2012年2月

CHINESE JOURNAL OF APPLIED MECHANICS

文章编号: 1000-4939(2012) 01-0015-06

## 层合圆柱三维温度场分析的半解析-精细积分法

#### 富明慧 陈焯智

(中山大学应用力学与工程系 510275 广州)

摘要:针对圆柱体的三维温度场分析,提出了一种高效的半解析-精细积分法。将温度场展开为环 向坐标的 Fourier 级数,并对径向坐标进行差分离散,从而把三维热传导方程简化为一系列二阶常 微分方程;将这些二阶常微分方程转化为哈密顿体系下的一阶状态方程,并利用两点边值问题的 精细积分法求解。由于该方法仅对径向坐标进行差分离散,故相对于传统的数值方法离散规模大 幅度减少,不仅提高了计算效率、降低了存贮量,而且缓解了代数方程的病态问题。此外,针对 Fourier 半解析解,根据热平衡原理推导出了两种材料衔接面的半解析差分方程,从而为求解复合 材料层合柱问题打下了基础。算例结果表明,即使对于细长比高达 400 的圆柱杆件,此方法仍然 可以给出精度较高的解答。

关键词: 层合圆柱; 三维热传导分析; 精细积分法; Fourier 展开; 有限差分法; 功能梯度材料圆柱 中图分类号: O302 文献标识码: A

## 1 引 言

圆柱或圆环柱在工程中具有广泛应用,对此类 结构的三维温度场分析具有重要意义,也是热应力 分析的基础。目前该类结构温度荷载的计算方法通 常有:利用 Fourier 热传导方程求解<sup>[1]</sup>、等效稳态传 热法、指数曲线法<sup>[2]</sup>等。在运用 Fourier 热传导方程 求解圆柱体结构的温度场时,主要有解析解法和数 值解法两大类。对于一维的热传导问题,可以给出 解析解;但对于二维和三维问题,解析求解十分困 难,故目前对此类问题主要采用数值解法,如有限 差分法和有限元法等。此类方法目前已经有许多商 业软件<sup>[3-4]</sup>可实现。但对于细长圆柱体,采用有限差 分法和有限元法时,都要求在轴向离散的网格足够 密,以保障单元或者网格的性态,这必然导致计算 量和存贮量的急剧增加。

精细积分法自 1994 年由钟万勰<sup>[5-6]</sup>提出后,由 于其具有高精度和高效率的特点,因而在结构动力 方程<sup>[7-9]</sup>、热传导问题<sup>[10-13]</sup>、两点边值问题<sup>[14-15]</sup>等各 类初值和边值问题的求解中获得了广泛的应用。在 热传导分析方面,文献[10]讨论了热传导分析有限 元解的精细积分算法;文献[11]针对功能梯度材料 (FGMs)的二维瞬态热传导问题,提出了一种降维 精细积分法;文献[12]则应用时域自适应精细算法 求解对流传热问题。

本文针对圆柱及圆环柱结构的三维稳态热传导问题,提出了一种高效的半解析-精细积分法。该方法充分利用圆柱体几何轴对称的特点,首先把温度场沿环向作 Fourier 级数展开,然后对径向进行差分离散,最后在轴向进行精细积分。该方法的优点是: 离散规模小、计算精度高,且柱体细长比越大,这

来稿日期: 2011-06-23 修回日期: 2011-11-02

基金项目:国家自然科学基金(10672194);2010年广东省大学生创新实验项目(1055810002)

**第一作者简介**: 富明慧, 男, 1966 年生, 中山大学应用力学与工程系, 教授、博士生导师; 研究方向——哈密顿系统的数值分析、理论与方法; 复合材料板壳结构分析。 **E-mail**: stsfmh@mail.sysu.edu.cn

