
v∈K̄n

Eh(ūn + v). (6.1)

It is easy to see that un+1 = ūn + wn.

Lemma 6.1 Let wn be the sequence generated by (6.1). Then, we have

‖∇wn‖2
0,Ω + Gd

h(|wn|2) → 0 when n → +∞. (6.2)

In particular, we have wn(pk) → 0 for each node pk when n → +∞ (for a fixed h).

Proof. It follows by (6.1) that
E ′h(ūn + wn)wn = 0. (6.3)

Using the generalized Taylor formula, we get

Eh(ūn) = Eh(ūn + wn) + E ′h(ūn + wn)wn +
1
2
E ′′h(ξn)wn ·wn.

This, together with (6.3), leads to

Eh(ūn) = Eh(ūn + wn) +
1
2
E ′′h(ξn)wn ·wn.

Thus,
1
2
E ′′h(ξn)wn ·wn = Eh(ūn)− Eh(ūn + wn) ≤ Eh(ūn)− Eh(ūn+1). (6.4)

Here we have used the fact that Eh(ūn+1) ≤ Eh(un+1) from (5.29). It is easy to see that

E ′′h(ξn)wn ·wn = E ′′(ξn)wn ·wn + Gd
h(D2F (ξn)wn ·wn).

Hence we get by (2.4) and (2.3)

E ′′h(ξn)wn ·wn ≥ c[‖∇wn‖2
0,Ω + Gd

h(|wn|2)].

Combining this with (6.4), we deduce

‖∇wn‖2
0,Ω + Gd

h(|wn|2) ≤ C(Eh(ūn)− Eh(ūn+1)).

Then, we have for any positive integer M

M∑

n=1

[‖∇wn‖2
0,Ω + Gd

h(|wn|2)] ≤ CEh(ū0).

20



This implies (6.2).
Since wn|∂Ω = 0, we get by (6.2) and Poincare inequality

‖wn‖2
0,Ω → 0 when n →∞.

Thus, wn(pk) → 0 for each node pk when n → +∞ (for a fixed h).
¤
The following result indicates that the solution un approximately satisfies the original

nonlinear constraint.

Lemma 6.2 Let un+1 be the sequence generated by (5.5). Then we have

lim
n→+∞F (un(p)) = 0,

which is uniform for p ∈ Nh (for a fixed h).

Proof. The proof of this lemma is a bit technical. We will prove it by three steps.
Step 1. A recursive relation.
Let z denote a node in Nh, and set

αn =
F (un(z))

DF (un(z)) · un(z)
=
|un(z)|2 − 1
2|un(z)|2 .

Then,
un+1(z) = ūn(z) + wn(z) = (1− αn)un(z) + wn(z).

Note that αn ∈ [0, 1), one can verify that

F (un+1(z)) = (1− αn)2|un(z)|2 − 1
+ 2(1− αn)un(z)) ·wn(z) + |wn(z)|2
≤ (1− αn)F (un(z))− αn

+ 2(1− αn)un(z)) ·wn(z) + |wn(z)|2. (6.5)

For convenience, set

xn = F (un(z)) and εn = 2(1− αn)un(z)) ·wn(z) + |wn(z)|2.

Then the inequality (6.5) can be written as

xn+1 ≤ (1− αn)xn − αn + εn. (6.6)

Step 2. Verify that the sequence {εn} converges to zero.
By Lemma 5.1 (a) and Theorem 5.1, we have for any n (note that πhF (u0) = 0)

c‖∇un‖2
0,Ω ≤ Eh(un) ≤ Eh(u0) ≤ C‖∇u0‖2

0,Ω.

This, together with (3.1) and Poincare inequality, leads to

|un(z)| ≤ Cβh(d)‖un‖1,Ω ≤ Cβh(d)(‖∇un‖0,Ω + ‖πhg‖0,∂Ω)
≤ C(h), for any n and z ∈ Nh.
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Namely,

|un(z)| ≤ C(h) =

√
β0

2
(for a fixed h), for any n and z ∈ Nh. (6.7)

On the other hand, we have from Lemma 6.1

|wn(z)| → 0 when n → +∞ (∀z ∈ Nh).

This, together with (6.7), leads to

εn → 0, when n → +∞ (for a fixed h). (6.8)

Step 3. Prove the desired result by the reduction to absurdity.
Let β0 be defined by (6.7). Suppose the sequence {xn} does not converge to zero. Then,

there exists a number δ0 ∈ (0, β0) and a subsequence {xni}, such that

xni ≥ δ0 for all i = 1, 2, · · · . (6.9)

It follows by (6.8) there exists a positive integer m, such that

|εn| < δ0

2β0
min{δ0, 1} when n ≥ m. (6.10)

Without loss of generality, we assume that m = n1.
Step 3.1. A relation between xm+1 and xm.
By the definition of αn, together with (6.7) and (6.9), we have

1 > αm ≥ δ0

β0
> 0.

This, together with (6.6), (6.10) and (6.9), leads to

xm+1 ≤ (1− αm)xm + εm ≤ (1− δ0

β0
)xm +

δ0

2β0
· δ0

≤ (1− δ0

β0
)xm +

δ0

2β0
· xm = (1− δ0

2β0
)xm. (6.11)

Step 3.2. A relation between xm+2 and xm.
There exist two possibilities for xm+1:

case(i) xm+1 <
δ0

2
; case(ii) xm+1 ≥ δ0

2
.

