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Abstract

This paper presents a fully secure (adaptive-predicate unforgeable and private) attribute-
based signature (ABS) scheme in the standard model. The security of the proposed ABS
scheme is proven under standard assumptions, the decisional linear (DLIN) assumption and
the existence of collision resistant (CR) hash functions. The admissible predicates of the
proposed ABS scheme are more general than those of the existing ABS schemes, i.e., the
proposed ABS scheme is the first to support general non-monotone predicates, which can
be expressed using NOT gates as well as AND, OR, and Threshold gates, while the existing
ABS schemes only support monotone predicates. The proposed ABS scheme is efficient and
practical. Its efficiency is comparable to (several times worse than) that of the most efficient
(almost optimally efficient) ABS scheme the security for which is proven in the generic group
model.

*An extended abstract was presented at Public Key Cryptography — PKC 2011, LNCS 6571, pages 35-52.
This is the full paper.
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1 Introduction

1.1 Background

The concept of digital signatures was introduced in the seminal paper by Diffie and Hellman
in 1976. In this concept, a pair comprising a secret signing key, sk, and public verification key,
pk, is generated for a signer, and signature o of message m generated using sk is verified by
the corresponding pk. Hence, the signer of (m, o) using sk is identified through pk. Although
it is one of the requirements of signatures, there is no flexibility or privacy in the relationship
between signers and claims attested by signatures due to the tight relation between sk and pk.

Recently, versatile and privacy-enhanced variants of digital signatures have been studied,
where the relation between a signing key and verification key is more flexible or sophisticated.
In this class of signatures, the signing key and verification key are parameterized by attribute
x and predicate v, respectively, and signed message (m, o) generated by the signing key with
parameter &, skq, is correctly verified by public-key pk and parameter v, (pk,v), iff predicate v
accepts attribute @, i.e., v(x) holds. The privacy of signers in this class of signatures requires
that a signature (for predicate v) generated by sk (where v(x) holds) release no information
regarding attribute @ except that v(x) holds.

When predicate v is the equality with parameter v (i.e., v(z) holds iff z = v), the class of
signatures for this predicate is identity-based signatures (IBS) [27]. Here note that there is no
room for privacy in IBS, since predicate v uniquely identifies attribute x of the signer’s secret
key, sk, such that z = v.

Group signatures [10] are also in this class of signatures with another type of predicate
v, where v(x) holds iff predicate parameter v is the group identity (or pk, is a public key
identifying group v) and attribute x is a member identity of group v (or sk, is a secret key of
member z of group v). Due to the privacy requirement, signatures generated using sk, release
no information regarding member identity = except that x is a member of group v (Note that
the concept of group signatures traditionally requires the privacy-revocation property as well as
the above-mentioned privacy).

Recently, this class of signatures with more sophisticated predicates, attribute-based signa-
tures (ABS), has been studied [12, 14, 15, 18, 19, 20, 21, 26, 30], where x for signing key sky, is
a tuple of attributes (z1,...,x;), and v for verification is a threshold or access structure predi-
cate. The widest class of predicates in the existing ABS schemes are monotone access structures
[20, 21], where predicate v is specified by a monotone span program (MSP), (M, p), along with
a tuple of attributes (v1,...,v;), and v(x) holds iff MSP (M, p) accepts the truth-value vector
of (T(wi; = v1),..., T(w;; = vj)). Here, T(¢) := 1if 1 is true, and T(¢) := 0 if + is false (For
example, T(x =v) :=1if v =v, and T(z = v) := 0 if  # v). In general, such a predicate can
be expressed using AND, OR, and Threshold gates.

An example of such monotone predicate v for ABS is (Institute = Univ. A) AND (TH2(
(Department = Biology), (Gender = Female), (Age = 50’s)) OR (Position = Professor)), where
TH2 means the threshold gate with threshold value 2. Attribute x4 of Alice is ((Institute :=
Univ. A), (Department := Biology), (Position := Postdoc), (Age := 30), (Gender := Female))),
and attribute xp of Bob is ((Institute := Univ. A), (Department := Mathematics), (Position
:= Professor), (Age := 45) (Gender := Male))). Although their attributes, x4 and xp, are
quite different, it is clear that v(x4) and v(zp) hold, and that there are many other attributes
that satisfy v. Hence Alice and Bob can generate a signature on this predicate, and due to the
privacy requirement of ABS, a signature for v releases no information regarding the attribute
or identity of the signer, i.e., Alice or Bob (or other), except that the attribute of the signer
satisfies v.

There are many applications of ABS such as attribute-based messaging (ABM), attribute-



based authentication, trust-negotiation and leaking secrets (see [20, 21] for more details).
The security conditions for ABS are given hereafter (see Section 3.2 for the formal defini-
tions).

Unforgeability: A valid signature should be produced only by a single signer whose attribute
x satisfies the claimed predicate v, not by a collusion of users who pooled their attributes
together. More formally, no poly-time adversary can produce a valid signature for a pair
comprising predicate and message (v, m), even if the adversary adaptively chooses (v, m)
after executing secret-key and signing oracle attacks, provided that & where v(x) holds
is not queried to the secret-key oracle and (v, m) is not queried to the signing oracle
(We simply call this unforgeability “adaptive-predicate unforgeability” or more simply
“unforgeability”).

We can also define a weaker class of unforgeability, ‘selective-predicate unforgeability,’
where an adversary should choose predicate v for the forgery signature before executing
secret-key and signing oracle attacks.

Privacy: A signature for predicate v generated using secret key sk, releases no information
regarding attribute x except that v(x) holds.

More formally, for any pair of attributes (x1,x2), predicate v and message m, for which
v(x1) and v(x2) hold simultaneously, the distributions of two valid signatures o(m, v, skg, )
and o(m, v, sky,) are equivalent, where o(m, v,skg) is a correctly generated signature for
(m,v) using correct secret key sk, with attribute @ (We simply call this condition “pri-
vacy”).

Full Security: We say that an ABS scheme is fully secure if it satisfies adaptive-predicate
unforgeability and privacy.

Maji, Prabhakaran, and Rosulek [20, 21] presented ABS schemes for the widest class of
predicates among the existing ABS schemes, monotone access structure predicates, which cover
threshold predicates as special cases. The scheme shown in [20] is an almost optimally efficient
ABS scheme, but the security was only proven in the generic group model. The scheme shown
in [21] is the only existing ABS scheme for which (full) security was proven in the standard
model. It is, however, much less efficient and more complicated than the scheme in [20] since it
employs the Groth-Sahai NIZK protocols [11] as building blocks.

Li, Au, Susilo, Xie and Ren [18], Li and Kim [19], and Shahandashti and Safavi-Naini [26]
presented ABS schemes that are proven to be secure in the standard model. However, the
proven security is not the full security, but a weaker level of security with selective-predicate
unforgeability. Moreover, the admissible predicates in [19] are limited to conjunction or (n,n)-
threshold predicates, and those of [18, 26] are limited to (k, n)-threshold predicates.

Guo and Zeng [12] and Yang, Cao and Dong [30] presented ABS schemes for threshold
predicates, but their security definitions do not include the privacy condition of ABS.

Khader [14, 15] presented ABS schemes for monotone access structure predicates. These
schemes, however, do not satisfy the privacy condition of ABS, since they only conceal the
identity of the signer. They also reveal the attributes that the signer used to generate the
signature. In addition, the security is proven in a non-standard model, the random oracle
model.

Based on this background, there are two major problems in the existing ABS schemes.

1. No ABS scheme for non-monotone predicates, which can be expressed using NOT gates
as well as AND, OR and Threshold gates, has been proposed (even in a weaker security
notion or a non-standard model).



2. The only fully secure ABS scheme in the standard model [21] is much less efficient than
the (almost optimally efficient) ABS scheme in the generic group model [20].

Non-monotone predicates should be used in many ABS applications. For example, annual
review reports in the Mathematics Department of University A are submitted by reviewers, and
these reports are anonymously signed by the reviewers through ABS with some predicates. The
predicates may be selected freely by them (signers) except that it should be in the following
form: NOT((Institute = Univ. A) AND (Department = Mathematics)) AND (---).

1.2 Our Results

This paper addresses these problems simultaneously.

e This paper proposes the first fully secure (i.e., adaptive-predicate unforgeable and perfectly
private) ABS scheme for a wide class of predicates, non-monotone access structures, where
x for signing key skg is a tuple of attributes (x1,...,z;), non-monotone predicate v is
specified by a span program (SP) (M, p) along with a tuple of attributes (v1,...,v;), and
v(x) holds iff SP (M, p) accepts the truth-value vector of (T(zi, = v1),..., T(zs; = vj)).

Our scheme can be generalized using non-monotone access structures combined with inner-
product relations (see Definition 5 and the remark). More precisely, attribute « for signing
key skg is a tuple of attribute vectors (e.g., ('1,..., @) € FfT %) and predicate v
for verification is a non-monotone access structure or span program (SP) (M, p) along
with a tuple of attribute vectors (e.g., (V'1,..., V) € IF;H"'H”), where the component-
wise inner-product relations for attribute vectors (e.g., {Z’;, - v, = 0 or not }Le{lii"j})

are input to SP (M, p). Namely, v(x) holds iff the truth-value vector of (T(Z';, - v'1 =
0),..., T(@y; - v; =0)) is accepted by SP (M, p).

Remark: In our scheme (Section 4), attribute « is expressed by the form I' := {(¢,z) |
t €T C{1,...,d}} in place of just an attribute tuple (x1,...,xz;), where ¢ identifies a
sub-universe or category of attributes, and x; is an attribute in sub-universe ¢ (examples
of (t,x;) are (Name, Alice) and (Age, 38)). Predicate v is expressed by S := (M, p), where
p is abused as p (defined by SP) combined with {(¢;,v;) | i = 1,...,¢} (see Definitions 4
and 5 for the difference regarding p in SP and S).

e The proposed ABS scheme is proven to be fully secure under standard assumptions, the
decisional linear (DLIN) assumption (over prime order pairing groups) and the existence
of collision resistant (CR) hash functions, in the standard model.

e In contrast to the ABS scheme in [21] that employs the Groth-Sahai NIZK protocols,
our ABS scheme is more directly constructed without using any general subprotocols like
NIZK. Our construction is based on the dual pairing vector spaces (DPVS) proposed by
Okamoto and Takashima [22, 23, 16, 24], which can be realized from any type of (e.g.,
symmetric or asymmetric) prime order bilinear pairing groups. See Section 2.1 for the
concept and actual construction of DPVS.

e To prove the security (especially the unforgeability), this paper employs the techniques
for fully secure functional encryption (FE) [16, 24], which elaborately combine the dual
system encryption methodology proposed by Waters [29] and DPVS.

Note that although the techniques for the FE schemes in [16, 24] can be employed for
ABS, it is still a challenging task to construct a fully secure ABS scheme, since the
security requirements of ABS and FE differ in some important points, for example, the



1.3

privacy condition is required in ABS but there is no counterpart notion in FE. This paper
develops several novel techniques for our ABS scheme. See Section 4.1 for more details.