种优势就越突出。另外针对多层圆柱,本文给出了 衔接面的半解析差分方程。算例充分证明了该方法 的有效性,且精度较高。

# 2 圆柱体基于 Fourier 展开的半 解析-精细积分法

考察如下圆柱体的稳态热传导问题

$$\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{1}{r^2} \frac{\partial^2 t}{\partial \varphi^2} + \frac{\partial^2 t}{\partial z^2} + \frac{q_v^*}{\lambda} = 0$$
(1)

$$t_{w} = t(r, \varphi, z), \quad \xi_{w} = \xi(r, \varphi, z)$$
<sup>(2)</sup>

其中: t 为温度;  $q_v^*$ 为内热源强度;  $\lambda$  为导热系数;  $t_w$  为对应于第一类边界条件中边界上的温度值;  $\xi_w$ 为对应于第二类边界条件中边界上的热流密度值。

上述方程是三维的,为简化计算,本文先对其 进行降维处理。

#### 2.1 方程的降维

首先将温度场沿环向坐标进行 Fourier 展开,即  $t(r, \varphi, z) = t_o(r, z) + \sum_{l=1}^{L} t_s(r, z) \sin(l\varphi) + \sum_{l=1}^{L} t_c(r, z) \cos(l\varphi)$  (3)

内热源强度也作相应展开

$$q_{v}^{*}(r,\varphi,z) = q_{vo}^{*}(r,z) + \sum_{l=1}^{L} q_{vs}^{*}(r,z) \sin(l\varphi) + \sum_{l=1}^{L} q_{vc}^{*}(r,z) \cos(l\varphi)$$
(4)

$$\frac{\partial^2 t_o(r,z)}{\partial r^2} + \frac{1}{r} \frac{\partial t_o(r,z)}{\partial r} + \frac{\partial^2 t_o(r,z)}{\partial z^2} = -\frac{q_{vo}^*(r,z)}{\lambda}$$
(5)

$$\frac{\partial^{2} t_{s}(r,z)}{\partial r^{2}} + \frac{1}{r} \frac{\partial t_{s}(r,z)}{\partial r} + \frac{\partial^{2} t_{s}(r,z)}{\partial z^{2}} - \frac{l^{2}}{r^{2}} t_{s}(r,z) = -\frac{q_{vs}^{*}(r,z)}{\lambda}$$
(6)

$$\frac{\partial^{2}t_{c}(r,z)}{\partial r^{2}} + \frac{1}{r}\frac{\partial t_{c}(r,z)}{\partial r} + \frac{\partial^{2}t_{c}(r,z)}{\partial z^{2}} - \frac{l^{2}}{r^{2}}t_{c}(r,z) = -\frac{q_{vc}^{*}(r,z)}{\lambda}$$
(7)

其中:式(5)对应于 Fourier 展开的轴对称部分;式(6)、式(7)对应于非轴对称部分。

这样,原三维的偏微分方程就被转化为一系列

二维的偏微分方程。对于连续系统,根据式(5)~式(7) 的特点可以推知:对于轴对称部分,在圆心r = 0处 有 $\frac{\partial t_o(r,z)}{\partial r} = 0$ ;而对于非轴对称部分,在圆心 r = 0处有 $t_s = 0$ 和 $t_c = 0$ 。

对式(5)~式(7)沿径向坐标进行差分离散。为简 便起见,方程中的二阶导数和一阶导数均采用等步 长中心差分格式,并代入侧边边界条件(也沿环向 坐标作 Fourier 展开),可得到以下三组半解析差分 方程

$$\frac{t_{oj+1} - 2t_{oj} + t_{oj-1}}{\Delta r^2} + \frac{1}{r_j} \frac{t_{oj+1} - t_{oj-1}}{2\Delta r} + \frac{d^2 t_o}{dz^2} = -\frac{q_{voj}^*}{\lambda}$$
(8)