If the case (i) occurs, we get by (6.6) and (6.10) (note that δ0 < β0)

xm+2 ≤ (1− αm+1)xm+1 − αm+1 +
δ0

β0
· δ0

2

< xm+1 +
δ0

2
<

δ0

2
+

δ0

2
= δ0. (6.12)

If the case (ii) occurs, we have by the definition of αn and (6.7)

αm+1 ≥ δ0

2β0
.
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Then, we further get by (6.6) and (6.10)-(6.11)

xm+2 ≤ (1− δ0

2β0
)xm+1 − δ0

2β0
+

δ0

2β0

≤ (1− δ0

2β0
)xm+1 ≤ (1− δ0

2β0
)2xm. (6.13)

Step 3.3. A relation between xm+3 and xm.
Similarly, we can consider two possibilities of xm+2 and prove that

xm+3 < δ0

or

xm+3 ≤ (1− δ0

2β0
)xm+2 ≤

{
(1− δ0

2β0
)δ0 < δ0,

(1− δ0
2β0

)3xm.

In the second inequality, we have used (6.12) and (6.13)). Namely,

xm+3 < δ0 or xm+3 ≤ (1− δ0

2β0
)3xm.

Step 3.4. The desired conclusion.
Using this process repeatedly, we obtain

xn2 < δ0 or xn2 ≤ (1− δ0

2β0
)n2−mxm.

But, we have xn2 ≥ δ0 by (6.9). Thus,

xn2 ≤ (1− δ0

2β0
)n2−mxm.

Finally, we can prove, by a repeated process, that

xni ≤ (1− δ0

2β0
)ni−mxm, i = 2, 3, · · ·

It is clear that xm is bounded for a fixed h, and δ0
2β0

∈ (0, 1) is a constant independent of the
index i. Then, we have for sufficiently large ni

xni < δ0.

This contradicts the inequality (6.9). Therefore, the assumption that the sequence {xn} does
not converge to zero is false.

¤
Now we can prove the final convergence result of this paper.

Theorem 6.1 Let {un} be the solution sequence of the problem (5.5) with a fixed h. Then

(i) there exists a subsequence of {un}, which is denoted by {un} itself, such that {un}
converges to uh strongly both in H1(Ω) and in L∞(Ω);
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(ii) the limit point uh is a discrete harmonic map, i.e., a stationary point of the minimization
problem (3.2);

(iii) when the initial guess u0, which may depend on the mesh size h, is chosen such that
|u0|1,Ω is bounded with respect to h, there exist a subsequence of {uh}, which is denoted
by {uh}h>0 itself, such that {uh}h>0 converges to a harmonic map u ∈ H1

g(Ω; Sd−1)
weakly in H1 and strongly in L4.

Proof. (i) It follows by Theorem 5.1 that there exists a subsequence of {un} such that {un}
converges to uh weakly in H1(Ω). Since {un} and uh belong to the finite dimensional space
Vh, the convergence is also strong. Moreover, the convergence holds in L∞(Ω), which will be
used in the proof later. Using Lemma 6.2, we have F (uh) = 0 on Nh. Besides, it is easy to
see that uh|∂Ω = πhg. Hence uh ∈ Kh.

(ii) Without loss of generality, we consider only the case with d = 3. It suffices to prove
(3.5). Let wn be the sequence generated by (6.1) with the current approximation un. For
Φh ∈ Vh,0, define v̄n = πh(Φh ×DF (un)). It is easy to see that v̄n ∈ K̄n. Thus, we have by
the definition of wn

E ′(ūn + wn)v̄n + Gd
h(DF (ūn + wn) · v̄n) = 0, ∀Φh ∈ Vh,0. (6.14)

It can be verified directly that

‖v̄n − πh(Φh ×DF (uh))‖1,Ω → 0+, n → +∞. (6.15)

From (5.2), we know that
DF (un) · un ≥ 2 > 0 on Nh.

Then, it follows by Lemma 6.2 that

αn → 0+ when n → +∞ (on Nh).

Moreover, un is uniformly bounded for n (for a fixed h). Thus,

ūn − un = −αnun → 0+ when n → +∞ (on Nh).

This means that ‖ūn − un‖∞,Ω → 0, and so ‖ūn − un‖1,Ω → 0 (for a fixed h). Furthermore,
we get

‖ūn − uh‖1,Ω → 0, n → +∞. (6.16)

This, together with Lemma 6.1, leads to (pk ∈ Nh)

DF (ūn + wn)(pk) · v̄n(pk) = DF (ūn + wn)(pk) · (Φh ×DF (un))(pk)
→ DF (uh)(pk) · (Φh ×DF (uh))(pk) = 0. (6.17)

Let n → +∞ in (6.14), and using (6.15)-(6.17), yields

E ′(uh)πh(Φh ×DF (uh)) = 0, ∀Φh ∈ Vh,0. (6.18)

Now the desired result follows by Proposition 3.1 and (6.18).
(iii) By the assumption, Theorem 5.1 and (ii), we know that the sequence {|uh|1,Ω} is

bounded with respect to h. Then we further deduce the desired result by Theorem 3.1.
¤
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Remark 6.1 For the case d = 2, we need to verify (3.4) by revising the proof of Theorem
6.1 in an obvious manner.

