第29卷第29期	中 国 电 机 工 程 学 报	Vol.29 No.29 Oct. 15, 2009
2009年10月15日	Proceedings of the CSEE	©2009 Chin.Soc.for Elec.Eng. 35

文章编号: 0258-8013 (2009) 29-0035-06 中图分类号: TM 16 文献标志码: A 学科分类号: 470-20

煤烟气再循环富氧燃烧污染物排放特性研究

张利琴, 宋蔷, 吴宁, 姚强, 李水清

(清华大学热科学与动力工程教育部重点实验室,北京市 海淀区 100084)

Study on Pollutant Emission Characteristics From Oxy-fuel Combustion of Coal With Recycled Flue Gas

ZHANG Li-qin, SONG Qiang, WU Ning, YAO Qiang, LI Shui-qing (Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian District, Beijing 100084, China)

ABSTRACT: Based on 15 kW one-dimensional download furnace, comparative experimental research on pollutant emissions from flue gas recycled combustion and air combustion were developed. It is found that for flue gas recirculation(FGR) combustion, the burnout rate of coal decreases 4.6%; In the flue gas, CO concentration increases a little, NO_x and SO₂ concentration in flue gas increased significantly, while the emission rate of NO_x decreases. Electrical low pressure impactor(ELPI) measurement shows that there are two peaks in size distributions of PM₁₀ mass concentration of both combustion conditions, but peaks in FGR combustion move to larger particle size. Observations of scanning electron microscope(SEM) and energy dispersive X-ray(EDX) show that PM₁₀ in both experiments have the similar morphology and components. Analysis of inductively coupled plasma(ICP) show that most minor elements and trace elements distribution in PM10 from both combustion conditions are similar except Se. Se content in PM₁₀ from FGR condition is significantly higher than that in air combustion, which might due to the promoted reaction between CaO and SeO₂ by high H₂O vapor concentration in FGR combustion.

KEY WORDS: flue gas recirculation; oxy-fuel combustion; particulate matter; emission characteristics

摘要: 基于 15kW一维下行燃烧炉,对烟气再循环富氧燃烧和常规空气燃烧 2 种工况下的污染物排放特性进行对比研究,发现烟气再循环富氧条件下煤粉燃尽率下降 4.6%,烟 气中CO浓度略有增加,而NO_x和SO₂的浓度大幅增加,但NO_x转化率显著下降;静电低压撞击器(electrical low pressure impactor, ELPI)的测量结果表明,两工况排放颗粒物在 1~10 m区间都存在 2 个峰值,但烟气再循环富氧燃烧 工况下颗粒双峰向大粒径方向移动。扫描电镜(scanning electron microscope, SEM)结合X-射线能谱(energy dispersive X-ray, EDX)的观测分析发现,颗粒物烟气再循环富氧燃烧工况和空气燃烧工况下PM₁₀的微观形貌和主要成分基本相同。颗粒物的电感耦合等离子体(inductively coupled plasma, ICP)分析表明,2种工况下PM₁₀中的次量元素和大部分痕量 元素分布基本一致,但烟气再循环富氧燃烧工况下PM₁₀中 Se的含量要明显高于空气工况,这可能是由于该工况下烟气中水蒸气含量较高,促进了CaO与灰中SeO₂的反应。

关键词:烟气再循环;富氧燃烧;颗粒物;排放特性

0 引言

烟气再循环富氧燃烧技术,被视为是未来减少 电站锅炉CO₂排放的有效方法^[1],在全球极端气候 频繁出现,需要减排CO₂的大背景下,世界各国正 在为实现其商业化应用而努力。作为烟气再循环富 氧燃烧系统的一部分,污染物的排放问题必须解 决。燃煤烟气中的主要污染物包括SO₂、NO_x、颗粒 物等。这些污染物的控制技术是否可采用常规空气 燃烧的控制方式,取决于其污染物的形成机制和排 放特性。

烟气再循环富氧燃烧工况气态污染物的研究 较多^[2-4],颗粒物的研究比较少见。盛昌栋^[5]在沉降 炉上研究了O₂/CO₂燃烧时矿物质的转化和细灰颗 粒的生成特性,并与空气燃烧进行了对比,研究表 明,O₂/CO₂燃烧不影响煤飞灰中的主要矿物质相的 种类,但影响各矿物相量的组成;相同氧气浓度条 件下,O₂/CO₂燃烧减少了细灰颗粒的生成量;盛昌 栋认为O₂/CO₂燃烧对矿物质转化和细灰生成的影 响主要体现在颗粒燃烧温度上。Santoro^[6]通过分析

基金项目: 国家重点基础研究发展计划资助项目(2002CB211606)。 The National Basic Research Program of China (2002CB211606).