$$\frac{t_{sj+1} - 2t_{sj} + t_{sj-1}}{\Delta r^2} + \frac{1}{r_j} \frac{t_{sj+1} - t_{sj-1}}{2\Delta r} + \frac{d^2 t_s}{dz^2} = \frac{l^2}{r_j^2} t_{sj} - \frac{q_{vsj}^*}{\lambda}$$
(9)

$$\frac{t_{cj+1} - 2t_{cj} + t_{cj-1}}{\Delta r^2} + \frac{1}{r_j} \frac{t_{cj+1} - t_{cj-1}}{2\Delta r} + \frac{d^2 t_c}{dz^2} = \frac{l^2}{r_j^2} t_{cj} - \frac{q_{vcj}^*}{\lambda}$$
(10)

其中: *j*=1,2,…,*n*; *n*为径向差分离散的内部结 点个数; Δ*r*为差分离散的步长。当然,为提高靠 近圆心处结点的求解精度,也可采用变步长差分方 法<sup>[16]</sup>,推导过程完全相同,只是式(8)~式(10)表达式 略有不同,本文不再赘述。

这样,就把二维偏微分式(5)~式(7)进一步简化 为一维的常微分方程。对于半解析差分式(8)~式(10) 的系数矩阵具有统一的三对角形式即

$$N = \begin{pmatrix} a & b & & \\ c & a & b & \\ & \ddots & \ddots & \ddots & \\ & & c & a & b \\ & & & c & a \end{pmatrix}$$
(11)

其中a、b、c皆为常数。

#### 2.2 半解析差分方程的精细积分求解

$$\boldsymbol{\diamondsuit}: \boldsymbol{q} = \begin{bmatrix} t_1, t_2, \cdots, t_n \end{bmatrix}^{\mathrm{T}}; \boldsymbol{p} = \frac{\partial}{\partial z} \begin{bmatrix} t_1, t_2, \cdots, t_n \end{bmatrix}^{\mathrm{T}}$$

则式(8)~式(10)可写成

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ N & \mathbf{0} \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix} + f$$
(12)

其中: **N** 为式(11)中的矩阵, **I** 为单位方阵, 为由 对应的侧边边界条件和式(8)~式(10)中右端内热源 项相加得到的非齐次项。

令: 
$$\mathbf{v} = \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix}$$
, 则式(12)可进一步写成  
 $\dot{\mathbf{v}} = \mathbf{H}\mathbf{v} + \mathbf{f}$  (13)

两端边界条件为

$$\boldsymbol{q}(0) = \boldsymbol{\alpha}, \ \boldsymbol{q}(\boldsymbol{z}_f) = \boldsymbol{\beta}$$
(14)

其中:  $H = \begin{pmatrix} 0 & I \\ N & 0 \end{pmatrix}$ ;  $z_f$ 为圆柱的总长度;  $\alpha \ \pi \beta$ 

是已知的常数组成的列向量。

将区间  $[0, z_f]$  均匀划分为M份,则步长  $\Delta z = z_f / M$ 。记:  $z_i = i\Delta z$ ;  $q_i = q(z_i)$ ;  $p_i = p(z_i)$ ,则有<sup>[17]</sup>

 $v_{i+1} = T(\Delta z)v_i + v_{i+1}^*$ ,  $(i = 1, 2, \dots, M-1)$  (15) 其中: 传递矩阵  $T = \exp(H\Delta z)$ , 它可用文献[5]中 的 指 数 矩 阵 运 算 技 巧 精 确 求 得;  $v_{i+1}^* = \int_{z_i}^{z_{i+1}} \exp(H(z_{i+1}-s))f(s)ds$  为式(13)的 特解,可按文献[18]中特解的精细积分法给出,也 可用数值积分的方法如 Romberg 积分公式<sup>[17]</sup>、Cotes 积分公式<sup>[19]</sup>等方法计算。