Remark 6.2 From the analysis in this section, we can see that the simple Newton lineariza-
tion method is convergent when the conditions in Corollary 5.1 are satisfied (In some sense,
the simple Newton linearization method can be viewed as a variant of the projection method
analyzed in [3]). For the more general situation, the penalty term Gd

h(F (v)) in the Newton-
penalty method introduced in this paper seems necessary.

Remark 6.3 For the case d = 2, it has been shown in [14] that the discrete harmonic map uh

satisfies the condition (3.8), and so uh defined by Theorem 6.1 is just the minimizer of (3.2).
Since the minimization problem (3.2) may possess many stationary points for the case d = 3,
we can not guarantee that uh defined by Theorem 6.1 is just the desired (global) minimizer for
d = 3, unless the initial data u0 is chosen such that u0 belongs to some small neighborhood
of the minimizer.

7 The saddle-point problem associated with (5.5)

In this section, we transform the minimization problem (5.5) into a saddle point problem,
and investigate the spectral properties of the saddle point problem.

Let Gd
h(·) be defined as in Subsection 5.1, and let 〈·, ·〉 denote the standard discrete L2

inner product. The minimization problem (5.5) with the penalty functional Eh(v) is equivalent
to find (un+1, λn+1) ∈ Vh,g × Vh,0 such that

E ′(un+1)v + Gd
h(DF (un+1) · v) + 〈DF (un) · v, λn+1〉 = 0, ∀v ∈ Vh,0,

〈DF (un) · (un+1 − un) + F (un), µ〉 = 0, ∀µ ∈ Vh,0. (7.1)

Since F (w) = |w|2−1, we have DF (w) = 2w. Note that the above saddle point system is the
same with that in Subsection 4.1 of [3] when κ2 = 0 and Gd

h(·) = 0. We would like to stress
that the system (7.1) is a linear saddle-point system, which can be solved by any existing
iterative method, for example, the Uzawa-type method introduced in [15]. To improve the
convergence of the iterative method, we need to construct preconditioners for the primal
system and the Schur complement (this topic did not considered in [3]).

Let g̃h ∈ Vh,g denote the zero extension of gh. Then un+1 can be written as un+1 =
u0

n+1 + g̃h with u0
n+1 ∈ Vh,0. Define

gn = πh(|un|2 + 1− 2ung̃h)

and fh ∈ Vh,0 by
(fh,v) = −E ′(g̃h)v − 2Gd

h(g̃h · v), ∀v ∈ Vh,0.

It can be verified that (7.1) can be written as

E ′(u0
n+1)v + 2Gd

h(u0
n+1 · v) + 2〈un · v, λn+1〉 = (fh,v), ∀v ∈ Vh,0,

2〈un · u0
n+1, µ〉 = 〈gn, µ〉, ∀µ ∈ Vh,0. (7.2)

For convenience, we transform (7.2) into operator form. Define the operators A : Vh,0 →
Vh,0 and Bn : Vh,0 → Vh,0 by

(Av,w) = E ′(v)w + Gd
h(DF (v) ·w) = E ′(v)w + 2Gd

h(v ·w), ∀w ∈ Vh,0,
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and
〈Bn · v, µ〉 = 2〈v, µ〉, ∀µ ∈ Vh,0,

respectively. Let B∗
n : Vh,0 → Vh,0 denote the dual operator of Bn. Then the saddle point

problem (7.2) can be written in the operator form

Au0
n+1 + B∗

nλn+1 = fh,
Bnu0

n+1 = gn. (7.3)

The rest of this section is devoted to the construction of preconditioners B and Kn for A
and the Schur complement Sn = BnA−1B∗

n, respectively. For simplicity of exposition, let Λ
denote the set of all the indices k of pk ∈ Nh. Let γd,k be the local penalty parameter given
in Subsection 5.1. Define

Λ1 = {k ∈ Λ; γd,k > 0} and Λ2 = {k ∈ Λ; γd,k = 0}.

Proposition 7.1. Assume that the triangulation Th is regular and quasi-uniform. Then
there exist constants C0 and c0 independent of Th, such that

c0h
d−2 ≤ γd,k ≤ C0h

d−2, ∀k ∈ Λ1. (7.4)

Proof. From the definition of the number aij (see Subsection 5.1), we know that each aij has
the scale hd−2, i.e., aij can be written as aij = cijh

d−2, with cij being a constant independent
of h. Since the triangulation Th is regular and quasi-uniform, every constants cij satisfying
cij > 0 has both a positive upper bound and a positive lower bound which depend on only
the constants in the definitions of the regularity and the quasi-uniformity of the triangulation
Th. From (5.3) we have

ρd,k = hd−2
∑

r 6=k

(crk + |crk|).