空气和O₂/CO₂燃烧生成的总灰的反应性,发现 O₂/CO₂燃烧飞灰的反应性和空气条件下没有不同。

关于O₂/CO₂气氛对元素气化的影响, Zheng^[7]等 人利用分析化学热力学计算发现相同氧气浓度下, O₂/CO₂和空气燃烧相比,气相中As、Pb、Hg、Cd 和Se化合物含量非常相近,燃烧介质改变对气相中 As、Pb、Hg、Cd和Se化合物的总量没有影响;O2/CO2 气氛燃烧产生的蒸汽相中Cl和其碱金属化合物分 布相对空气燃烧条件下变化很小;尽管燃烧介质中 CO₂非常过剩,但硫酸盐化过程仍是灰分中的主要 反应。王泉海^[8]采用化学热力平衡分析方法研究了 在煤燃烧和气化过程中产生的烟气里面矿物质元 素的形态及分布。研究发现,一个大气压下,1073~2 073 K温度范围内,煤中Na、Fe、Si等矿物质在还原 性气氛下的蒸发量要大于在氧化气氛下的蒸发量, 尤其是Fe元素和Si元素。这表明O2/CO2气氛下颗粒 物中Na、Fe、Si等矿物元素含量可能会有所增加。 Veranth^[9]利用Skippy详细的动力学模型计算发现环 境气体CO₂浓度提高会导致还原金属组分的平衡分 压降低,从而金属元素蒸发量降低,形成更少的亚 微米颗粒物,该研究结果说明O2/CO2气氛下煤中以 难熔氧化物形式存在的矿物元素在PM₁₀中的含量 可能会有所降低。

上述关于颗粒物的研究主要是通过沉降炉的 实验以及理论计算获得的。由于采用的是模拟烟气 氛围,与实际烟气再循环富氧燃烧工况差别很大。 本文采用实际烟气再循环富氧燃烧系统,围绕其以 颗粒物为主的各项污染物排放情况开展了实验研 究,为烟气再循环富氧燃烧技术的进一步发展提供 支持。

1 实验

1.1 采样

本实验在一维下行炉上进行,一维炉基本参数 如下:总高3.2m,内径150mm,外径700mm,最 高耐温1600℃,额定功率15kW,烟气速度约2m/s, 通过炉体保温,炉体表面温度小于50℃。实验时一 次风全部为循环烟气,二次风为烟气和来自液氧罐 的纯氧的混合气体,烟气循环之前经过袋式除尘 器、两级冷凝器和加热器,以减少烟气中的灰尘和 水分,保护风机和阀门等设备。实验系统详细描述 见文献[10]。

固定燃烧源PM₁₀的采样方法有2种:源环境采 样和稀释后的大气环境采样,本文使用ELPI 13级 撞击器,进行稀释后大气环境采样,通过文献调研 ^[11]以及预实验发现两级稀释综合稀释比选择 70~80,能保证烟道内颗粒物基本维持原始状态, 不会使挥发性无机矿物蒸汽在采样枪内达到饱和 而凝结。按照国家标准GB/T 16157—1996《固定污 染源排气中颗粒物测定与气态污染物采样方法》, 选择倒U形方形水冷套管式一级冷却器低温侧采样 口P10,采样点温度 150℃,烟气成分的测点亦布置 在此处。

13 级颗粒物的分级粒径范围分别是: 0.030~ 0.063, 0.063~0.109, 0.109~0.173, 0.173~0.267, 0.267~0.407, 0.407~0.655, 0.655~1.021, 1.021~ 1.655, 1.655~2.52, 2.52~4.085, 4.085~6.56, 6.56~ 9.99 μm, 其中级数越低,颗粒粒径越小。