The efficiency of the proposed ABS scheme is comparable to that of the most efficient
ABS scheme in the generic group model [20], and better than that of the only existing
fully secure ABS scheme in the standard model [21]. See Section 4.4 for a comparison.

This paper also presents an extension, multi-authority (MA) setting, of the proposed ABS
scheme in Section 5. One of the merits of our MA-ABS scheme is that it is seamlessly
extended from the original (single-authority (SA)) setting, in which the signing and verifi-
cation algorithms of the MA-ABS scheme are essentially the same as those of the original
ABS (SA-ABS) scheme.

In MA-ABS, each authority called an attribute authority is responsible for a single (or
multiple) category of attributes, and a user obtains a part of secret key for each attribute
from an attribute authority responsible for the category of the attribute. In our MA-ABS
model, a central trustee in addition to attribute authorities is required but no interac-
tion among attribute authorities (and the trustee) is necessary, and different attribute
authorities may not trust each other, nor even be aware of each other.

We prove that the proposed MA-ABS scheme is fully secure under the DLIN assumption
and CR hash functions in the standard model (see Appendix F for the proof). Our
MA-ABS scheme is almost as efficient as the original SA-ABS scheme.

Related Works

Ring and mesh signatures: Ring and mesh signatures [25, 5] are related to ABS.

In the ring signatures, the claimed predicate on a signature of message m is that m is
endorsed by one of the users identified by the list of public keys (pky, pksy,...), or the
predicate is a disjunction of a list of public keys. A valid ring signature can be generated
by one of the listed users.

The mesh signatures are an extension of ring signatures, where the predicate is an access
structure on a list of pairs comprising a message and public key (m;, pk;), and a valid
mesh signature can be generated by a person who has enough standard signatures o; on
m;, each valid under pk;, to satisfy the given access structure.

A crucial difference between mesh signatures and ABS is the security against the collusion
of users. In mesh signatures, several users can collude by pooling their signatures together
and create signatures that none of them could produce individually. That is, such collusion
is considered to be legitimate in mesh signatures. In contrast, the security against collusion
attacks is one of the basic requirements in ABS and MA-ABS, as described in Section 1.1
and Section 5.

Anonymous credentials (ACs):  Another related concept is ACs [2, 3, 6, 7, 8, 9].
The notion of ACs also provides a functionality for users to demonstrate anonymously
possession of attributes, but the goals of ACs and ABS differ in several points.

As mentioned in [21], ACs and ABS aim at different goals: ACs target very strong
anonymity even in the registration phase, whereas under less demanding anonymity re-
quirements in the registration phase, ABS aims to achieve more expressive functionalities,
more efficient constructions and new applications. In addition, ABS is a signature scheme
and a simpler primitive compared with ACs.



1.4 Notations

When A is a random variable or distribution, y & A denotes that y is randomly selected from

A according to its distribution. When A is a set, y & A denotes that y is uniformly selected
from A. y := z denotes that y is set, defined or substituted by z. When a is a fixed value,
A(z) — a (e.g., A(x) — 1) denotes the event that machine (algorithm) A outputs a on input
z. A function f: N — R is negligible in A, if for every constant ¢ > 0, there exists an integer n
such that f(\) < A7¢ for all A > n.

We denote the finite field of order ¢ by F,, and I, \ {0} by F. A vector symbol denotes
a vector representation over [y, e.g., 7 denotes (z1,...,1,) € Fg'. For two vectors T =
(z1,...,2,) and ¥ = (v1,...,v,), @ - U denotes the inner-product >, xiv;. The vector 0
is abused as the zero vector in F' for any n. X T denotes the transpose of matrix X. A bold
face letter denotes an element of vector space V, e.g., x € V. When b; € V (i = 1,...,n),
span(by,...,b,) C V (resp. span(Z'1,..., 7)) denotes the subspace generated by by, ..., b,
(resp. Z'1,..., @'n). For bases B := (by,...,by) and B* = (b},...,bY), (z1,...,2N)p =

SN aib; and (y1, ..., yn)Be = Yo yibl

2 Preliminaries

2.1 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 1 “Symmetric bilinear pairing groups” (¢,G,Gr,G,e) are a tuple of a prime g,
cyclic additive group G and multiplicative group Gp of order q, G # 0 € G, and a polynomial-
time computable nondegenerate bilinear pairing e : G x G — Gr i.e., e(sG,tG) = e(G, G)*t and
e(G,G) # 1.

Let Gppg be an algorithm that takes input 1% and outputs a description of bilinear pairing
groups (¢, G, Gr, G, e) with security parameter X.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [22,
23, 16, 24] constructed by using symmetric bilinear pairing groups given in Definition 1.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,Gr, A, e) by a direct product of sym-
metric pairing groups (¢,G,Gr, G, e) are a tuple of prime q, N-dimensional vector space V :=
N

G x -+ x G over Fy, cyclic group G of order q, canonical basis A := (aq,...,an) of V, where
i—1 N—i
— —
a;:=(0,...,0,G, 0,...,0), and pairing e : VXV — Grp.

The pairing is defined by e(x,y) = [, e(Gi, Hi) € G where ® == (Gy,..., Gy) € V
and y = (Hy,...,Hy) € V. This is nondegenerate bilinear i.e., e(sx,ty) = e(x,y)* and if
e(z,y) =1 for ally €V, then = 0. For alli and j, e(a;, a;) = e(G,G)%3 where &; j = 1 if
i =7, and 0 otherwise, and ¢(G,G) # 1 € Gr.

DPVS also has linear transformations ¢; j on'V s.t. ¢; j(a;) = a; and ¢; j(ar) =0 if k # j,
i—1 N—i

A~ —
which can be easily achieved by ¢; j(x) = (0,...,0,G;,0,...,0) where © := (G1,...,Gn). We

call ¢; ; “canonical maps”.

DPVS generation algorithm Gqpys takes input 1 (A € N) and N € N, and outputs a descrip-
tion of paramy := (q,V,Grp, A, e) with security parameter A and N-dimensional V. It can be
constructed by using Gppg.



The asymmetric version of DPVS, (¢, V,V* Gp, A, A* e), is given in Appendix A.2. The
above symmetric version is obtained by identifying V = V* and A = A* in the asymmetric
version. (For another construction of DPVS using higher genus Jacobians, see [22].)

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN Assumption) The DLIN problem is to guess 3 € {0,1}, given (paramg,
G, (G, kG, 0EG, 0xG, Yp) K gﬁDLlN(l)‘), where

gﬁDLIN(l)\) : paramg = (¢, G,Gr, G, e) X gbpg(l/\),

k,0,E, 0 <—UFq, Yoi=0+4+0)G, Y; J G,
return (paramg, G,£G, kG, 066G, 0kG, Yp),

for g Y {0,1}. For a probabilistic machine £, we define the advantage of € for the DLIN prob-
lem as: AdvBLIN()\) := |Pr [5(1A,Q)_>1( 0 <_RgODL'N(1A)} —Pr [5(1&@)4 ‘ 0 £gPL'N(1A)} ( .

The DLIN assumption is: For any probabilistic polynomial-time adversary &, the advantage
AdvBYN(N) is negligible in X.

2.3 Collision Resistant (CR) Hash Functions

Let A € N be a security parameter. A collision resistant (CR) hash function family, H, associated
with Gppe and a polynomial, poly(-), specifies two items:

e A family of key spaces indexed by A. Each such key space is a probability space on
bit strings denoted by KHy. There must exist a probabilistic polynomial-time algorithm
whose output distribution on input 17 is equal to KH.

e A family of hash functions indexed by A, hk & KH, and D = {0,137 Bach such
hash function Hﬁ‘l’(D maps an element of D to an element of F;* with ¢ that is the first
element of output paramg of gbpg(lk). There must exist a deterministic polynomial-time
algorithm that on input 1%, hk and ¢ € D, outputs Hﬁ‘l;D(Q).

Let £ be a probabilistic polynomial-time machine. For all A\, we define
AV R(\) i= Pr{(o1,02) € D2 A g1 # 02 AHNP (01) = HNP (02)], where D := {0, 1} hk &

KH,, and (o1, 02) Re (1*,hk, D). H is a collision resistant (CR) hash function family if for any

probabilistic polynomial-time adversary &, Advg’CR()\) is negligible in \.

3 ABS for Non-monotone Predicates

3.1 Span Programs and Non-monotone Access Structures

Definition 4 (Span Programs [1]) Let {p1,...,pn} be a set of variables. A span program
over B, is a labeled matriz, M = (M, p), where M is a ({ x 1) matriz over Fy and p is a labeling
of the rows of M by literals from {p1,...,pn, P1,..., 7Pn} (every row is labeled by one literal),
e, p:{l,... 0 = {p1,- -, Pns D1y -y “Pn}-

A span program accepts or rejects an input by the following criterion. For every input
sequence 0 € {0,1}" define submatriz My of M consisting of those rows whose labels are set
to 1 by the input 6, i.e., either rows labeled by some p; such that 6; = 1 or rows labeled by
some by some —p; such that 6; = 0. (i.e., v :{1,...,0} — {0,1} is defined by v(j) = 1 if



[p(7) = pil N6 = 1] or [p(j) = —pi] A[0; = 0], and y(j) = 0 otherwise. My := (Mj),(j)=1, where
M; is the j-th row of M.)

Span program M accepts § if and only z'fT € span(Ms), i.e., some linear combination of the
rows of Ms gives the all one vector, 1. (The row vector has the value 1 in each coordinate.) A
span program computes boolean function f if it accepts exactly those inputs § where f(§) = 1.

A span program is called monotone if the labels of the rows are only the positive literals
{p1,.-.,pn}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row M; (i = 1,...,¢) of the matrix M is 0. We now introduce a
non-monotone access structure with evaluating map -~ by using the inner-product of attribute
vectors in a general form. Although we will show the notion, security definition and security
proof of the proposed ABS scheme in this general form, we will describe the proposed ABS
scheme in a simpler form in Section 4.2. We will show this simpler form of Definition 5 in the
remark.

Definition 5 (Inner-Products of Attribute Vectors and Access Structures) U, (t =1,

. d and Uy C {0,1}*) is a sub-universe, a set of attributes, each of which is expressed by
a pair of sub-universe id and n¢-dimensional vector, i.e., (t, V), where t € {1,...,d} and
T eFr\{0}.

We now define such an attribute to be a variable, p, of span program M : = (M,p) i.e
p = (t, V). Access structure S is span program M = (M, p) along with variables p :=
(t,7 f= (U, V), dee, S = (M, p) such that p : {1,...,0} — {(t,V), (', V),...,
—(t, ) (', 0"),. ..} .

Let T be a set of attributes, i.c., I := {(t, 7) | T, € F*\ {0},1 <t <d}.