It is clear that crk + |crk| ≥ 0, and crk + |crk| > 0 if and only if crk > 0. For each index k,
there exist finite indices r at most such that crk > 0. All of these show that

c0h
d−2 ≤ ρd,k ≤ C0h

d−2, ∀k ∈ Λ1,

where C0 and c0 are constants independent of h. Similarly, we have

c0h
d−2 ≤ ρ̃d,k ≤ C0h

d−2, ∀k ∈ Λ1.

The above two inequalities imply (7.4).
¤
We will construct preconditioners B and Kn for three different cases, which correspond

different triangulations:
Case (i) for all of the nodes pk, we have γd,k > 0, i.e., Λ2 = ∅;
Case (ii) for all of the nodes pk, we have γd,k = 0 (so Gd

h(·) = 0), i.e., Λ1 = ∅;
Case (iii) both Λ1 6= ∅ and Λ2 6= ∅.
It is easy to see that the operator A satisfies

c[‖∇vh‖2
0,Ω + Gd

h(|vh|2)] ≤ (Avh,vh) ≤ C[‖∇vh‖2
0,Ω + Gd

h(|vh|2)], (7.5)

for vh ∈ Vh,0.
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We first consider Case (i). Let T : Vh,0 → Vh,0 and Tn : Vh,0 → Vh,0 denote the linear
operators defined by

〈Tv, w〉 = Gd
h(v ·w) =

N∑

k=1

γd,kv(pk) ·w(pk), v ∈ Vh,0, ∀w ∈ Vh,0

and

〈Tnv, w〉 = 4
N∑

k=1

|un(pk)|2
γd,k

v(pk)w(pk), v ∈ Vh,0, ∀w ∈ Vh,0,

respectively. It is easy to see that the stiffness matrices of T and Tn are diagonal matrices
with positive diagonal entries (note Lemma 5.1 (b)).

Theorem 7.1 For Case (i), the operator A is spectrally equivalent to the operator T and
the Schur complement Sn is spectrally equivalent to the operator Tn. Namely, we can define
preconditioners for A and Sn as B = T and Kn = Tn.

Proof. Since all γd,k > 0, by the definition of Gd
h(·) and (7.4), we deduce

Gd
h(|vh|2) ≥ ch−2‖vh‖2

0,Ω, ∀vh ∈ Vh,0.

Then, by the inverse inequality (3.1), we obtain

‖∇vh‖2
0,Ω ≤ Ch−2‖vh‖2

0,Ω ≤ CGd
h(|vh|2), ∀vh ∈ Vh,0.

Plugging this in (7.5), leads to

cGd
h(|vh|2) ≤ (Avh,vh) ≤ CGd

h(|vh|2), vh ∈ Vh,0.

Thus the operator A is spectrally equivalent to the operator T by the definition of T. More-
over, the Schur complement Sn is spectrally equivalent to the operator BnT−1B∗

n.
It suffices to prove that BnT−1B∗

n is spectrally equivalent to the operator Tn. From the
definition of B∗

n, we have
B∗

nµ = 2πh(unµ), µ ∈ Vh,0.

Then we get by the particular design of T

〈BnT−1B∗
nµ, µ〉 = 〈T−1B∗

nµ,B∗
nµ〉 =

N∑

k=1

γ−1
d,k|(B∗

nµ)(pk)|2

= 4
N∑

k=1

|un(pk)|2
γd,k

|µ(pk)|2 = 〈Tnµ, µ〉, µ ∈ Vh,0.

This yields the desired result.
¤
We next consider case (ii). Let ∆h : Vh,0 → Vh,0 and ∆h : Vh,0 → Vh,0 denote the

discrete Laplacian defined by

(∆hvh,wh) = (∇vh,∇wh), vh, wh ∈ Vh,0

and
(∆hvh, wh) = (∇vh,∇wh), vh, wh ∈ Vh,0,

respectively.
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Theorem 7.2 For Case (ii), the operator A is spectrally equivalent to ∆h. Moreover, for
the case d = 2, the Schur complement Sn is spectrally equivalent to ∆−1

h in the sense

c log−1(1/h)(∆−1
h vh, vh) ≤ (Snvh, vh) ≤ C log(1/h)(∆−1

h vh, vh), vh ∈ Vh,0. (7.6)

Namely, we have cond(∆−1
h A) ≤ C and cond(∆hSn) ≤ C log2(1/h) for the case d = 2.

In particular, any spectrally equivalent operator with the Laplacian ∆h can be chosen as a
preconditioner for A.

Proof. Since γd,k = 0 for every nodes pk, we have Gd
h(·) = 0. Then, by (7.5), we get

c(∆hvh,vh) ≤ (Avh,vh) ≤ C(∆hvh,vh), vh ∈ Vh,0, (7.7)

which implies the first result.
From (7.7), we know that the Schur complement Sn is spectrally equivalent to Bn∆−1

h B∗
n.

We need only to investigate the operator Bn∆−1
h B∗

n. It is easy to see that

〈Bn∆−1
h B∗

nµh, µh〉 = sup
vh∈Vh,0

(〈Bnvh, µh〉)2
〈∆hvh,vh〉 , µh ∈ Vh,0.

It suffices to verify that

c log−
1
2 ‖µh‖H−1(Ω) ≤ sup

vh∈Vh,0

〈Bnvh, µh〉
‖vh‖1,Ω

≤ C log
1
2 ‖µh‖H−1(Ω), µh ∈ Vh,0. (7.8)

It follows by Theorem 5.1 that

‖∇un‖0,Ω ≤ ‖∇u0‖0,Ω.