应该指出,上述沿轴向的"代数化"过程是一个 几乎无离散误差的精细积分过程,计算精度与步长 Δz 无关,这是与传统差分离散的最大区别之处。

将式(15)写成矩阵形式,有

$$\begin{pmatrix} -\mathbf{T} & \mathbf{I}_{2m\times 2n} & & & \\ & -\mathbf{T} & \mathbf{I}_{2m\times 2n} & & & \\ & & \ddots & \ddots & & \\ & & & -\mathbf{T} & \mathbf{I}_{2m\times 2n} & \\ & & & & -\mathbf{T} & \mathbf{I}_{2m\times 2n} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \vdots \\ \mathbf{v}_{M-1} \\ \mathbf{v}_{M} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{1}^{*} \\ \mathbf{v}_{2}^{*} \\ \vdots \\ \mathbf{v}_{M-1} \\ \mathbf{v}_{M}^{*} \end{pmatrix}$$
(16)

至此,三维稳态热传导边值问题转化为式(16) 形式的代数方程组。该代数方程组中自由度  $(q_i, p_i)$ 的总个数为(2M+2)个,其中 $(q_0, q_M)$ 为已知,故未知量为2M个,方程总数也为2M个, 因而是封闭的代数方程组。式(16)可用文献[15]中给 出的递推合并消元方法求解。

## 3 复合材料层合圆柱(或圆环柱) 基于 Fourier 展开的半解析-精细 积分法

工程实际中有许多复合材料组成的多层圆柱 体结构,如钢管混凝土柱、复合材料管道等。由于 各层均可视为均匀材料层,因此相邻层间界面的处 理就成为热传导分析的关键。针对 Fourier 级数半解 析解法,有关两种介质衔接面的半解析差分方程的 研究尚未见到,为此针对稳态热传导问题,本文推 导了衔接面的半解析差分方程。具体过程如下。

在衔接面处取一扇形六面体微元,垂直于纸面 的厚度为dz。如图1所示,实线包围部分即为所研 究的微元体。



图 1 衔接面处所取扇形六面体微元俯视图(厚度为 dz)

图 1 中: h<sub>1</sub>和 h<sub>2</sub>分别表示材料 A 和 B 沿径向 的差分步长。编号 0、1、2、3、4 都为对应位置扇 形面编号,其中 3 和 4 面表示图中箭头所示的等效 热流流入面; r<sub>0</sub>、r<sub>1</sub>、r<sub>2</sub>、r<sub>3</sub>、r<sub>4</sub>分别表示对应面形 心点到扇形圆心的距离。由于取的是微元体,故面 上热流可表示为对应面形心处的热流密度与该面面 积的乘积。

将温度场在环向作 Fourier 展开时,由式(3)可 知温度包含有 $t_o(r,z)$ 、 $t_s(r,z)\sin(l\varphi)$ (其中 l=1, 2,…)、 $t_c(r,z)\cos(l\varphi)$ 项。下面以 $t_s(r,z)\sin(l\varphi)$ 项为例推导衔接面稳态半解析差分方程。

在柱坐标系下,径向、环向、轴向热流密度表 达式分别为

径向: 
$$\xi = -\lambda \frac{\partial t}{\partial r}$$
 (17)

环向: 
$$\xi = -\lambda \frac{1}{r} \frac{\partial t}{\partial \varphi}$$
 (18)

轴向: 
$$\xi = -\lambda \frac{\partial t}{\partial z}$$
 (19)

其中: λ为导热系数; ζ为热流密度,即单位时间 单位面积上传递的热量。在稳态条件下,流入微元 体的总热流量加上微元体内热源生成热流量等于流 出微元体的总热流量,于是

$$\xi_1 s_1 + \xi_2 s_2 + \xi_3 s_3 + \xi_7 s_7 + q_v^* V =$$

 $\xi_4 s_4 + \xi_5 s_5 + \xi_6 s_6 + \xi_8 s_8 \qquad (20)$ 

其中: *ξ、s*的下标对应的是图中所示不同的流入 面与流出面的热流密度和面积; *ξ*, 和*s*, 表示从扇形 底面流入的热流密度和对应面积; $\xi_8 和 s_8$ 表示从扇 形顶面流出的热流密度和对应面积(应注意的是, 在计算通过扇形六面体微元的底面和顶面热流量 时,要考虑两种材料的区别); $q_v^*$ 表示内热源强度; V表示整个微元体的体积。