本文实验工况为 27%氧气浓度的烟气再循环 富氧燃烧(27%氧气)和空气燃烧,这样的 2 个工况 下炉体温度分布相似,氧气过量系数均为 1.3,给 粉量 3.2 kg/h。

1.2 煤粉特性

实验煤粉来自北京第一热电厂,采用激光粒度 分析仪分析得到煤粉的平均粒径为 88.3 μm。煤的 工业分析如表1所示,煤的元素分析结果见表2。

表1 燃料煤的工业分析

ab. 1	Proximate analysis of experimental coal %					
M _{ar}	V _{ar}		A _{ar}	FC _{ar}		
4.28	36.06		12.36	47.30		
表 2 燃料煤的元素分析 Tab. 2 Ultimate analysis of experimental coal %						
Car	Har	N_{ar}	O _{ar}	\mathbf{S}_{ar}		

1.3 样品分析

采样前采样膜和采样后带样品的膜在干燥器 中放置,直到恒重,然后用百万分之一天平称重得 到质量粒径分布。

对各级颗粒物做场发射扫描电镜-X 射线能谱 (SEM-EDX)分析,来观察分析颗粒物的微观显微形态。对颗粒物做电感耦合等离子原子发射光谱仪 (ICP-AES)和电感耦合等离子质谱仪(ICP-MS)测 试,分析其中的元素含量等化学成分信息。

2 结果与讨论

2.1 实验工况基本参数

2.1.1 炉体温度分布

图1为2种工况炉体温度分布。可以看出,烟

气再循环富氧燃烧工况首节炉温比空气工况高大约 50℃,其他测点温度相同,因此认为两工况下炉体沿程温度分布基本相同。

Fig. 1 Temperature distributions along the furnace

2.1.2 烟气成分及燃尽率

表3所示为两工况下所测烟气成分。从表3可 以看出,烟气再循环富氧燃烧工况下干态烟气中 CO2的体积浓度达到了 82.3%, 远高于空气燃烧工 况的 15.9%, 氧气的体积浓度为 6%, 和空气燃烧 工况下的 5%相近, 计算发现烟气再循环富氧燃烧 工况下水蒸气的体积含量为 15.6%, 空气燃烧工况 为 6.8%。烟气再循环富氧燃烧工况下烟气中SO2和 NO_x浓度与空气工况差别较大,SO₂浓度是空气工况 的 1.86 倍, NO_x浓度是空气工况的 1.47 倍。换算成 燃料中元素转化率,烟气再循环富氧燃烧工况燃料 S的转化率为86.5%,空气工况为86.3%,这说明不 同燃烧气氛对S的转化率没有影响;烟气再循环富 氧燃烧工况下燃料N的转化率为 27.4%,空气工况 为 34.6%, 这说明烟气再循环富氧燃烧过程中NO_x 转化率降低,O₂/CO₂气氛较空气气氛下NO_x排放减 少,主要原因有三:一是O₂/CO₂气氛下高浓度的CO₂ 会与煤或煤焦发生还原反应生 成大量的 CO, 在煤焦表面发生 NO/CO/Char 的 反应,促进了NO的降解;二是NO_r再循环经过火焰 区又被挥发分析出的还原组分分解掉; 三是循环 NO_x 和燃料氮相互作用,进一步减少了 NO_x 的 生成^[12]。

用马弗炉对煤灰进行灼烧,测试其可燃物含量,计算得到烟气再循环富氧燃烧工况煤灰燃尽率为 90.2%,空气工况为 94.8%,尽管炉体温度分布相似,但烟气再循环富氧燃烧工况煤灰燃尽率下降 4.6%,这可能是由于CO₂的高比热特性导致该工况 下煤粉颗粒燃烧温度降低,从而燃尽率降低。

表 3 平衡态烟气组成 Tab. 3 Flue gas constitution under steady state

项目	$\varphi(\mathrm{CO}_2)/\%$	$\varphi(O_2)/\%$	$ ho (\mathrm{SO}_2)/$ (mg/m ³)	$ ho (NO_x)/(mg/m^3)$	ho (CO)/ (mg/m ³)
空气	15.9	5.0	800	1354	12.5
27%氧气	82.3	6.0	1463	1993	102.9