Then, by Poincare inequality, we get

‖un‖1,Ω ≤ C. (7.9)

This, together with the inverse estimate (3.1), yields (noting d = 2)

‖un‖0,∞,Ω ≤ C log
1
2 (1/h). (7.10)

We further deduce that
‖un · vh‖1,Ω ≤ C log

1
2 (1/h)‖vh‖1,Ω.

Thus,

sup
vh∈Vh,0

〈Bnvh, µh〉
‖vh‖1,Ω

≤ C log
1
2 (1/h)‖µh‖H−1(Ω), µh ∈ Vh,0. (7.11)

For any µh ∈ Vh,0, we have

‖µh‖−1 =
〈µh, µh〉
‖µh‖1,Ω

. (7.12)

Define vh ∈ Vh,0 as
vh = πh(µh

un

2|un|2 ),
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which implies that
µh = 2πh(un · vh).

Then,
〈µh, µh〉 = 2〈un · vh, µh〉 = 〈Bnvh, µh〉. (7.13)

As in Lemma 4.2 of [14], one can prove by (5.2) and (7.9)-(7.10)

‖vh‖1,Ω ≤ C log
1
2 (1/h)‖µh‖1,Ω.

Combining this with (7.12)-(7.13), we obtain

sup
vh∈Vh,0

〈Bnvh, µh〉
‖vh‖1,Ω

≥ c log−
1
2 (1/h)‖µh‖H−1(Ω), µh ∈ Vh,0.

Then the relation (7.8) follows by (7.11) and the above inequality.
¤

Remark 7.1 We can image that the iteration (5.5) for Case (i) possesses slower convergence
than that for Case (ii), but Theorem 7.1-7.2 tell us that the computationca at each iteration
step for Case (i) is much cheaper than that for Case (ii) since both T−1 and T−1

n correspond
diagonal stiffness matrices. This means that introduction of the penalty term Gd

h(·) does not
significantly increase the cost of calculation.

Remark 7.2 Unfortunately, we have not obtained a satisfactory spectrally equivalent result
for Schur complement Sn for d = 3 in Case (ii). The main difficulty comes from the “bad”
inverse estimate

‖µh‖2
0,∞,Ω ≤ Ch−1‖µh‖2

1,Ω, µh ∈ Vh,0 (d = 3).

But, if the triangulation Th has nested structure, and we use the well known BPX multilevel
preconditioner M for ∆h, then the resulting Schur complement BnM−1B∗

n has also multilevel
structure. Since all the coarse solvers in M correspond diagonal stiffness matrices, we can
derive a simple (multilevel) expression for BnM−1B∗

n as in Theorem 7.1. Based on this, it
is possible to construct an multilevel preconditioner for BnM−1B∗

n.

Now we consider Case (iii). As in the proof of Proposition 3.1, we use Φr
k ∈ Vh,0

(r = 1, 2, 3) to denote the three nodal basis vectors associated with an interior node pk.
Define

V(1)
h,0 = span{Φr

k; r = 1, 2, 3; k ∈ Λ1} and V(2)
h,0 = span{Φr

k; r = 1, 2, 3; k ∈ Λ2}.

Then we have the direct sum decomposition

Vh,0 = V(1)
h,0 + V(2)

h,0.

Let T(1) : V(1)
h,0 → V(1)

h,0 and ∆(2)
h : V(2)

h,0 → V(2)
h,0 be the restrictions of T on V(1)

h,0 and ∆h

on V(2)
h,0, respectively. It is clear that T(1) and ∆(2)

h are inverse operators (but T is not inverse
when Λ2 6= ∅). Then the preconditioner for A is defined as

B−1 = (T(1))−1Q1 + (∆(2)
h )−1Q2,
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where Qi : Vh,0 → V(i)
h,0 (i = 1, 2) denotes the L2 projector.

Let ϕk ∈ Vh,0 denote the nodal basis function associated with an interior node pk. Set

V
(1)
h,0 = span{ϕk; k ∈ Λ1} and V

(2)
h,0 = span{ϕk; k ∈ Λ2}.

Then we have
Vh,0 = V

(1)
h,0 + V

(2)
h,0 .

Define T
(1)
n : V

(1)
h,0 → V

(1)
h,0 by

〈Tnv, w〉 = 4
∑

k∈Λ1

|un(pk)|2
γd,k

v(pk)w(pk), v ∈ V
(1)
h,0 , ∀w ∈ V

(1)
h,0 .

Let ∆(2)
h : V

(2)
h,0 → V

(2)
h,0 be the restrictions of ∆h on V

(2)
h,0 . Then the preconditioner for Sn is

defined as
K−1

n = (T (1)
n )−1Q1 + ∆(2)

h Q2,

where Qi : Vh,0 → V
(i)
h,0 (i = 1, 2) denotes the L2 projector.

Theorem 7.3 Let B and Kn be the preconditioners defined above. Then we have cond(B−1A) ≤
C and cond(K−1

n Sn) ≤ C log2(1/h) for the case d = 2.