When T' is given to access structure S, map v : {1,...,0} — {0,1} for span program M =
(M, p) is defined as follows: Fori = 1,...,¢, set v(i) = 1 if [p(i) = (t,v;)] A[(t, T¢) € T)
AV ;- T =0] or [p(i) = =(t, V)] A[(t, T¢) € T) N[V - T4 #0]. Set y(i) = 0 otherwise.

Access structure S := (M, p) accepts I' iff 1e span{(M;)(i)=1)-

Remark 1 The simplest form of the inner-product relations in the above-mentioned access
structures, that is for ABS in Section 4.2, is a special case when n; = 2 for all ¢t € {1,...,d},
and 7 := (1,2) and v := (v, —1). Hence, (¢, @) := (t,(1,2;)) and (¢, V’;) := (¢, (v;, —1)), but
we often denote them shortly by (¢,z;) and (¢,v;). Then, S := (M, p) such that p: {1,...,¢} —
{(t,0), (", V), ... =(t,0),~(t',0),...} (v,0/,...€Fy), and I' := {(t,a¢) | & € Fy, 1 <t < d}.

When T is given to access structure S, map v : {1,...,¢} — {0,1} for span program
M := (M, p) is defined as follows: For i = 1,...,¢, set v(i) = 1 if [p(i) = (¢, v;)] A[(t,2¢) € T
N = ] or [p(i) = =(t,v:)] A[(t, z¢) € T] Afv; # x¢]. Set (i) = 0 otherwise.

Remark 2 When a user has multiple attributes in a sub-universe (category) t, we can employ
dimension n; > 2. For instance, a professor (say Alice) in the science faculty of a university is
also a professor in the engineering faculty of this university. If the attribute authority of this
university manages sub-universe ¢ := “faculties of this university”, Alice obtains a secret key for
(t, 7 := (1, —(a +b),ab) € F,?) with a := “science” and b := “engineering” from the authority.
When a user verifies a signature for an access structure with a single negative attribute —(t,
“science”), the verification text is encoded as —(t,7; := (a?,a,1)) with a := “science”. Since
Zy-U; = 0, Alice cannot make a valid signature for an access structure with the negative attribute
—(t, “science”). For such a case with n; > 2, see Appendix C with a general form of our ABS
scheme.



We now construct a secret-sharing scheme for a (non-monotone) access structure (span
program).

Definition 6 A secret-sharing scheme for access structure S := (M, p) is:

1. Let M be an £ x r matriz, and column vector 7T = (f1,. .., )T Y Fy. Then, so :=
— —
T fT=>"0_, fr is the secret to be shared, and 51 := (s1,...,80)T := M - f7T is the

vector of € shares of secret sg and share s; belongs to p(i).

2. If access structure S := (M, p) accepts T, i.e., Te span{(M;)yi)=1) with v :{1,.... 0} —
{0,1}, then there exist constants {o; € Fy | i € I} such that I C {i € {1,...,¢} |
(i) = 1} and 3 °,c;a58; = so. Furthermore, these constants {a;} can be computed in
time polynomial in the size of matriz M.

3.2 Definitions and Security of ABS

Definition 7 (Attribute-Based Signatures : ABS) An attribute-based signature scheme
consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format 7 =
(d;n1,...,nq) of attributes. It outputs public parameters pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, I := {(t, @ ¢)| T+

eFt\ {H}, 1 <t <d}, pk and sk. It outputs signature generation key skr.

Sig This is a randomized algorithm that takes as input message m, access structure S := (M, p),
signature generation key skp, and public parameters pk such that S accepts I'. It outputs
signature o.

Ver This takes as input message m, access structure S, signature o and public parameters pk.
It outputs boolean value accept :=1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk) R Setup(1*,
), all messages m, all attribute sets I, all signing keys skr & KeyGen(pk, sk,I"), all access

structures S such that S accepts I', and all signatures o & Sig(pk, skp,m,S), it holds that
Ver(pk,m, S, o) = 1 with probability 1.

Definition 8 (Perfect Privacy) An ABS scheme is perfectly private, if, for all (sk,pk) i
Setup(1*, 7)), all messages m, all attribute sets Ty and T'a, all signing keys skr, X KeyGen(pk,

sk,I'1) and skr, i KeyGen(pk, sk, I's), all access structures S such that S accepts I'y and S
accepts T'a, distributions Sig(pk, skr,, m, S) and Sig(pk, skr,,m,S) are equal.

For an ABS scheme with prefect privacy, we define algorithm AltSig(pk, sk, m,S) with S and
master key sk instead of T" and skp: First, generate skp R KeyGen(pk, sk, I') for arbitrary I’

which satisfies S, then o R Sig(pk, skp, m, S). return o.
Since the correct distribution on signatures can be perfectly simulated without taking any
private information as input, signatures must not leak any such private information of the signer.

Definition 9 (Unforgeability) For an adversary, A, we define AdvﬁBS’UF()\) to be the suc-

cess probability in the following experiment for any security parameter \. An ABS scheme is
existentially unforgeable if the success probability of any polynomial-time adversary is negligible:
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1. Run (sk, pk) X Setup(1*, 1) and give pk to the adversary.
2. The adversary is given access to oracles KeyGen(pk, sk, -) and AltSig(pk, sk, -, ).

3. At the end, the adversary outputs (m’,S',c").

We say the adversary succeeds if (m',S") was never queried to the AltSig oracle, S' does not
accept any T queried to the KeyGen oracle, and Ver(pk,m',S' o’) = 1.

4 Proposed ABS Scheme

4.1 Construction Ideas

Here, we will show some basic ideas to construct the proposed ABS scheme. Our ABS scheme is
constructed on a ciphertext policy (CP) functional encryption (FE) scheme [24], which is adap-
tively payload-hiding against chosen-plaintext attacks. The description of the CP-FE scheme
is given in the full version of [24].

Roughly speaking, a secret signing key, skr, with attribute set I and a verification text, ¢,
with access structure S (for signature verification) in our ABS scheme correspond to a secret
decryption key, skp, with I' and a ciphertext, ¢, with S in the CP-FE scheme, respectively.
No counterpart of a signature, s *, in the ABS exists in the CP-FE, and the privacy property
for signature s* is also specific in ABS. Signature s* in ABS may be interpreted to be a
decryption key specialized to decrypt a ciphertext with access structure S, that is delegated
from secret key skp.

The algorithms of the proposed ABS scheme can be described in the light of such corre-
spondence to the CP-FE scheme:

Setup Almost the same as that in the CP-FE scheme except that {I@%f bi=1,..d+1 are revealed
as a public parameter in our ABS, while they are secret in the CP-FE scheme. They are
published in our ABS for the signature generation procedure Sig to meet the privacy of
signers (for randomization). This implies an important gap between CP-FE and ABS.

KeyGen Almost the same as that in the CP-FE scheme except that a (7 dimensional) space with
basis B}, is additionally introduced in our ABS and two elements k; _, | and k}} , in this

space are included in a secret signing key in order to embed the hash value, H;\l’(D (m]]S),
of message m and access structure S in signature s *.

Sig Specific in ABS. To meet the privacy condition for 5*, a novel technique is employed to
randomly generate a signature from skp and {B} };=1  a11-

Ver Signature s* in the ABS is an endorsement to message m by a signer with attributes
accepted by access structure S. The signature verification in our ABS checks whether sig-
nature (or specific decryption key) 5* works as a decryption key to decrypt a verification
text (or a ciphertext) associated with S and Ha\l’(D(m |'S).

Security proofs Roughly speaking, the adaptive-predicate unforgeability of the ABS under
the KeyGen oracle attacks can be guaranteed by the adaptive payload-hiding property of
the CP-FE, since a forged signature implies a decryption key specified for the challenge
ciphertext to break the payload-hiding. Note that there are many subtleties in the proof
of unforgeability for the ABS, e.g., the unforgeability should be ensured in the ABS even
when publishing {B} };—1 41 for the privacy requirement, while they are secret in the
CP-FE. We develop a novel technique to resolve the difficulty. See Appendices D and E
for more details.
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4.2 Construction

For simplicity, here, we describe our ABS scheme for a specific parameter 7 := (d;2,...,2)
(see the remark of Definition 5). A general form of our ABS scheme is given in Appendix C.

We define function p: {1,...,¢} — {1,...,d} by p(i) :=t if p(i) = (t,v) or p(i) = =(t,v),
where p is given in access structure S := (M, p). In the proposed scheme, we assume that p is
injective for S := (M, p). We can relax the restriction by using the method given in Appendix
F in the full version of [24].

Setup(1*, 7 := (d;2,...,2)) : paramg := (¢, G, Gr, G, e) <~ Gppg(1"),
hk <X KHy, & < FZ, No:=4, Ny:=Tfort=1,...,d+1,
fort =0,...,d+1, paramy, := (q,V, G, As,e) := gdpvs(lA, Ny, paramg),
Xy 1= (Xuig)ig < GLINGES), (ri3)is =0 (X7,
bei = (Xtils- - XtiN) Ay Bt = (br1, ..., ben,),
bry = (Deits s Oran)an B i= (B11,... b1y,
gr = e(G, G)’Z’, param—; 1= ({paramvt}tzow.,dﬂ, 9r),
Bo := (bo1,b04);, Bi:= (by1,bra,br7) fort=1,...,d+1,
B} = (b}, b}, b5, blg) fort=1,....d+1,
sk:=bj,,  pki= (1% hk,parame, {Bilico,ai1, (B bimt,..at1, bhs)-
return sk, pk.
KeyGen(pk, sk, T':={(t,z;) |1 <t <d}):
5 Fos 00, Pt Pdi1,1,0: Pdr1,2, 2 F, fort=1,...,d; 1=1,2;
k= (6, 0, ¢, 0 ),
ki = (0(1, ), 0,0, w1, ¢r2, 0)p; for (t, ;) €T,
kgpi1:=0(0(1,0), 0,0, @ar1,1,1, Pa+1,1,2, 0)By,,
kij12:=(6(0,1), 0,0, @at1,21, Pat122, 0)B;,
T:={0,(d+1,1),(d+1,2)}u{t | 1<t<d, (t,z¢) €T},
return skp := (', {k] }ieT).
Sig(pk, skp, m, S:= (M, p)): IfS:=(M,p) accepts I := {(¢,x¢)},
then compute I and {a; }icr such that ), ; ; M; = T,
and I C{ie{l,....0} [p(i) = (t,vi) A (t,zr) €T N v; = x4
Voo p(i) =(tv) A (t,xy) €T A v # x4 },
ECFS, (B) < {0 | i B =0},
Remark : If det M # 0, the set contains only 0¢, i.e., all B; =0 fori=1,...,¢.
sp = &ky + 1), where 1 & span(by 3),
s = EkF+ 0y, b, +rr for 1<i<{,
where & span(b; 5, bi ), and vi, ¥ = (yi,1, yi2) are defined as
ifiel A p(i)=(tv), ~i=a, yi=_080(10v),
Q i

ifiel A p(i)=—(t,v), ;= . Yi= 1,vi),
I 7 p(i) (t,v;) Yi o Yi Ui_yi( Yi)
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where ; & Fo\{vi},

if 4 ¢ I A p(l) = (tvvi)v Yi = Oa 71 = ﬁi(lvvi)v
if i I A p(i)==(tv), =0 Yi= v'ﬁ_iy'(layi),

where ; & Fo\{vi},

* * AD * *
Spyp1 = §(kd+1,1 + Hhk (m|[S) - kd+1,2) + T,

% u * *
where 7, « span(bd+1’5, bd+176>’

return 8% = (8(,...,80,1)-
— —
Ver(pk, m, S:= (M,p), s*): f & Fgs STi=(s1,...,80)T =M. fT,
— =7 U
S0 = 1- f ) 7]07”@—0—1705—&-17 Se+1 ]an

Co ‘= ( —S50 — S¢+1, 07 07 1o )]Bo)

for 1 <i </,

if p(i) = (t,v;), return 0if s; &€ Vy, else

( Si + eivi’ —92', 0’ O’ 07 07 Ui )Bt7 where 915772 <_U ]FQ7
) = —(t,v;), return 0if s; € Vi, else

C; :

if p(

~.

si( v, —1), 0,0, 0,0, m; ), where n; qu’

C; (
Cpi1 = ( Se+1 — 96-‘1-1 : H?&D(m || 8)7 05-"-13 Oa Oa 07 07 Te+1 )]BgH-l’
return 0 if e(bg 1,85) = 1,

return 1 if Hfié e(ci,s7) =1, return 0 otherwise.