2.2 PM₁₀质量浓度粒径分布

图 2 是两工况下PM₁₀的质量浓度粒径分布,其 中横坐标为相应粒径区间的中位径。

图 2 质量浓度粒径分布 Fig. 2 Size distribution of mass concentration

从图 2 可以看出, 2 种工况下PM₁₀质量浓度粒 径分布都具有 2 个峰值,空气工况峰值粒径区间为: 0.063~0.109 和 2.52~4.085 μm,烟气再循环富氧燃 烧工况峰值粒径区间为: 0.109~0.173 和 2.52~ 4.085 μm,一个峰在亚微米区域,主要是由易挥发 物质的气化、成核、凝并、超微米颗粒的破碎以及 内在矿物聚合和脱落形成的;另一个峰在超微米区 域,主要通过颗粒破碎、矿物质熔融等过程形成。 两工况质量浓度粒径分布都随着粒径的增大而增 加。烟气再循环富氧燃烧工况的 2 个尖峰位置相对 空气工况来讲向大颗粒方向略有移动,这主要是由 于颗粒燃烧温度较低引起的。27%氧气浓度的烟气 再循环工况 0.1 μm以上颗粒相对空气工况具有更 高的质量浓度。

2.3 PM₁₀微观形态对比分析

从质量浓度粒径分布看出,烟气再循环富氧燃 烧工况下1μm以上颗粒排放浓度高于空气工况,因 此重点对1μm以上颗粒物形貌进行了比较分析。分 析结果表明,烟气再循环富氧燃烧工况和空气工况 下PM₁₀的微观形貌和主要成分基本相同,烟气再循 环富氧燃烧工况下,由于颗粒燃烧温度低,PM₁₀颗 粒中含有更多未燃尽碳和碳烟颗粒。两工况相貌对 比见图 3,图 3 为第 9 级 1.655~2.52 μm的颗粒,左 边为空气工况,右边为烟气再循环富氧燃烧工况, 很容易看出右边图中颗粒表面存在着一些未燃尽 炭黑颗粒,这是由于烟气再循环富氧燃烧工况燃尽 率低所造成的。

 (a) 空气-9, 15KX
 (b) 氧气-9, 30KX

 图 3 颗粒物微观形态对比

 Fig. 3 Comparison of microstructure of PM

2.4 PM₁₀中次量元素分布与富集

实验考察了颗粒物PM₁₀在两工况下次量元素 的变化,选择4种常见矿物元素:Al、Mg、Ca和S 进行分析。图4分别为4个元素的质量含量粒径分 布。可以看出,在4种元素质量含量随粒径变化在 两工况下具有相似的分布规律:Al质量含量随着粒 径增大而增加;Mg质量含量随着粒径增大而减小; Ca和S质量含量均随着粒径的增大先减少后有微小 的增加。

比较两工况下各元素在各粒径区间含量的值, 考虑分析过程中误差的引入,发现 Mg、Al、Ca 和 S 4 种元素在两工况下相应粒径区间的含量基本没

有差别。分析结果表明,在2种不同工况所产生的 颗粒燃烧温度和烟气成分的差异不足以给Mg、Al、 Ca和S4种元素在PM₁₀中的含量带来明显的影响。

4 种元素中, PM1中含量低于PM1+中含量的是 Al,这是因为Al大多存在于高岭石、粘土等矿物中, 高温下矿物破碎或者分解后Al都以难熔氧化物形 式存在,其气化主要是通过CO还原成易挥发的次氧 化物或者元素单质的途径进行。单质AI沸点 2 518℃, A1元素的常见氧化物A12O3熔点为 2 050℃,可发现Al很难气化,因此小于 1 µm飞灰 颗粒中Al含量非常少; Mg、S和Ca在PM1中含量高 于PM₁₊中含量。煤中元素若与有机质或硫化物结合 在一起,则燃烧中较易蒸发,进而会在飞灰颗粒上 随粒径而富集; 若与矿物组分如硅酸盐和氧化物等 结合在一起,则不挥发或者难挥发^[13]。Mg和Ca在 煤中部分以低沸点化合形态存在,因此在PM1上有 一定的富集。S单质及其氧化物沸点非常低,但是 部分S以硫铁矿形式存在,因此其在颗粒物中沸点 低的化合态容易气化,在小颗粒上体现富集,沸点 高的如硫铁矿的赋存形态体现在 1~10 µm颗粒上的 分布规律。