把式(17)~式(19)代入到式(20)中,并对
$$\frac{\partial}{\partial r}$$
作中

心差分,即

$$\left(\frac{\partial t}{\partial r}\right)_{r=r_1} = \frac{t_2 - t_1}{h_1}$$
,  $\left(\frac{\partial t}{\partial r}\right)_{r=r_2} = \frac{t_3 - t_2}{h_2}$ 

同时对 $\frac{t}{r}$ 作线性插值,即

$$\left(\frac{t}{r}\right)_{r=r_3} = \frac{3}{4} \frac{t_2}{r_0} + \frac{1}{4} \frac{t_1}{r_0 - h_1} , \quad \left(\frac{t}{r}\right)_{r=r_4} = \frac{3}{4} \frac{t_2}{r_0} + \frac{1}{4} \frac{t_3}{r_0 + h_2}$$

再根据式(4),内热源强度为 $q_{vs}(r,z)\sin(l\varphi)$ ,将其 $与t = t_s(r,z)\sin(l\varphi)$ 一并代入式(20),可得

$$\lambda_{2} \frac{t_{s3} - t_{s2}}{h_{2}} (r_{0} + \frac{h_{2}}{2}) - \lambda_{1} \frac{t_{s2} - t_{s1}}{h_{1}} (r_{0} - \frac{h_{1}}{2}) - \left[\lambda_{1} l^{2} (\frac{3}{4} \frac{t_{s2}}{r_{0}} + \frac{1}{4} \frac{t_{s1}}{r_{0} - h_{1}}) \frac{h_{1}}{2} + \lambda_{2} l^{2} (\frac{3}{4} \frac{t_{s2}}{r_{0}} + \frac{1}{4} \frac{t_{s3}}{r_{0} + h_{2}}) \frac{h_{2}}{2}] + \frac{1}{2} [\lambda_{1} (r_{0}^{2} - r_{1}^{2}) + \lambda_{2} (r_{2}^{2} - r_{0}^{2})] \frac{d^{2} t_{s}}{dz^{2}} + q_{vs}^{*} \frac{r_{2}^{2} - r_{1}^{2}}{2} = 0$$
(21)

其中: $\lambda_1$ 为材料 *A*的导热系数; $\lambda_2$ 为材料 *B*的导热系数。

同理,可推导出对应于式(3)式中*t<sub>o</sub>*(*r*,*z*)和 *t<sub>c</sub>*(*r*,*z*)cos(*l*φ)(其中 *l*=1, 2, …)的衔接面稳态半 解析差分方程,具体结果为

$$\begin{split} \lambda_{2} \frac{t_{o3} - t_{o2}}{h_{2}} (r_{0} + \frac{h_{2}}{2}) &- \lambda_{1} \frac{t_{o2} - t_{o1}}{h_{1}} (r_{0} - \frac{h_{1}}{2}) + \\ \frac{1}{2} [\lambda_{1} (r_{0}^{2} - r_{1}^{2}) + \lambda_{2} (r_{2}^{2} - r_{0}^{2})] \frac{d^{2}t_{o}}{dz^{2}} + q_{vo}^{*} \frac{r_{2}^{2} - r_{1}^{2}}{2} = 0 \end{split}$$
(22)  
$$\lambda_{2} \frac{t_{c3} - t_{c2}}{h_{2}} (r_{0} + \frac{h_{2}}{2}) - \lambda_{1} \frac{t_{c2} - t_{c1}}{h_{1}} (r_{0} - \frac{h_{1}}{2}) - \\ [\lambda_{1} l^{2} (\frac{3}{4} \frac{t_{c2}}{r_{0}} + \frac{1}{4} \frac{t_{c1}}{r_{0} - h_{1}}) \frac{h_{1}}{2} + \\ \lambda_{2} l^{2} (\frac{3}{4} \frac{t_{c2}}{r_{0}} + \frac{1}{4} \frac{t_{c3}}{r_{0} + h_{2}}) \frac{h_{2}}{2}] + \frac{1}{2} [\lambda_{1} (r_{0}^{2} - r_{1}^{2}) + \\ \lambda_{2} (r_{2}^{2} - r_{0}^{2})] \frac{d^{2}t_{c}}{dz^{2}} + q_{vc}^{*} \frac{r_{2}^{2} - r_{1}^{2}}{2} = 0 \end{aligned}$$
(23)