[Correctness|

+1 ) ¢ 2 )
Hii() e(ci) 'S;k) = €(C07 kS)E : Hie[ e(ciy k;fk)fmg : Hi:l HL:1 6(ci7 b;L)yl’L . e(cﬂ—i-ly Sz_|_]_)
d(=s0— dausi L iS5 4
=g T ey 050 TT g g

_ gé&(—so—54+1) _ggéso ) gé&sz+1 -1

4.3 Security
Theorem 1 The proposed ABS scheme is perfectly private.

Theorem 2 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines 51,5;,52,83,84, whose running
times are essentially the same as that of A, such that for any security parameter A,

AdVEEIUF () < AdVREN (L) + S (Adv?k:\'()\) + Advg-N (>\)>
2,

Ea ht1

Ly (AdvDL'N()\) + Ade’CR()\)) +e,

E3.n Ean

where (‘:;:h() = g;_(h,'),gg,h+1(') = gg(h,) (h = 0, e,V — 1), 83,h(') = gg(h, ')754,h(') =
Ey(hy) (h=1,...,12), v1 is the maximum number of A’s KeyGen queries, vy is the mazimum
number of A’s AltSig queries, and € := ((2d + 16)v1 + 8o + 2d + 11) /q.

The proofs of Theorems 1 and 2 (for a general form of our ABS) are given in Appendices D
and E, respectively.
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4.4 Performance

Table 1: Comparison with the Existing ABS Schemes

MPROS [20] MPRI10 [21] MPR10 [21] Proposed
(Boneh-Boyen (Waters
based) based)
(ili?agtr‘;fpsgfs) O 42 510+ 2r + 18\ i%gf; ) 70411
Model generic group standard standard standard
model model model model
Security full full full full
Assumptions CR hash q—SDDIil\?nd DLIN Dclél\il;;d
Predicates monotone monotone monotone non-monotone
Sig. size example 1
(¢ =10,r =5, 17 23560 1534 81
A =128)
Sig. size example 2
(¢ =100, r = 50, 152 282400 4864 711
A =128)

In this section, we compare the efficiency and security of the proposed ABS scheme with
the existing ABS schemes in the standard model (two typical instantiations) [21] as well as the
ABS scheme in the generic group model [20] (as a benchmark). Since all of these schemes can
be implemented over a prime order pairing group, the size of a group element can be around
the size of I, (e.g., 256 bits). In Table 1, ¢ and r represent the size of the underlying access
structure matrix M for a predicate, i.e., M € qu”. For example, some predicate with 4 AND
and 5 OR gates as well as 10 variables may be expressed by a 10 x 5 matrix, and a predicate
with 49 AND and 50 OR gates as well as 100 variables may be expressed by a 100 x 50 matrix
(see the appendix of [17]). A is the security parameter (e.g., 128).

5 Multi-Authority ABS (MA-ABS)

5.1 Definitions and Security of MA-ABS

Definition 10 (Multi-Authority ABS : MA-ABS) A multi-authority ABS scheme con-
sists of the following algorithms/protocols.

TSetup This is a randomized algorithm. The signature trustee runs algorithm TSetup(1*) which
outputs trustee public key tpk and trustee secret key tsk.

UserReg This is a randomized algorithm. When a user with user id uid registers with the
signature trustee, the trustee runs UserReg(tpk, tsk,uid) which outputs public user-token
tokenyiq. The trustee gives tokenyy to the user.

ASetup This is a randomized algorithm. Attribute authority t (1 < t < d) who wishes to
issue attributes runs ASetup(tpk) which outputs attribute-authority public key apk, and
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attribute-authority secret key asks. The attribute authority, t, publishes apk, and stores
ask;.

AttrGen This is a randomized algorithm. When attribute authority t issues user uid a secret key
associated with attribute x;, first it obtains (from the user) her user-token tokenyq, and
runs token verification algorithm TokenVerify(tpk, uid,tokenyiq). If the token is verified,
then it runs AttrGen(tpk,t, ask, tokenyiq, @) that outputs attribute secret key usk,. The
attribute authority gives usky to the user.

Sig This is a randomized algorithm. A user signs message m with claim-predicate (access struc-
ture) S := (M, p), only if there is a set of attributes T' such that S accepts T', the user
has obtained a set of keys {usk; | (t,z¢) € I'} from the attribute authorities. Then sig-
nature o can be generated using Sig(tpk, tokenyiq, {apk,, usk; | (t,z;) € T'},m,S), where

usk; i AttrGen(tpk, t, asky, tokenyiq, ¢).

Ver To verify signature o on message m with claim-predicate (access structure) S, a user runs
Ver(tpk, {apk,},m,S, o) which outputs boolean value accept := 1 or reject := 0.

Definition 11 (Perfect Privacy of MA-ABS) A MA-ABS scheme is perfectly private, if,
for all (tsk, tpk) & TSetup(1?), all uid, (¢ = 1,2), all tokenyq, & UserReg(tpk, tsk, uid,) (¢ =
1,2), all (ask¢, apk,) & ASetup(tpk) (1 <t < d), all messages m, all attribute sets I', associ-
ated with uid, (v = 1,2), all signing keys {usky, & AttrGen(tpk, t, asky, tokenyid, , Zt..) } (1,0, )er, }
(¢ = 1,2), all access structures S such that S accepts T'y and S accepts T'a, the distribu-
tions Sig(tpk, tokenyiqg, , {apky, uske1 | (£, 2¢1) € T}, m,S) and Sig(tpk, tokenyiq,, {apk;, usk 2 |
(t,x2) € I'a},m,S) are equall.

For a MA-ABS scheme with perfect privacy, we define algorithm AltSig(tpk, tsk, {apk,, ask;},
m,S) with S, trustee secret key tsk and attribute-authority secret keys ask; instead of T", tokenyq

and {usk; } (. )er: First, generate token,q & UserReg(tpk, tsk, uid) for arbitrary uid and usk &
AttrGen(tpk, ¢, asky, tokenyid, 7¢) } .z, )er for arbitrary I' := {(¢,2;)} which satisfies S, then o &
Sig(tpk, tokenyid, {apk,, usk: | (t,z¢) € T'},m,S). Return o.

Let T be the set of authorities. We assume each attribute is assigned to one authority.

Definition 12 (Unforgeability of MA-ABS) For an adversary, we define AdeIA_ABS’UF(/\)
to be the success probability in the following experiment for any security parameter \. A MA-
ABS scheme is existentially unforgeable if the success probability of any polynomial-time adver-
sary is negligible:

1. Run (tsk, tpk) £ TSetup(1*) and give tpk to the adversary A. For authorities t € T, run
(aske, apk;) & ASetup(tpk) and give {apk }ier to A. Adversary A specifies a set T C T

of corrupt attribute authorities, and gets {aski}, 7

2. The adversary A is given access to oracles UserReg, AttrGen and AltSig over S := T\ T.
3. At the end, the adversary outputs (m’,S',c").

Let T'yig, == {(t € S,x)} (i € {1,...,11}) queried to the AttrGen oracle with uid;. We say
the adversary succeeds, if (m’,S") was never queried to the AltSig oracle, S' does not accept
[yig, with any uid; (i € {1,...,11}) queried to the AttrGen oracle, S’ is specified over S, and
Ver(pk,m',S',o’) = 1.
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Remark 3 The model regarding corrupted authorities in this definition is weaker than that in
[21]. Roughly, the security on this model implies that no adversary A can forge a signature
with a predicate S unless A issues key queries for I's such that S accepts I's, where Sy and
I's are a predicate and attributes over uncorrupted parties S. On the other hand, the security
on the model in [21] implies that no adversary A can forge a signature with a predicate S/SUT

unless A issues key queries for I's such that, for some I'z, Sguiﬁ accepts (I's UT'z).

5.2 Construction

The key idea of our construction of MA-ABS scheme is to share Giq := 0G1 as well as Gy and
G among attribute authorities to generate 0b;; by each authority ¢. Hence, G and G are
included in tpk and Gyiq := 0G1 is shared with attribute authorities through the user’s token
tokenyiq.

For matrix X := (xi,)ij=1,..N € IE“qNXN and element v in N-dimensional V, X (v) denotes

vaz’]l\szl Xi,j¢i,j(v) using canonical maps {¢; ;} (Definition 2). Similarly, for matrix (9; ;) =

(X HT, (X HT(v) := Zﬁ\g\fj:l ¥;.;¢ij(v). It holds that e(X(z), (X 1T (y)) = e(z,y) for
any x,y € V.
Moreover, (Ggig,S, V) is a (conventional) unforgeable signature scheme.