Proof. We prove the first result only. By the standard theory (see, for example, [19]) one
needs only to verify that

(a) for any v ∈ Vh,0 there exists a decomposition v = v1 + v2 with vi ∈ V(i)
h,0 (i = 1, 2)

such that
(T(1)v1,v1) + (∆(2)

h v2,v2) ≤ C1(Av,v) (7.14)

and
(b) for any wi ∈ V(i)

h,0 (i = 1, 2) we have

(A(w1 + w2),w1 + w2) ≤ C2[(T(1)w1,w1) + (∆(2)
h w2,w2)]. (7.15)

We first verify the condition (a). For any v ∈ Vh,0, define vi ∈ V(i)
h,0 such that vi(pk) =

v(pk) for any k ∈ Λi and vi(pk) = 0 for any k 6∈ Λi (i = 1, 2). Then we have v = v1 + v2. By
the definition of T(1), we get

(T(1)v1,v1) = (Tv1,v1) = (Tv,v) ≤ (Av,v). (7.16)

On the other hand, we have

(∆(2)
h v2,v2) = (∆hv2,v2) = |∇v2|20,Ω ≤ 2(|∇v|20,Ω + |∇v1|20,Ω).

This, together with (3.1) and (7.4), leads to

(∆(2)
h v2,v2) ≤ C(|∇v|20,Ω + h−2|v1|20,Ω) ≤ C(|∇v|20,Ω + Gd

h(|v1|2)).

By (7.5), we further deduce

(∆(2)
h v2,v2) ≤ C(|∇v|20,Ω + Gd

h(|v|2)) ≤ C(Av,v).
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Combining this with (7.16), gives (7.14).
Now we consider the condition (b). Let w1 ∈ V(1)

h,0. By (7.5) and (3.1), we get

(Aw1,w1) ≤ C(‖∇w1‖2
0,Ω + Gd

h(|w1|2)) ≤ C(h−2‖w1‖2
0,Ω + Gd

h(|w1|2)).

This, together with (7.4), leads to

(Aw1,w1) ≤ C(T(1)w1,w1), ∀w1 ∈ V(1)
h,0.

Besides, since (Tw2,w2) = 0 for w2 ∈ V(2)
h,0, we have

(Aw2,w2) ≤ C(∆(2)
h w2,w2), ∀w2 ∈ V(2)

h,0.

Combining the above two inequalities, yields (7.15).
The second result can be proved in a similar manner, by using some results obtained in

the proofs of Theorem 7.1-7.2.
¤

Remark 7.3 It follows by Theorem 7.1-7.3 that both the operators A and the Schur com-
plement Sn = Bn(A−1B∗

n are positive definite. Thus, the saddle-point problem (7.3) has a
unique solution (u0

n+1, λn+1) ∈ Vh,0 × Vh,0.

8 Numerical experiments

In this section we shall use the proposed algorithm to solve the problem (1.2). We shall report
some numerical results to illustrate efficiency of the new iteration method (5.5).

Let u0 denote a suitable initial guess satisfying πhF (u0) = 0, and let {un}n≥1 denote the
solution sequence generated by the iteration (5.5). Set

εn =
‖∇(un+1 − un)‖0,Ω

‖∇(u1 − u0)‖0,Ω
(n ≥ 1).

The stopping criterion in the iteration (5.5) is that the tolerance εn < 1.e − 4 in the case of
subsection 8.1.2, or εn < 1.e− 3 in other cases.

8.1 Examples with κ1 = 1 and κ2 = 0

In this subsection we set κ1 = 1 and κ2 = 0 in the functional (1.1), which was considered in
[14] (for the case of two dimensions) and [3] (for the case of three dimensions).

8.1.1 A two-dimensional harmonic map with singularity

It is well known that the solution of the harmonic map problem is generally not unique
and may have singularities even with smooth data. In order to show the applicability of
our algorithms for these problems, we test a problem with a singular solution (see [14]):
u(x) = (x1/r, x2/r), with r(x) =

√
(x2

1 + x2
2) on Ω = (−0.5, 0.5)× (−0.5, 0.5). The Dirichlet

boundary conditions are obtained from the analytical solution.
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We adopt a uniform triangulation Th as follows: we first divide Ω into small squares with
side-length h, and then divide each small square into two equal triangles. The triangulation
corresponds to Case (ii) that γd,k = 0 for every nodes pk.

The initial guess u0 for the new iteration method (5.5) is shown in Figure 8.1.1(a,c). The
computed solution is shown in Figure 8.1.1(b,d).
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Plot of the initial solutions and the computed solutions. a) The first initial solution.
b) The solution for (a). c) The second initial solution.d) The solution for (c).

The numerical errors are given in Table 1. The errors indicate that uh converges quasi
linearly to the solution when measured in l2. It is interesting to observe that we get conver-
gence for ‖ u − uh ‖0 even without mesh refinement around the singularity. In Table 2 we
list the iteration counts of the new iteration algorithm (5.5) with different mesh sizes.