式(21)~式(23)即为衔接面处的稳态半解析差分

方程,利用这些方程就可针对两种不同材料进行联 合求解。

在具体的工程实际计算中,往往会涉及较为 复杂的问题,例如结构与地基之间的热交换问题。 此时可将本文方法与有限元方法进行结合,对于杆 端衔接部分可用有限元方法计算,其形成的代数方 程组可与本文方法进行联合求解。这样就使得两种 方法的优势都得以发挥。

## 4 算 例

**4.1 算例 1**: 长圆柱的稳态热传导计算。本算例中 各物理量量纲均为一。设圆柱半径 1,长 400。设侧 边界的温度为 $t_{wl} = z + z \sin \varphi$ ,两端边界温度为

$$t_{w2} = \begin{cases} 0, & z = 0\\ 400 + 400r\sin\varphi, & z = 400 \end{cases}$$

其中r、z、 $\varphi$ 分别为径向、轴向、环向坐标。表 1 为精确解与本文结果的对比,其中:r = 0.6;  $\varphi = \pi/2$ ; z沿轴向变化。

对于细长比高达 1:400 的圆柱,如果采用常 规三维数值方法离散,为保障单元性态则离散规模 必然十分庞大,这会导致庞大的存贮量和计算量。 本文虽然沿径向仅取了 20 个结点,但解答的误差都 不超过 0.1%,这说明本文方法具有很高的精度;同 时在存贮量和计算效率方面,本文方法也具有突出 的优势。

需要指出的是,在实际的工程应用中并不要求 如此高的精度,因此在运用本文方法时可适当减少 求解传递矩阵**T**的循环次数,这样可进一步提高效 率以及减少存贮量。

表1 本文结果与精确解的比较

| 长度<br><i>z</i> /m | 精确解/℃                    | 本文解/℃                    | 相对误差/<br>×10 <sup>-9</sup> (%) |
|-------------------|--------------------------|--------------------------|--------------------------------|
| 50                | 78.51252739 <b>1347</b>  | 78.51252739 <b>49312</b> | 4.57                           |
| 100               | 157.02505478 <b>2693</b> | 157.02505478 <b>9862</b> | 4.57                           |
| 150               | 235.5375821 <b>7404</b>  | 235.5375821 <b>848</b>   | 4.57                           |
| 200               | 314.2034543 <b>45449</b> | 314.2034543 <b>59759</b> | 4.55                           |
| 250               | 392.7159817 <b>36796</b> | 392.7159817 <b>54681</b> | 4.55                           |
| 300               | 471.2285091 <b>28142</b> | 471.2285091 <b>49618</b> | 4.56                           |
| 350               | 549.7410365 <b>19489</b> | 549.7410365 <b>44523</b> | 4.55                           |

4.2 算例 2:钢管混凝土柱的轴对称温度场计算。 设:钢管混凝土柱内径为 0.1m,外径为 0.2m,长 为 20m;钢管和混凝土界面在 *r*=0.18m 处;钢管导 热系数取为 75W/(m·℃);混凝土导热系数取为 0.79 W/(m·℃);内边界温度恒定为 30℃;外边界温 度按线性规律变化,即: $t_{wl} = 60 - z$ ;两端边界温度均按线性规律变化(r, z分别为径向和轴向坐标)。