TSetup(l’\) . paramg = (¢, G,Gr,G,e) A gbpg(ﬂ),
hk <X KHy, (verk,sigk) < Gsig(1Y) No:=4, Nap1:=7, &< F,
for t = 0,d + 1, paramy, := (q,V, G, Ag,e) := devs(l)‘, Ny, paramg),
Xy 1= (Xuig)ig < GLINGE,), (Dri)is = (X7 1T,
bei = K(Xti15- - Xti,N ) A Bt = (b1, ..., ben,),
bzi =E&(W¢ins - ViN) A, Bf = (b;l, .. ’b:,Nz)’
Go = kG, Gy :=¢(G, gr=e(G,G)",
Bo := (bo.1,b0,4); Bar1 = (bar11,bar12,bds17),
@ZH = (b2+1,1a b2+1,27b:§+1,5’b2+1,6)7
tsk := (bg 1, sigk),
tpk := (1%, hk, {parath,@t}t:()dH, ba3,@§+1,g;r, Go, Gy, verk),
return (tsk, tpk).
UserReg(tpk, tsk, uid) : J Fo, %05 P11, P12, J F,,  Guid == 0G1,
k= (6, 0, @, 0 )z,
kii11:=1(6(1,0), 0,0, @a+1,11, Pa+112: 0)m
kipio:=0(0(0, 1), 0,0, wit121, Pa+122, 0)my, ;.
usko := (kg, k11, ki112)s Ouid := S(sigk, (uid, Gyig)),

return tokenyig := (uid, Gyid, ouid, usko).

s«
d+1’

ASetup(tpk) : w;; = (0071, G, 077) for j=0,1;i=1,..,7, X; < GL(7,F,),

By := (bt;i)i=1,..,7 == (Xe(wo,1), - - -, Xe(uo7)),

B := (b} )i=1,..7 == (X7 ) (wi), . (X7 (7)),
By := (bt,1,be,2,be7), B; = (671, b5, b7 5, b7 6);
return (ask; := Xy, apk, := (B¢, B})).
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TokenVerify(tpk, uid, token,;q) holds iff V(verk, (uid, Gyiq), ouid) = 1.
AttrGen(tpk, t, aske, tokenyiq, x: € Fg) © @11, 012 & Fq,
ki = (X; Y)Y (( Guids #Guids 0, 0, ¢11G1, 012Gy, 0)),
that is, k; = (6, omt, 0, 0, @r1, wr2, 0)sr,
return usk; := kj.
Sig(tpk, tokenyqd, {apk;, usk; R AttrGen(tpk, ¢, asky, tokenyiq, z¢) | (t,2¢) € T'},
m,S = (M, p)) and Ver(tpk, {apk,}i=1.. a4, m, S:=(M,p), s*) are

essentially the same as those in Section 4.2.

5.3 Security
Theorem 3 The proposed MA-ABS scheme is perfectly private.

Theorem 4 The proposed MA-ABS scheme is unforgeable (adaptive-predicate unforgeable) un-
der the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines 81,5;,52,53,54, whose running
times are essentially the same as that of A, such that for any security parameter A,

€z ht1

AdVIAABSUE () < AdvREIN(Y) + S (Adv?k'N(A) + Advg-N (A))
2,h

LY <AdvD“N()\) + Ade’CR()\)> +e

E3,n Ean

where ngh(-) =& (b)), Eaps1(c) == Ea(hy?) (h=0,...,01 — 1), E3p(-) = Es(h, "), Eanl) =
Es(hy,+) (h=1,...,1a), 11 is the maximum number of A’s UserReg queries, v is the mazimum
number of A’s AltSig queries, and € :== ((2d + 16)vy + 8vp + 2d + 11) /q.

The proofs of Theorems 3 and 4 are given in Appendix F.
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A Dual Pairing Vector Spaces (DPVS)

A.1 Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups (¢, G,
Gr,G,e), where ¢ is a prime, G and G are cyclic groups of order ¢, G is a generator of G,
e : G x G — Gr is a non-degenerate bilinear pairing operation, and e(G,G) # 1. Here we
denote the group operation of G by addition and G by multiplication, respectively. Note that
this construction also works on asymmetric pairing groups (in this paper, we use symmetric
pairing groups for simplicity of description).

N

M . .
Vector space V: V := G x --- x G, whose element is expressed by IN-dimensional vector,
z:=(r1G,...,2NG) (x; € F fori=1,...,N).

Canonical base A: A := (aq,...,ay) of V, where a; := (G,0,...,0), as := (0,G,0,...,0),
L, anN = (0,...,0,G).

Pairing operation: e(x,y) := Hf;l e(z;G,y;,G) = e(G, G)Zivzlxiyi = ¢(G,G)TY € Grp,
where  := (21G,...,2nG) = z1a1 + - +zyay € V, y := (nG,...,ynG) = y1a1 +
-+ ynvay €V, T = (z1,...,2x5) and ¥ := (y1,...,yn). Here, x and y can be
expressed by coefficient vector over basis A such that (x1,...,25)s = (Z')a := = and

(1, yn)a = (Y)a =y
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Base change: Canonical basis A is changed to basis B := (by,...,by) of V using a uni-
formly chosen (regular) linear transformation, X := (xi;) s GL(N,F,), such that
b = Zjvzl Xijaj, (i=1,...,N). A is also changed to basis B* := (b},...,b}) of V,
such that (9;;) == (XT)™1, b = SN 0, 5a;, (i =1,...,N). We see that e(b;, b*) =

j=1 Bhe)
e(G,G)%, (6;; = 1if i = j, and 6;; = 0 if i # j) i.e., B and B* are dual orthonormal
bases of V.
Here, * := z1by + --- + anyby € V and y := y1b] + --- + ynby € V can be ex-
pressed by coefficient vectors over B and B* such that (z1,...,25)p = (Z')p := = and

(yb cee 7yN)]B* = (7)3* =Y, and e($7 y) = €(G, G)vazl Tl = C(G, G)?? € GT-

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [22]. It is to tell v := wvn,+1bny+1 + -+ + vn by, (=
0,...,0,uNy41,---,UN,)B), from uw := viby + -+ + vn,bn, (= (v1,...,vN,)B), Where
(Ul,.. .,UNl) <—U Fqu and No + 1 < Nj.

Trapdoor: Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t* € span(bi, ..., by, ). Given v := vn,11bN, 11+ +
v, by, or uw = v1by + -+ 4+ vn, by, , we can tell v from w using t* since e(v,t*) = 1 and
e(u,t*) # 1 with high probability.

Advantage of this approach: Higher dimensional vector treatment of bilinear pairing groups
have been already employed in literature especially in the areas of IBE, ABE and BE
(e.g., [4, 11]). For example, in a typical vector treatment, two vector forms of P :=
(r1G,...,zyG) and Q := (11 G, ..., ynG) are set and pairing for P and (@ is operated as
e(P,Q) = sz\il e(z;G,y;G). Such treatment can be rephrased in this approach such that
P=za1+ - +ayay (= (21,...,2n8)a), and @ =y1a1 + - +ynvan (= (y1,.--,Yn)a)
over canonical basis A.

The major drawback of this approach is the easily decomposable property over A (i.e., the
decisional subspace problem is easily solved). That is, it is easy to decompose z;a; =
0,...,0,2;G,0,...,0) from P :=z1a1 + ---xyany = (11G, ..., zNG).

In contrast, our approach employs basis B, which is linearly transformed from A using a
secret random matrix X € F,"*". A remarkable property over B is that it seems hard to
decompose x;b; from P’ := x1b; + ---xnyby (and the decisional subspace problem seems
intractable). In addition, the secret matrix X (and the dual orthonormal basis B* of V)
can be used as a source of the trapdoors to the decomposability (and distinguishability for
the decisional subspace problem through the pairing operation over B and B* as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors are ones of
the key tricks in this paper. Note that composite order pairing groups are often employed
with similar tricks such as hard decomposability (and indistinguishability) of a composite
order group to the prime order subgroups and its trapdoors through factoring (e.g., [13,
28)).

A.2 Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing
Groups

Definition 13 “Asymmetric bilinear pairing groups” (q,G1,Ge, G, G1,G2,¢e) are a tuple of
a prime q, cyclic additive groups G1, Gy and multiplicative group Gp of order q, G1 # 0 €
G1,G2 # 0 € Ga, and a polynomial-time computable nondegenerate bilinear pairing e : Gy X
Go — Gr i.e., e(sG1,tGo) = e(G1,G2)® and e(G1,Gs) # 1.
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Let Gppg be an algorithm that takes input 1% and outputs a description of bilinear pairing
groups paramg := (q,G1, Go, G, G1, G, €) with security parameter \.

Definition 14 “Dual pairing vector spaces (DPVS)” (q,V,V* Gy, A, A* e) by direct product of
asymmetric pairing groups paramg := (¢, G1, G, Gp, G1,Ga, e) are a tuple of a prime q, two N -

N N
—— r——
dimensional vector spaces V:= Gy X --- X Gy and V* := Gg X --- x Go over Fy, a cyclic group
Gr of order q, and their canonical bases i.e., A = (a1,...,an) of V and A* := (af,...,a})
i—1 N—i i—1 N—i

— — — —
of V¥, where a; :== (0,...,0,G1,0,...,0) and a; := (0,...,0,G>,0,...,0) with the following

operations:

1. [Non-degenerate bilinear pairing] The pairing on'V and V* is defined by e(x,y) = HZJ\LI e(D;,
H;) € Gp where (D1,...,Dy) := x € V and (Hy,...,Hy) :== y € V*. This is non-
degenerate bilinear i.e., e(sx,ty) = e(x,y)* and if e(x,y) = 1 for all y € V, then
x = 0. Foralli and j, e(a;, a}) = gy where 6;; = 1 if i = j, and 0 otherwise, and
e(Gl,Gg) 75 1€ Grp.

2. [Distortion maps| Linear transformation ¢;; on V s.t.¢; j(a;) = a; and ¢; (a) = 0 if
i—1 N—i
— ——
k # j can be easily achieved by ¢; j(x) := (0,...,0,D;,0,...,
Moreover, linear transformation ¢; ; on V* s.t. qﬁ;"j(a;) = a} and ¢;‘7j(a,’;) =0ifk #j
i—1 N-i

0) where (Dy,...,Dy) = .

— —
can be easily achieved by ¢f7j(y) :=(0,...,0,H;,0,...,0) where (Hy,...,Hy) :=y. We
call ¢; j and ¢Z-‘7j “distortion maps”.

DPVS generation algorithm Gqpys takes input 1* A\ € N), N € N and a description of bi-
linear pairing groups paramg, and outputs a description of paramy = (q,V,V* Gr, A, A* e)
constructed above with security parameter A\ and N -dimensional (V,V*).

B Anonymous Credentials

The notion of anonymous credentials (ACs) [2, 3, 6, 7, 8, 9] provides a functionality for users
to demonstrate anonymously possession of attributes, but the goals of ACs and ABS differ in
several points.

First of all, ABS is a class of signatures, which are non-interactive primitives and can be used
as transferable digital evidence, while ACs are typically (non-transferable) interactive protocols
to prove the possession of credentials. Nevertheless, chosen-message-attack secure signatures
can be employed to construct an interactive protocol by signing a random number challenge
from a verifier, and non-interactive ACs [3] have been proposed. So, we will focus on the other
properties of ABS and ACs rather than the difference in signatures and interactive protocols.

Although the basic ABS is in the single-authority setting, we often consider a multi-authority
(MA) setting of ABS (see the last item of Section 1.2 and Section 5), and AC also considers
multiple authorities. So in this comparison we will use the MA settings of ABS and AC.