Table 1: The L2 error of uh with respect to h

h 2−3 2−4 2−5

‖ u− uh ‖0 2.5e-1 1.4e-1 7.7e-2

Table 2: Iteration counts with respect to h
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h 2−3 2−4 2−5

iter 14 14 13

8.1.2 A three-dimensional harmonic map with singularity

Set Ω = (−0.5, 0.5)3 and g(x) = x/|x|,x ∈ ∂Ω. Then, u(x) = x/|x| (x ∈ Ω) is the unique
solution of the problem (1.2) (see [3]). We consider the following triangulations of Ω in this
subsubsection.

Let Ω be divided into some small cuboid with three sides of lengths being 1
2h,h and h,

and then let each small cuboid be further divided into five smaller tetrahedrons (see Figure
1). Let vk (k = 1, · · · , 8) denote the 8 vertices of a cuboid, then the five tetrahedrons in the
cuboid are given as follows:

T1 := conv{v4, v1, v2, v6}, T2 := conv{v8, v6, v4, v7}, T3 := conv{v3, v7, v1, v4},
T4 := conv{v5, v7, v1, v6}, T5 := conv{v4, v7, v1, v6}.

v
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v
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v
8

v
6

v
1

v
3

v
7

v
5

Figure 1: The division in a cuboid of the triangulation

Note that the above tetrahedrons do not satisfy the assumption described in [3]. The
triangulation corresponds to Case (iii) that both γd,k > 0 and γd,k = 0 happen for different
nodes pk. For convenience, let Th denote the resulting triangulation, and let Nh denote the
set of the nodes. For the triangulation Th, the initial guess u0

h in the algorithm (5.5) is defined
by (see [3])

u0
h(x) :=

{
x/|x|, for x ∈ Nh ∩ ∂Ω
(0, 1, 0), for x ∈ Nh ∩ Ω.

The saddle-point system (7.2) is solved by Uzawa algorithm introduced in [15], with the
preconditioners described in Section 7. In Table 3 we report the L2 errors of the approxi-
mations uh in terms of h. We observe that the L2 error of the approximated solutions uh

decreases linearly with respect to h.

Table 3: The L2 error of uh with respect to h
.
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h 2−3 2−4 2−5

‖ u− uh ‖0 2.0e-1 1.1e-1 5.7e-2

In Table 4 we list the iteration counts of the method (5.5). We observe that the iteration
counts increases linearly with respect to h.

Table 4: Iteration counts with respect to h

h 2−3 2−4 2−5

iter 131 244 513

Let u(j)
h denote the approximation generated by j-th steps iteration (5.5) with the starting

value u(0)
h defined above, and let u(j)

h (0, ., .) denote the projection of the vector fields u(j)
h onto

the plane {(x1, x2, x3) ∈ R3 : x1 = 0, (x2, x3) ∈ (−0.5, 0.5)2}. The following Figure 2 shows
the projections u(j)

h (0, ., .) with h = 1/32 and j = 0, 10, 50, 513.
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Figure 2: The projections u(j)
h (0, ., .) for h = 1/32 and j = 0, 10, 50, 513

We observe that, for the case with h = 1/32, the output u513
h generated by 513 iterations

appears to be very close to the exact solution away from 0. The value of the numerical
solution at 0, where the exact solution has a singularity, has no particular meaning and seems
to depend on the triangulation and the initial value.
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As pointed out in [3], the definition of u(0)
h is suboptimal as it admits large gradients in a

neighborhood of ∂Ω. As in [3], we choose another starting value. Let ξ(p), for all p ∈ Ω, be
a random unit vector in R3, and let the starting value ũ(0)

h is defined by (see [3])

ũ0
h(p) :=

{
p/|p|, for p ∈ Nh ∩ ∂Ω
ξ(p), for p ∈ Nh ∩ Ω

Let ũ(j)
h (0, ., .), associated with the starting value ũ0

h, be defined as u(j)
h (0, ., .). The following

Figure 3 shows the projections ũ(j)
h (0, ., .) with h = 1/32 and j = 0, 10, 100, 510.
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Figure 3: The projections ũ(j)
32 (0, ., .) for h = 1/32 and j = 0, 10, 100, 510

For such case, we observe that the algorithm immediately changes the highly unordered
initial configuration into a more stable one; after one hundred iterations only one degree of one
singularity with high symmetry can be seen. The subsequent iterations move the singularity
to the origin.

8.2 Examples with κ2 = 1

In this subsection we set κ2 = 1 in the functional (1.1), but κ1 may be different, which was
considered in [11].

8.2.1 Another two-dimensional harmonic map with singularity

Set Ω = (0, 1)× (0, 1). We adopt a uniform triangulation Th as follows: we first divide Ω into
small squares with side-length h, and then divide each small square into two equal triangles.
The triangulation corresponds to Case (i) that γd,k > 0 for all the nodes pk since κ2 6= 0.
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For the case with κ2 6= 0, it seems difficult to construct an analytic solution of the problem
(1.2). It is clear that the solutions of (1.2) are determined by the boundary conditions u = g.
Thus we only need to define the boundary value function g. We consider two cases for the
boundary conditions u = g:

(i) g = µ, where µ is the unit outward normal vector on Γ.

(ii) g satisfies |g| = 1 and g · µ = sinγ. Here γ is a constant angle between vectors g and
µ.