分别采用本文方法和有限元方法进行计算,有限元方法采用轴对称四边形四节点单元,单元离散规模为4000×20。计算结果对比见图2和图3。





从图 2 和图 3 可以看出,两种方法计算的结果 十分接近,也证明了本文方法的有效性。

在同一台机器上,本文方法计算所用 CPU 时间为 1.5s,而有限元计算所用 CPU 时间为 7s,运用本 文方法计算该问题,效率提高了将近 5 倍。

在数据存贮量方面,有限元所需计算自由度个 数为 4001×21 个,所需要存贮半带宽约为 20;本 文方法所需要存贮的是 4 个 38×38 的矩阵<sup>[15]</sup>,并且 需要 10 次循环运算。这样,有限元法所需要的计算 机存贮量是本文方法的三十倍。事实上,因为在实 际情况中不需要把轴向每一个结点的温度值都求 出,故运用文献[15]中递推合并消元方法求解时, 在前几次循环过程中可用新的数据覆盖原来的数 据,这样本文方法所需的存贮量将进一步减少。另 外需注意到本例只是一个轴对称情况,如果对于一 些非轴对称,并且细长比更大的圆柱温度场分析问 题,有限元方法离散的网格数都将急剧增加,而由 于本文方法在轴向方向运用精细积分,数据存贮量 的增加有限。因而,本文的半解析-精细积分法在计 算效率和存贮量方面都具有很大的优越性。

**4.3 算例3**:功能梯度材料圆柱筒的稳态温度场计 算。设功能梯度材料圆柱筒内径为 0.1m,外径为 0.2m,轴向长度为2m;导热系数按λ=0.06e<sup>0.2r</sup>指 数规律给出。设内边界温度为 100℃,外边界温度 按照以下分段函数给出

$$t_{w1} = \begin{cases} -z + 20, & -\pi \le \varphi < -\pi/2 \\ -z + 20 + 2\cos\varphi, & -\pi/2 \le \varphi < \pi/2 \\ -z + 20, & \pi/2 \le \varphi < \pi \end{cases}$$

两端边界条件按抛物线规律变化: 底端近似为  $t_{w2} = 3100r^2 - 1700r + 238$ ; 顶端近似为  $t'_{w2} = 2700r^2 - 1600r + 232$ (其中 $r, z, \varphi$ 分别为径向、轴向和环向坐标)。沿径向将功能梯度材料筒均匀离散为 20 个子层,每一层按均匀材料计算<sup>[20]</sup>。

针对径向 r=0.15m、环向为 $\pi/2$ 处三个不同点, 表 2 给出了按式(3)中 Fourier 级数展开到第 L 项时 的计算结果。

表 2 本文方法收敛性

| I  |          | z/m      |          |
|----|----------|----------|----------|
| L  | 0.5      | 1.0      | 1.5      |
| 6  | 52.85330 | 52.56188 | 52.26135 |
| 8  | 52.85128 | 52.55986 | 52.25933 |
| 10 | 52.85055 | 52.55913 | 52.25860 |
| 12 | 52.85027 | 52.55885 | 52.25832 |
| 14 | 52.85016 | 52.55874 | 52.25821 |
| 16 | 52.85011 | 52.55869 | 52.25816 |

本算例属非轴对称问题,从表 2 可以看出: Fourier 级数第 10 项以后的各项对数值解答的影响 比较小,仅体现在小数点后第 4 位以后;且项数越 靠后,影响就越小。这也表明本文方法具有较好的 收敛性。此外,分层常数化结合半解析-精细积分法 在处理功能梯度材料问题方面也较为有效。