The first difference between ABS and ACs is the number of attributes for which an attribute
authority is responsible. In MA-ABS, each authority can issue credentials (or keys) to users
for an unbounded number of attributes (e.g., ¢ = O(2*) many attributes, where X is the secu-
rity parameter), and a user reveals only a predicate on the attributes that the user possesses,
rather than the individual attributes themselves. In contrast, an authority in ACs is typically
considered to be responsible for only a single attribute. Therefore, the public key size increases
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linearly with the number of attributes in ACs, while the size in MA-ABS increases with the
number of authorities. Camenisch and Grof8 [6] introduce an AC system with an unbounded
number of attributes for an authority, but the admissible predicates are limited to a single
level of disjunctions or conjunctions of attributes, whereas more general predicates are typically
available in ABS.

The second difference is the anonymity when a user registers with multiple authorities (or
requests multiple authorities to issue credentials/keys with attributes). In ACs the multiple
registrations of a user cannot be linked to each other, while they can be linked in MA-ABS
schemes. For example, in the MA-ABS in Section 5, a user provides a token (a kind of identity
for a user) to multiple authorities. However, this information in the registration stage is the
only information that MA-ABS leaks, and no privacy is revealed after the registration stage,
e.g., even colluding authorities cannot identify the user when a user proves some predicate on
the credentials in MA-ABS. This provides sufficient anonymity in many applications.

As a summary, ACs and ABS aim at different goals: ACs target very strong anonymity even
in the registration phase, whereas under less demanding anonymity requirements in the regis-
tration phase, ABS aims to achieve more expressive functionalities, more efficient constructions
and new applications. In addition, ABS is a signature scheme and a simpler primitive compared
with ACs.

C General Form of the Proposed ABS Scheme

This section provides a general form description of the proposed ABS scheme, while Section 4
describes a simpler form of the ABS scheme.

The security proof of the proposed ABS scheme will be given in this appendix for the general
form of the ABS scheme.

We define function p: {1,..., ¢} — {1,...,d} by p(i) := t if p(i) = (t, V") or p(i) = —(t, V'),
where p is given in access structure S := (M, p). In the proposed scheme, we assume that p is
injective for S := (M, p). We can relax the restriction by using the method given in Appendix
F in the full version of [24].

In the description of the scheme, we assume that an input vector, =; := (41, s Ty )s
is normalized such that z;; := 1. (If T, is not normalized, change it to a normalized one
by (1/x¢1) - @4, assuming that z;; is non-zero). In addition, we assume that input vector
V= (vi1, ..., Vin,) satisfies that v; ,, # 0. We refer to Section 1.4 for notations on DPVS.

We describe random dual orthonormal basis generator G, below, which is used as a sub-
routine in the proposed ABS scheme.

gob(l)‘,ﬁ = (dyn1,...,nq)) : paramg := (¢, G, G, G, e) R gbpg(ﬂ), P Y px

ng:=1, ngr1:=2, Ny:=3n,+1 fort=0,...,d+1,
fort =0,...,d+1, paramy, := (¢,V,Gr, Ay, €) 1= gdpvs(l)‘, Ny, paramg),
U _
Xe:= (Xti)ig — GL(NFy), (rig)ig =9 (X))
bt,z’ = (Xt,i,h B Xt,z',Nt)Axt = Z;V:H Xt,i,j At,j s By
b;‘,k,z = (ﬁt»i717 cte 7"‘9t)i’Nf)At = Z;V:tl ﬁtzlyjatm?’ B;fk

gr ‘= e(G7 G)wa paramﬁ = ({paramvt}tzo,...,d+l7 qgr
return (param, {B¢, B} }i=0,.. d+1)-

bt,la ey bt,Nt)a

* >
by 155 b} N,

)

(
(
)
We note that gr = e(by;, b} ;) for t =0,...,d+1;i=1,..., N;.
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Setup(l’\, o= (d;ny,...,ng)) :
hk < KHy, ng :=1, ngy1 :=2, (paramy, {B:, B} }i—0,. d+1) R gob(ﬂ, ),
Bi = (bi1,-- - brmg, brangs1) for t =0,...,d+1,
By i= (b1, b, bl omys1s e Dlgn,) fort=1,....d+1,
return sk := b6,17 pk := (1>‘, hk, param—, {I@t}t:()’.,,’dJrl, {@?}t:]_“”’dJrl, bag).
KeyGen(pk, sk, T :={(t, @ := (241, ,%n,) EF/™) |1 <t <d}):

U U
0 IF;; P05 Ptoes Pd+1,1,00 Pd+1,2,0 < IE‘q for t = 17 ceey d7 L= 17 sy N
ks = (57 0, 90070)1387
nt nt ng 1
r /\
kf= ( 0(ze1,-- s Teng), om, Gt1s-Ptmy, 0 ) for (2, Ty) €T,

ki1 = (6(1,0),0,0, 044111, Pd+1,1,2,0)8;, |
ki1 :=1(5(0,1),0,0, 441,21, Pd+1,22,0)B;, >
T:={0,(d+1,1),(d+1,2)}u{t | 1<t<d, (t,7¢) €T},
return skp := (T, {k] }ier)-
Sig(pk, skr, m, S:=(M,p)): IfS:= (M,p) accepts I := {(t, )},
then compute I and {o;}ier such that 3, ;o M; = T,
and I C {iec{l,...,0} [p(i)=(t, Vi) A (t, Zy) €T A U T4 =0
Vo [p() ==t A (T el A T T £ 0] ),
§CFS, (B) < ABr, . B) | Xioy BiMi =0,
sy = &ky + 75, where 1 s span(by 3),
s7 =i &k 0 yi b, 4, for 1<i <Y
where 77 S span(b; o, 115+ br3p,), and i, Yi= (Yi1,---Yin,) are defined as

L . u
ifiel Ap(i)=©t7:), Y=o, Yi—{Vil|l Vi Vi=0 A yi1 =P8},

e ) U
ifiel A p(i)=(t, 707 Vi = ai/(ﬁi : ?t)a 71 — {71' | 7z : 71’ = i},
e . U

ifigl A p(i)=t7:), 7%:=0, Yi={Vi| Vi Vi=0 A yi1 =0},
. . U

If ? ¢ I A p(Z) - _'(tv ?1)7 Yi = 07 71 — {71 ’ 71 . ?’L - ﬂz}v

A,D U
Sy = &(kgp1q + HES(mAIS) - kgiq0) + 7oy, where riyy < span(byiq 5,011 6),
=% * *
return s := (8p,...,8p,1)-
Ver(pk, m, S:= (M,p), %) :
— R - — U
f — ]qua ?T = (817 .. '7S£)T =M - fT7 S0 = 1 fTa 770777€+170Z+173€+1 — F(p
Cy = (*80 — S¢+1, Oa 07770)[307
for 1 <i</¥,
if p(Z) = (t, 72 = (vi,l, L. ,Ui7nt) S qu)’

return 0 if s7 ¢ V;, else 6;,m; &2 Fy,

ng nt nt 1
~ =
cii= ( si+0;1,0v2,...,0ivn,,, 0, 0re, i )Bes
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if ,O(Z) = _‘(tv 72)7

return 0 if s7 € V;, else n; J F,,

ng ne n 1
ci:= (81,5 Vip,), 0", 0", N )Bis

covr = (ser1 — Oe1 - Hp>(m|]S), 0041,0,0,0,0,7041 )8, ,

return 0 if e(bg 1,85) =1,

return 1 if Hfié e(ci,s7) =1, return 0 otherwise.
[Correctness|

/41 * * *\ 4 l * ; *
Hii() e(ci, s7) = e(co, k’o)5 [licrelei k; )%5 et [T eles, bt,L)y“ “e(epy, k’z+1)

—s0+se41) | I IQLTED H€ Bisi .g*§5S£+1 _ 955(*30+3£+1) ‘95550 .9*558“1 -1
T T -

_&(
=9r ier 9T i=1 T = T

D Proof of Theorem 1

Theorem 1 The proposed ABS scheme is perfectly private.

Proof. Before strating the proof, we first define function AltSig specified in the proposed ABS
scheme as follows:

AltSig(pk, sk, m, S)
g £ F(j? %0 £ qu

(G) (Gl C) | S GMi= T3, 5= (3,0, 0,08,

fori=1,...,¢,

if p(Z) = (¢, ?z , then 71 J {7z ’ ?z . ?z =0, z,1 = gcl}, (1)

if p(i) = —(t,T;), then 73 <2 {7 | Ty Ui =0C)

nt nt nt 1
— /S
U
sfi= ( Zil,eZing, 0™, 0i1,.,0in, O )B; where 0;, « F, for t =1,..,ny,
< A,D U

spp1 = (0(L HG " (m|[8)),0,0, 00411, 0041,2,0)B;,, Where 0p1,1, 00412 < Fy,

N
return 8 = (8g,...,87,1)-

Remark: Theorem 1 implies that AltSig defined above is equivalent to AltSig defined just after
Definition 8, and this justifies the notations.

We now start the proof. This theorem is true if the following statement is true, where AltSig
is defined above:

For all (sk, pk) R Setup(1*, 7)), all messages m, all attribute sets T, all signing keys
skp X KeyGen(pk, sk, I'), all access structures S such that S accepts I', the distributions of
Sig(pk, skp, m, S) and AltSig(pk, sk, m,S) are equal.

In the proposed ABS scheme, (sg, ..., s/, ) ni Sig(pk, sk, m, S) are expressed by

S;!( = (Zi,la e g Ont, Tilse-s0ing O)Er (Z =0,...,0+ 1),
where Z; := (zi1,---s2in,) and o= (£6), Zp1 = E0(1, Hf“l’(D(m IIS)),
for 1 <i </,

ifiel A pli)=(t, V), Zi=&0Ti+ 7
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where 5 < {7 | Ti-Ti=0 A vi1 = Bi},
ificl A p(i)=-(t75), Zi=(/(Vi T)EST+ Y

where ¥/ <—U{yz | Vi V=B,
i@ T A pli)=(t,7Ti), Zi=7 where i < {¥i | Ti-0i=0 A yi1 = Bi},
itig I A p(i)=—(t,0;), Zi=Ti where ¥; < {Gi | ¥i-0i=05i}.

l

Let @' := (af,... , ) such that o := «; if i € I and o := 0if i € I, then it can be rephrased
by

Zo = (€8), Zisr = E6(LHNP (m]]S)),
for 1 <i </,

;=
{

7

7

P ?z =0 A Zi1 = 55042 + ﬁz} if ,O(Z) = (t, 72),
I ?z = fda; + ﬁz} if p(’L) = —\(t, 7»,

Te Tc

— — —
z Zi | =z
— — —

2

On the other hand, (sg,...,s7,) R AltSig(pk, sk,m,S) are expressed by

87 = (2i1s- - 2ime: 07,001, - iy, O (i =0,...,041), where
Zo:=0), Zes1:=0(1LHN(m]]S)),
for 1 <4<,
Zie {7 | FiTi=0 A zia =06} if p(i) = (1,7,
Zi i | FiTi=0GY i pli) = —(t, T),

For any {a/} such that S¢_ a/M; = T, the distributions of

(6,600 + P, ..., E6aly+ By) st &6 S FX, () <{(B) | XL, 6M;= 0} and

(0,0C1,---,0C) st d < Fr, (G) < {(G) | Tiy My =T}

are equivalent. Therefore, distributions Sig(pk, skr, m,S) and AltSig(pk, sk, m,S) are equivalent.
|

E Proof of Theorem 2

Theorem 2 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistance (CR) hash functions.