We define initial values u0
h in the iteration (5.5) as the interpolation of the following

function

u0(x1, x2) =





(−sin(φ), cos(φ)) if x2 ≥ x1 and x2 ≥ 1− x1;
(cos(φ), sin(φ)) if x2 < x1 and x2 ≥ 1− x1;
(sin(φ),−cos(φ)) if x2 < x1 and x2 < 1− x1;
(−cos(φ),−sin(φ)) if x2 ≥ x1 and x2 < 1− x1.

Here we choose φ = 0 for the case (i) and φ = π/4 for the case (ii). This initial values for
the case (ii) have the same formulas as the boundary value function g everywhere except in
(1/2, 1/2), where the initial value is taken (1/

√
2, 1/

√
2).

The computational results for the case (i) are depicted in Figure 4. Our computed solutions
verify the expectation of the researchers, namely, singularities take place on the diagonals of
the square (see,e.g.,[11]). In Table 5 we list the iteration counts of the new iteration algorithm
(5.5) with different mesh sizes and κ1. As we can see, when we fix h, the convergence is quasi
independent of the κ1; when we fix κ1, the iteration counts almost linearly increase with
respect to 1/h.

Table 5: Iteration counts with respect to h and κ1

h \ κ1 0.1 0.01 0.001
2−4 49 59 60
2−5 95 103 104
2−6 167 177 179
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Figure 4: u (director field) on a square liquid crystal slab with outward normal boundary
values

The result for the case (ii) is depicted in Figure 5. After 57 iterations algorithm (5.5)
with initial values u0

h terminates, and we observe that the numerical solution has one point
singularity.
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Figure 5: u (director field) on a square liquid crystal slab with boundary values possessing
constant angle sin γ = 0.7 to the outward normal

8.2.2 Another three-dimensional harmonic map with singularity

Set Ω = (0, 1)3. We adopt the uniform triangulation Th as shown in Figure 6. The triangula-
tion corresponds to Case (i) that γd,k > 0 for all the nodes pk since κ2 6= 0. Let Ω be divided
into small regular hexahedrons with the same size h, and then let each small hexahedron be
further divided into six smaller tetrahedrons. Let vk (k = 1, · · · , 8) denote the 8 vertices of a
hexahedron, then the six tetrahedrons in the hexahedron are given as follows:

T1 := conv{v1, v2, v3, v6}, T2 := conv{v2, v4, v3, v6}, T3 := conv{v3, v4, v8, v6},
T4 := conv{v3, v8, v7, v6}, T5 := conv{v7, v5, v3, v6}, T6 := conv{v3, v5, v1, v6}.
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Figure 6: The division in a hexahedron of the triangulation

We shall consider two cases for the boundary conditions u = g.

(i) g = µ, where µ is the unit outward normal vector on Γ.

(ii) g satisfies |g| = 1 and g · µ = sinγ,g × µ = (ξ, ξ, 0), (ξ, 0, ξ), (0, ξ, ξ). Here γ is a
constant angle between vectors g and µ, ξ = cos(γ)/

√
2.
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The initial guess u0
h for the iteration (5.5) is defined by

u0
h(x) :=

{
g(x), for x ∈ Nh ∩ ∂Ω,
(0, 1, 0), for x ∈ Nh ∩ Ω.

The computational results for the case (i) are depicted in Figure 7, which depicts the
projections u(j)

h (0.5, ., .) onto the plane {(x1, x2, x3) ∈ R3 : x1 = 0.5, (x2, x3) ∈ (0, 1)2}. For
κ1 = 0.1 and 1, they have just one singularity. In Table 6 we list the iteration counts of the
new iteration algorithm (5.5) with different κ1 and h. As we can see, when we fix κ1, the
iteration counts almost linearly increases with respect to 1/h.
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Figure 7: u (director field) on a square liquid crystal slab with the boundary condition (i)

Table 6: Iteration counts with respect to κ1

h \ κ1 0.1 1
2−3 260 155
2−4 522 505
2−5 828 888

The computational result for the case (ii) is depicted in Figure 8, which shows the pro-
jections u(j)

h (0.5, ., .) onto {(x1, x2, x3) ∈ R3 : x1 = 0.5, (x2, x3) ∈ (0, 1)2}. For κ1 = 0.1 and
1, they have also one singularity. In Table 7 we list the iteration counts of the new iteration
algorithm (5.5) with different κ1 and h. As we can see, when we fix κ1, the iteration counts
increase almost linearly with respect to 1/h.
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Figure 8: u (director field) on a square liquid crystal slab with the boundary condition (ii)

Table 7: Iteration counts with respect to κ1

h \ κ1 0.1 1
2−3 396 328
2−4 1011 789
2−5 1199 1227

8.3 Concluding remarks

In this section we apply the Newton-penalty method introduced in Section 5 to solving some
test problems defining harmonic maps in two dimensions or three dimensions, especially
both κ2 = 0 and κ2 6= 0 are considered. The reported numerical results confirm the global
convergence of the proposed approach whenever κ2 = 0 or κ2 = 1. The results indicate that
the iteration counts is almost h-independent for the two dimensional case with κ2 = 0, and is
only linearly increasing with respect to 1/h for the other cases. The new method not only is
easy to implement but also is efficient to more general models with κ2 6= 0, especially without
any particular requirement to triangulations.
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