2.5 PM₁₀中痕量元素分布与富集

煤中含有多种痕量的重金属元素,排放到大气

中就成为有毒的污染物,分析这些元素在煤燃烧过 程中的行为对控制有重要意义。本文通过测定 8 种 元素(Pb、Co、Cu、Zn、Ni、Cr、Se、Cd)在两工况 颗粒物PM₁₀中的质量分布,得到这些元素随粒径变 化的富集规律。

借鉴文献[14],定义元素相对富集因子为

$$R_E = C_{ij} / C_{ic} \times A_{ad} \tag{1}$$

式中: *C_{ij}*为某种痕量元素*i*在第*j*级飞灰颗粒上的质 量含量, µg/g, *j*=1, 2, …, 12; *C_{ic}*表示该元素在空 干基煤样中含量, µg/g; *A*_{ad}为煤的空干基灰分含量。 根据相对富集因子的定义,可以发现元素质量含量 和相对富集因子随粒径变化趋势完全相同,此处选 取相对富集因子图进行分析。图 5 所示为痕量元素 相对富集因子随粒径变化规律。

从图 5 可以发现两工况下Cu、Zn、Cd、Ni、 Cr 5 种痕量元素质量含量粒径分布和在PM₁₀富集

程度基本相同;烟气再循环富氧燃烧工况下Co和Pb 质量含量粒径分布和在PM₁₀富集程度低于空气工 况,与颗粒燃烧温度较低有关。

烟气再循环富氧燃烧工况下Se质量粒径分布 和在PM₁₀中富集程度高于空气工况,实验煤种富含 CaCO₃,其分解产物CaO会与SeO₂发生反应^[15], 700~800℃^[16]时生成CaSeO₃,有水气存在的条件下, 200~698℃时生成产物为CaSeO₄·2H₂O,在 200℃以 下,产物为CaSeO₄。烟气再循环富氧燃烧条件下烟 气中水蒸气含量 15.6%,空气工况下烟气中水蒸气 含量为 6.8%,采样口位置温度为 210℃,高浓度水 蒸气的存在有利于促进CaO与SeO₂的反应,因此此 处采得的飞灰PM₁₀中Se的含量高于空气工况。

3 结论

1) 虽然 2 种工况的炉温相近,但由于烟气再 循环富氧燃烧条件下烟气中CO₂的高比热容和煤气 化吸热反应的发生,造成煤粉颗粒的燃烧温度相对 较低,煤粉的燃尽率下降 4.6%,在采样得到的颗粒 中含有较多的未燃尽碳和碳烟,烟气中CO的浓度也 有一定的增加。

2)由于烟气再循环的累积效应以及富氧条件 下烟气流量减小,导致烟气中NO_x和SO₂的浓度大幅 增加,NO_x是空气工况的1.47倍,SO₂是空气工况 的1.86倍。虽然烟气排放NO_x的浓度增加,但NO_x转 化率却显著下降,这主要是由于烟气再循环过程中 NO_x与炉膛内煤粉发生反应引起的。

3)2种工况下排放颗粒的粒径分布均呈双峰分 布,一个峰在亚微米区域,另一个峰在超微米区域, 烟气再循环富氧燃烧条件下的颗粒双峰出现位置 略向大粒径方向移动,这主要是由于颗粒燃烧温度 较低引起的。

4)烟气再循环富氧燃烧和空气燃烧工况下 PM₁₀的微观形貌基本相同。颗粒物中的次量元素和 大部分痕量元素在PM₁₀各粒径区间质量含量基本 一致,但烟气再循环富氧燃烧工况PM₁₀中Se的含量 要明显高于空气工况,这可能是由于该工况下烟气 中水蒸气的含量较高,而颗粒中又富含碱性物质 CaO,促进了CaO与SeO₂的反应,所以颗粒物中的 Se含量增加。

参考文献

 Stromberg L. IEA GHG workshop on oxyfuel technology choice-benchmark-ing[C]. International Oxy-combustion Research Network for CO₂ Capture, Cottbus, Germany, 2006.