For any adversary A, there exist probabilistic machines 81,5;,52,53,54, whose running
times are essentially the same as that of A, such that for any security parameter \,

AdVﬁ‘BS,UF()\) < AdV?lLIN()\) _’_ZI}IL;Bl (AdVDLIN()\) +AdVDLIN ()\))

+ &
Ez,h 2,h+1

+ 35y (AdBEN ) + AR ) e,

E3,n Ean
where 52th() = Sj(h, ')752,h+1(') = 82(h,) (h = 0, e,V — 1), 53’]1(') = gg(h, ')754,h(') =

Ey(hy-) (h=1,...,11), v1 is the maximum number of A’s KeyGen queries, vy is the mazimum
number of A’s AltSig queries, and € := ((2d + 16)v1 + 8o + 2d + 11)/q.
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E.1 Proof Outline

As mentioned in Section 4.1, secret signing keys and verification texts in our ABS are the
counterparts of secret decryption keys and ciphertexts in CP-FE. Based on this correspondence,
we follow the dual system encryption methodology proposed by Waters [29], at the top level of
strategy of the unforgeability proof.

In the methodology, verification texts (ciphertexts), secret keys and signatures have two
forms, normal and semi-functional. In our proof, we also introduce another form, pre-semi-
functional for verification texts and secret keys. The real system uses only normal verifica-
tion texts, normal secret keys and normal signatures, and semi-functional /pre-semi-functional
verification texts, keys and signatures are used only in a sequence of security games for the
unforgeability proof.

To prove this theorem, we employ Game 0 (original unforgeability game) through Game 4.
In Game 1, the verification text is changed to semi-functional. When at most vy secret key
(KeyGen) queries are issued by an adversary, there are 21, game changes from Game 1 (Game
2-0), Game 2-07, Game 2-1 through Game 2-(v; — 1)*, Game 2-v;. When at most vy signing
(AltSig) queries are issued by an adversary, there are vy game changes from Game 2-v; (Game
3-0), Game 3-1 through Game 3-v5. The final game, Game 4, is changed from Game 3-v5.
Since ¢y in the verification text is uniformly randomized in Game 4, the probability that any
signature output by an adversary is correctly verified by using the randomized verification text
is negligible in Game 4. As usual, we prove that the advantage gaps between neighboring games
are negligible.

A normal secret key, skp "™ (with attribute set I'), is a correct form of the secret key of
the proposed ABS scheme, and is expressed by Eqs. (2)—(3). Similarly, a normal verification
text €2°™ := (co,...,co+1) (With access structure S) is Eqs. (7)—(9), and a normal signature
S oM s Bas. (4)-(6).

A semi-functional secret key, ski**™. is Eqs. (15),(3), and a semi-functional verification
text, €=M is Eqs. (10)-(12). A pre-semi-functional secret key, skp P and pre-semi-
functional verification text, ?gre'semi, are Eqgs. (13),(3) and Egs. (10),(14),(12). A semi-
functional signature, s* ™M is Eqs. (16), (5).

In Game 2-h, the first h keys are semi-functional while the remaining keys are normal, the
verification text is semi-functional, and the signatures are normal. In Game 2-h™, the first h
keys are semi-functional and the (h + 1)-th key is pre-semi-functional while the remaining keys
are normal, the verification text is pre-semi-functional, and the signatures are normal. In Game
3-h, the first h signatures are semi-functional while the remaining signatures are normal, and
all keys and the verification text are semi-functional.

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess § € {0,1}), we construct a simulator of the challenger of Game 0 (or 1)

(against an adversary A) by using an instance with & {0,1} of Problem 1. We then show
that the distribution of the secret keys and verification texts replied by the simulator is almost
equivalent to those of Game 0 when 3 = 0 and Game 1 when 3 = 1. That is, the advantage of
Problem 1 is almost equivalent to the advantage gap between Games 0 and 1 (Lemma 5). The
advantage of Problem 1 is proven to be bounded by that of the DLIN assumption with ignoring
a negligible factor (Lemma 1).

The advantage gap between Games 2-h and 2-h™ is similarly shown to be bounded by the
advantage of Problem 2 (i.e., of the DLIN assumption) with ignoring a negligible factor (Lemmas
6 and 2). Here, we introduce special form of pre-semi-functional keys and verification texts,
sk, SPECPTESEM Dand @ PP ™ such that they are equivalent to pre-semi-functional keys and

verification texts except that worg = ag := Y_,_, gr and rg a F, (note that 7o, wo &4 F, for
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pre-semi-functional keys and verification texts). The special form of pre-semi-functional keys
and verification texts can be simulated by using Problem 2 with § = 1. From the definition,

sk; spec.pre-semi o n decrypt € pec pre-semi g any I' with S accepts I' (i.e., it is hard for simulator

By to tell (s, SPecpresem E)gp“ pre-semi) for Game 2-h't from (skis ”0"", M) for Game 2-h
under the assumption of Problem 2). In addition, ag is independently distributed from the
other variables when S does not accept I' (shown in Proof of Claim 1 by using Lemma 4). That
is, the joint distribution of sk; pre-semi and ¢ _)pre ssemi i equivalent to that of sk* spec.pre-semi o nd
?gpec'pre'semi, when S does not accept I (1.e., B; ’s simulation using Problem 2 with g = 1 is
the same distribution as that of Game 2-h™ for the adversary’s view).

The advantage gap between Games 2-h™ and 2-(h + 1) is similarly shown to be bounded
by the advantage of Problem 2 (i.e., of the DLIN assumption) with ignoring a negligible factor
(Lemmas 7 and 2).

The advantage gap between Games 3-(h — 1) and 3-h is similarly shown to be bounded by
the advantage of Problem 3 (i.e., of the DLIN assumption) and the CR hash function with
ignoring a negligible factor (Lemmas 8 and 3).

Finally we show that Game 3-v5 can be conceptually changed to Game 4 with a negligible
error probability (Lemma 9).

E.2 Main Part of the Proof

To prove Theorem 2, we consider the following (214 + 15 + 3) games. In Game 0, a part framed
by a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for I' := {(¢, 2';)} are:

kS = (57 @7 ®o, O)]BS;

(2)
kz( = (5(1‘@1, e ,.Z‘t’nt),, SDt,b ey thmt, O)Bf fOI’ (t, ?t) S F, }

ki1 =1(5(1,0),0,0,04+1,1,1, Pd+1,1,2,0)B7, > 3)
ki1 =1(5(0,1),0,0,04+1,2,1, Pd+1,22,0)B5, >
where § <2 F3s €0, ®tis Pd+1,1i Pd+1,2,i S F,fort € T'and ¢ =1,...,n;. The reply to an

AltSig query for (m,S) with S := (M, p) are:
5= (5,[0] 00, 0)m;, (4)
;-k:: (le,.. ,Z@nt,ont,ai,l,...,Ui7nt,0)153§ fori=1,...,0+1, (5)

* AD
o+ ( ( Hhk (TTLHS)),, U€+1,1704+1,27O)B§+17 (6)

where, 5 Y ]F , 00,05, Y F, for o = 1,...,n, (G) Y {(G) | Zle GM; = T}, and
if ,0() (£, 73), then 2 < {Z | Zi- Vi =0, zi1 = 6G}, if p(i) = —(t, T;), then
22 {7 | Fi U= 0G)

v

v

CIJ

The components ¢, . . ., ¢y (verification text) for (m/,S’) with S’ := (M, p) generated in
Ver for verifying the output of the adversary are:
co = (=0 — 541,10, 0,70) (7)
for 1 <i </,

if p(l> = (t7 72 ) C; = (Si + eivi,h Givi,27 s 79ivi,nt77 Onta ni)Bta (8)
if p(Z) = ﬂ(t, 72), C; = (82‘(1}7;71, ey Ui,nt)a , Ont, T]i)]ggt,
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cri = (sep1 — Orr - Hod (m' [ S)), 0241,[0,0],0,0, 7418, (9)

— —
where f <_RIF(I’,‘7 ?T = (817"'785)T =M- fT7 S0 = T'7T7 770777i79i78€+1 <_UIFq (Z -
1,...,0+1).
Game 1 : Same as Game 0 except that the verification text (eco,...,cp41) for (m/,S’) with

S’ := (M, p) generated in Ver for verifying the output of the adversary are:

co = (=50 = Se+1,[wo,0,70)m, (10)
for 1 <i <Y,
if p(i) = (1, T1), €= (si + 0031, 0012, o, i [Wi L, Wi, |0, 1), 5 (1)
if p(i) = ~(t, 3), ¢ = (si(vi1, ..7vi7nt),, 0™, 7B, »

cort = (041 — Opp1 - HplP (m ]| S), O [Wert 1, 0er1,2}0, 0,041 )81 )

where wy Y Fo, (Wit ... Win,)s (Wi, ..., Win,) Y F,"* for i = 1,...,£+ 1, and all the
other variables are generated as in Game 0.

Game 2-ht (h=0,...,v1 — 1) : Game 2-0 is Game 1. Game 2-h" is the same as Game
2-h except that kj for t = 0 and (¢, 7'y) € I of the reply to the (h + 1)-th KeyGen query,
and (cq,...,¢g) of the verification text for (m/,S') with §' := (M, p) generated in Ver for
verifying the output of the adversary are:

kg := (0,[r0], 0, 0)B;,

ki = (0(zeq,... ,xt,nt),, Oty Ptmy,0), for (t, 7)€,
for 1 <i </,

=(t,7), ¢;:=(s; + 0;v; 1, 0:v; 2, ..,«91-111-771“,Ont,m)ﬁt7 (14)
= (t, 00, €= (86031, oo Vign, ), [ Wity s Wi, |, 0™, 100)y

where r J Fy, & F,/, @t :=(a1,...,a)T =M-g7T 7 L F,(i=1
GL(ny,Fy), Up:=(Z; )T fort=1,...,d,

(13)

,...,K), ZtH

(wi,la s 7wi,nt) = (ai + TV 1, TV 25 - - -y Tivi,m) - L,
(m,l, R ,wmt) = ai(vm, A 7Ui,nt) . Zt,
(’rt,lv oo ,Tt,nt) = (xt,la oo 7xt,nt) : Uta

and all the other variables are generated as in Game 2-h.