### 5 结 论

本文针对圆柱体或圆环柱结构的三维温度场 计算问题,提出了一种高效的半解析-精细积分方 法。该方法沿环向作 Fourier 级数展开、沿径向离散、 沿轴向精细积分。由于能充分利用结构的几何特征, 从而使得离散规模小、计算效率高,即使对于细长 比高达数百的杆件,本方法仍然可以给出较为精确 的解答。

在利用半解析-精细积分法求解复合材料层合圆柱或圆环柱的稳态温度场时,本文针对 Fourier

级数展开形式,由热平衡原理推导出了衔接面处的 半解析差分方程,为此类结构的 Fourier 半解析法打 下基础。

对于功能梯度材料圆环柱,利用分层常数化的 方法将其简化为多层圆环柱进行分析,证明了本文 方法对于功能梯度材料圆柱体的有效性。

#### 参考文献

- 刘兴法. 混凝土结构的温度应力分析[M]. 北京: 人民交通出版社, 1991: 23-26.
- [2] 李鸿酞. 高层建筑结构日照影响的探讨[J]. 建筑结构学报, 1989(3): 52-68.
- [3] 宋永娟,洪军,张先扬. 高温后钢筋混凝土柱截面温度数值模拟 与分析[J]. 山西建筑, 2009, 35(27): 82-83.
- [4] 孙粤琳,张燎军,冉懋鸽.矩形钢管混凝土柱温度场及温度应力的有限元分析[J].水利水电科技进展,2005,25(5):33-36.
- [5] 钟万勰.结构动力方程的精细时程积分[J].大连理工大学学报, 1994,34(2):131-135.
- [6] 钟万勰.矩阵黎卡提方程的精细积分法[J].计算结构力学及其应用,1994,11(2):113-119.
- [7] 林家浩,钟万勰,张文首.结构非平稳随机响应方差矩阵的直接 精细积分计算[J].振动工程学报,1999,12(1):1-8.
- [8] 王忠,王雅琳,王芳.任意激励下结构动力响应的状态方程精细积分法[J].计算力学学报,2002,19(4):419-422.

- [9] 侯秀慧,邓子辰,黄立新.桥梁结构移动荷载识别的辛精细积分 算法[J].动力学与控制学报,2008,6(1):66-72.
- [10] 张洪武,张鹏,钟万勰.获得热传导问题"拟解析解"的精细积 分算法[J].力学与实践,1998,20(4):9-11.
- [11] 蓝林华,富明慧,程正阳.功能梯度材料瞬态热传导问题的降维 精细积分法[J].固体力学学报,2010,31(4):406-410.
- [12] 赵潇,杨海天,高强.时域自适应精细算法求解对流热传导问题[J].
   计算物理,2006,23(4):451-456.
- [13] 王丫. 热传导方程的小波精细积分算法[J]. 重庆工学院学报, 2007, 21 (8): 130-132.
- [14] Chen B S, Tong L Y, Gu Y X. Precise time integration for linear two-point boundary value problems[J]. Applied Mathematics and Computation, 2006, 175: 182-211.
- [15] 富明慧,张文志.两点边值问题的一种精细求解方法[J].应用力 学学报,2010,27(4):433-438.
- [16] Croft D R, Lilley G D. 传热的有限差分方程计算[M]. 张风禄,
  译. 北京: 冶金工业出版社, 1982: 47-51.
- [17] 任传波,贺光宗,李忠芳.结构动力学精细积分的一种高精度通用计算格式[J].机械科学与技术,2005,24(12):1507-1509.
- [18] 富明慧,刘祚秋,林敬华.一种广义精细积分法[J].力学学报, 2007, 39(5): 672-677.
- [19] 富明慧,梁华力.一种改进的精细-龙格库塔法[J].中山大学学报: 自然科学版,2009,48(5):1-5.
- [20] 陈伟球,边祖光,丁皓江.功能梯度矩形厚板的三维热弹性分析[J]. 力学季刊,2002,23(4):443-449.