- [2] Buhre B J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation[J]. Progress in Energy and Combustion Science, 2005, 31(4): 283-307.
- [3] Andersson K, Normann F, Johnsson F, et al. No emission during oxy-fuel combustion of lignite[J]. Industrial & Engineering Chemistry Research, 2008, 47(6): 1835-1845.
- [4] Jia L, Tan Y, Wang C, et al. Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC[J]. Energy & Fuels, 2007, 21(6): 3160-3164.
- [5] 盛昌栋,吕玉红,李意. O₂/CO₂煤粉燃烧时矿物质的转变和细灰 颗粒的生成特性[C].中国工程热物理年会,武汉,2006.
- [6] Santoro L, Vaccaro S. Fly ash reactivity in relation to coal combustion under flue gas recycling condition[J]. Thermochimica ACTA, 1997 (296): 67-74.
- Zheng L G, Edward F. Assessment of coal combustion in O₂+CO₂ by equilibrium calculations[J]. Fuel Processing Technology, 2003(81): 23-34.
- [8] 王泉海,邱建荣,李凡. 煤燃烧过程中矿物质形态分布特性[J]. 煤炭转化,2002,25(1):33-37.
 Wang Quanhai, Qiu Jianrong, Li Fan. Mineral speciation characteristic in coal combustion[J]. Coal Conversion, 2002, 25(1):33-37(in Chinese).
 [9] Gautham K, John M V. Computational modeling of CO/CO₂ ration
- [9] Gautham K, John M V. Computational modeling of CO/CO₂ ration inside single char particle during pulverized coal combustion [J]. Energy & Fuels, 2003, 17(5): 1367-1371.
- [10] 张利琴. 煤烟气再循环燃烧颗粒物排放特性的实验研究[D]. 北京: 清华大学, 2008.
- [11] Strand M, Bohgard M, Swietlicki E, et al. Laboratory and field test of a sampling method for characterization of combustion aerosols at high temperature[J]. Aerosol Science and Technology, 2004, 38(8): 757-765.

- [12] Okazaki K, Ando T. NO_x reduction mechanism in coal combustion with recycled CO₂[J]. Energy & Fuels, 1997, 22(2-3): 207-215.
- [13] 陈鹏. 中国煤炭性质、分类和利用[M]. 北京: 化学工业出版社, 2001: 321-375.
- [14] Meij R. Trace element behaviors in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1): 199-217.
- [15] 张军营,任德贻,钟秦,等.固硫剂对煤燃烧过程中硒挥发性的 抑制作用[J].环境科学,2001,22(3):100-103.
 Zhang Junying, Ren Deyi, Zhong Qing, et al. Retention of selenium volatility using lime in coal combustion[J]. Chinese Journal of Environmental Science, 2001, 22(3): 100-103(in Chinese).
- [16] Li Y Z, Tong H L, Zhuo Y Q, et al. Simultaneous removal of SO₂ and trace SeO₂ from flue gas: Effect of product layer on mass transfer [J]. Environmental Science & Technology, 2006, 40(13): 4306-4311.

收稿日期: 2009-02-14。 作者简介:

张利琴(1985—),女,硕士,研究方向为燃煤 污染控制,lq-zhang05@163.com;

宋蔷(1971一),女,博士,副研究员,研究方向为燃烧污染控制,qsong@mail.tsinghua.edu.cn;

张利琴

吴宁(1982—),男,博士研究生,研究方向为 燃烧污染控制,wun@mails.tsinghua.edu.cn;

姚强(1962一),男,博士,教授,研究方向为 燃烧与污染控制, yaoq@mail.tsinghua.edu.cn;

李水清(1975—),男,博士,副研究员,研究 方向为燃烧与污染控制,lishuiqing@mail.tsinghua.

(责任编辑 车德竞)