Game 2-(h+1) (h=0,...,v1 —1) : Game 2-(h + 1) is the same as Game 2-h™" except
that k} for (t, @;) € T of the reply to the (h+1)-th KeyGen query, and (ci, ..., ¢;) of the
verification text for (m/,S’) with §' := (M, p) generated in Ver for verifying the output of
the adversary are:

kg := (9,70, ¢0,0)B;
k;tk = (5(3315,17 cee axt,nt)vv Pty Pty O)Bt for (t> ?t) € Fa
for1 <i<V¥

. . —
if p(i) = (t,v5), ¢ :=(s;i+6vi1,0v;2, --,eivi,n“,O"tﬂh)Bm

if p(Z) = _'(tv ?2)7 C; = (Si(vi,lv ooy Ui,nt)va 0nt7 ni)]Bta
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where (w;1,..., Win,), (@i1,...,Win,) S F," for i =1,...,¢, and all the other variables
are generated as in Game 2-h™.

Game 3-h (h=1,...,v2) : Game 3-0 is Game 2-v;. Game 3-h is the same as Game 3-(h—1)
except that sg, sj,; of the reply to the h-th AltSig query for (m,S) are:

55 = (8,[70 | 70, 0):, "
<~ AD — —
spy1 = (0L HG(m|[S)), | Tes11, Tev1,2 [ 00411, 0041,2, 0By,

where 7 & Fq, (Teg1,1,7041,2) &2 FQQ, and all the other variables are generated as in
Game 3-(h — 1).

Game 4 : Same as Game 3-v5 except that ¢y generated in Ver for verifying the output of the
adversary is:

Cy ‘= (7w0>07770>1307 (17)
where s¢ & [, (i.e., independent from all the other variables).

Let Adv( () be AdvAESUF (1) in Game 0, and Adv( (A), AdvZ" (1), AdvEZ" (1), AdvE (),
Advff)()\) be the advantage of A in Game 1,2-h,2-h™, 3-h, 4, respectively. It is obtalned that
Adv%)( ) = 1/q by Lemma 10.

We will show five lemmas (Lemmas 5-9) that evaluate the gaps between pairs of Adv 54 (N,

Advi (1), AdvE (1), AdvE" ) (1), AdvE P (3) for b = 0, — 1, AVZ(N) for h =
1,..., v, Advff)(/\) From these lemmas and Lemmas 1-3, we obtaln Advﬁ‘lBS UF(/\) Adv )( A)

< AP () = Advi (x )\+Z”1 ) A () — Adv! I V)| + ! A -
AdvZ D) (3|4 hzl(Adv “D)— AP () G2) () — Advi () ‘+Advff)(>\) <
AdvEL (V) + 2055 Advis (W) + 30550 Advg: () + X002, (Advgsh()\)+Adle3 CR()\))+(2(d+

3)v1+3ve+d+4) /g < AdvEN () + 30 (AdVDLIN()\)—i- Advg-N (A))+Zz2:1 (AdvD"'N()\)+

& h+1 E3.n

Adv'? CR()\)) + ((2d 4 16)v1 + 8va + 2d + 11) /q. This completes the proof of Theorem 2. 0

Veun

E.3 Lemmas for Theorem 2

We will show lemmas for the proof of Theorem 2. The proofs of the Lemmas 5-10 are given in
Appendix E.4.

Definition 15 (Problem 1) Problem 1 is to guess 3 € {0, 1}, given (param, {Bt,@:}tzoy”.’dJrl,

€53,0,1€6,t,1, €t ft=1,....d+1;i=2,....n¢) QPI(V _>), where

* R
ggl(l)\a ﬁ) - o = 17 ng+1 = 27 (paramﬁa {Btvﬁt }t:O,...,d-ﬁ-l) — gob(1>\7 ﬁ>)7
B: - (bzl, “e 7b>tk,nt’ b;ZTLt-’rl’ “e 7b;5k,3nt+]-) fOI’ t - 0, “e 7d + 17
Wy Y0, Ves WOs Wi s -+ - Wiy <—UFq fort=1,...,d+1,

€00 = (w,0,0,7%)B,, €10 := (W, wo,0,%)By>
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fort=1,...,d+1;

nt ng nt 1
P
eor1 = ( w, et 0re, 0re, Ve )Bes
ers1:= ( w, 0"t Wi 1y ey Wy 0me, Yo By
e =wby; fori=2,... n,

return  (param, {By, @f}tzo,...,d+1, €50, 1€p,1,15 €t bi=1,.. d+15i=2,...n,)-
for B o {0,1}. For a probabilistic machine B, we define the advantage of B as the quantity
AdvE (N = [Pr[B(1%,0)—1] 0 2G5 (1%, 7) | =Pr [B(1A, 0)— 1| 0 RgPr, 7)) |

Lemma 1 For any adversary B, there is a probabilistic machine £, whose running time is es-
sentially the same as that of B, such that for any security parameter A, Advzl()\) < Adv?L'N()\)—F

(d+17)/q.

Lemma 1 is proven similarly to Lemma 1 in [24]. 0

Definition 16 (Problem 2) Problem 2 is to guess 5 € {0,1}, given (param+, {@uB?}t:O,..,d?

R
Bd-‘rla ]B;kprla hz’()a €0, {hg’tﬂ;a et,i}tZI,..7d;i:1,..,nta {h§+1’i}i:1,2) — gﬁpz(l/\, W); where

R
ggz(l)\a ﬁ>) IS 17 Ng41 = 27 (paramﬁ, {Btaﬁj}tZO,..‘,dJrl) — gob(l)\a ﬁ))u
Bt = (bt717 . 7bt7nt7 bt72nt+1, ‘e 7bt,3nz+1) for t = 0, ‘e ,d,

U U
ug, T — F), w,d,80 — Fy,

q°
(2t )isimt,ome = Zt = GL(n4,Fy),  (ueig)ijet,me i=Up = (Z7 )T fort=1,...,d,
670 = (5, 0, 50, 0)15;8, T,O = (5, u075070)]}53; €y = (w, Tuo_l,O,O)]BO,
fort=1,...,d; i=1,...,n4
( wm-J )i,j:L.‘.,nt =T Zt, 5t,i,j <—U ]Fq for j = 1, ceey Ny
nt g ng 1
A~
hgri= ( 01,8, 0m 0, Ot,i1s - Ot ing s 0 s,
hitﬂ' = ( Oi_l, 0, Ont_i, Ut g 1y Utimg s 5t,z'71, . (51572'7”“ 0 )B;:
€t; = ( Oifl, w, Ontfi, Wi 1y Wiing 0t 0 )]Bt

h2+1,l = 6b2+1’1 fOl" Z . 1’ 27

return (param, {B¢, B }i=o,...d, Bat1, By, 50, €0, {RG145 €1ite=1,. dii=1,...n» 1 P41 Fi=1,2)-

for B J {0,1}. For a probabilistic machine B, the advantage of B for Problem 2, Adv';f()\), is
similarly defined as in Definition 15.

Lemma 2 For any adversary B, there exists a probabilistic machine £, whose running time
is essentially the same as that of B, such that for any security parameter A, Advlpg2()\) <
Adv2YN(N) +5/4.

Lemma 2 is proven similarly to Lemma 2 in [24]. 0

Definition 17 (Problem 3) Problem 3 is to guess 5 € {0, 1}, given (param-, {I?Bt,IBf}t:(),dH,
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R
{Be, B} H=1,..d: P 0, €0 {RT b=t dsi=1,nes {RG 411 40 €a41,i tim=1,2) — 953(1>‘, ), where

G5 (1N )t no =1, ngy1:=2, (paramz,{By, B} }i=o,..at1) R Gop(11,70),
By := (br1, - binys Bromes1s - - bran, 1) for t=0,d+1,
T, Up Y F;, w, d, 0 Y Fy,
hg o := (6,0,80,0)m, 10 = (6,u0,60,0)m;, eo:= (w, Tug *,0,0)5,,
hi;:==0db;; fort=1,...,d; i=1,...,n;

(tds14y) = Uarr < GL(2,Fy), (2a414y) = Zarr = (UzL)T fori,j =1,2,

fori=1,2,
Sasrij —F, forj=1,2,
h a1 = ( 018,027, 02 Od41,i,150d4+1,4,25 0 )B. >
hig:= ( 071 8,070 wgi1i1,Uar1420  Odi1idy Odt1.i2, 0 )B,
eir1i:= (071w, 0" T(2d11.41,2d+1.42), 02, 0 Bas1

return  (params, {By, By }e—o,d+1, {Bt, B }e=1,..a:

R0 €0 1R Yi=1, dii=1,.nes ARG a1,is €41, ti=12),

for g & {0,1}. For a probabilistic machine B, the advantage of B for Problem 3, Adv%"’(A), is
similarly defined as in Definition 15.

Lemma 3 For any adversary B, there is a probabilistic machine £, whose running time is es-
sentially the same as that of B, such that for any security parameter A, Advlpf()\) < Adv?LIN()\)—I—

5/q.
Lemma 3 is proven similarly to Lemma 2 in [24]. O

Lemma 4 (Lemma 3 in [24]) Forp € Fy, let C, :={(7',V)|Z - ¥ =p} CV x V* where V
—
v

is n-dimensional vector space F,", and V* its dual. For all (7, 7) € Cp, for all (7, w) € Cp,
1
Pr [FU=T A TZ =] =
z & GL(n,Fy), i Cyp

where U := (Z~HT.

Lemma 5 For any adversary A, there exists a probabilistic machine By, whose running time
is essentially the same as that of A, such that for any security parameter X, |Adv£2)()\) —

Advi ()] < AdVEL(N) + (d+ 2)/q.

Lemma 6 For any adversary A, there exists a probabilistic machine B, whose running time
is essentially the same as that of A, such that for any security parameter X, ]Advf'h)()\) —
AV ()] < AdvZ () + (d+3)/q, where BY () := B (h,").

Lemma 7 For any adversary A, there exists a probabilistic machine Ba, whose running time
is essentially the same as that of A, such that for any security parameter X, |Advf§'h+)()\) —
Adv(j‘(h“”(A)\ < Advg, (M) + (d+3)/q, where Bypia(-) := Ba(h,-).

B2 ht1
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Lemma 8 For any adversary A, there exist probabilistic machines Bs and &4, whose run-
ning time are essentially the same as that of A, such that for any security parameter X,

AV AT 0) — AV ()] < AV, () + AdvE SR(\) + 3/q, where Bs () == Bs(h,-) and
54,h(’) = 54(}1, )

Lemma 9 For any adversary A, Advff'VQ)()\) < AdVEZL)(A) +1/q.
Lemma 10 For any adversary A, Advfﬁ)()\) =1/q.

E.4 Proofs of Lemmas 5-10

Game 2-0 Game 3-0
1l I
Game || Game Game Game Game Game Game Game Game
0 1 2.0+ 24 | | 2«11y || 2-v1 3-1 3-v2 4
Problem 1 Problem 2 Problem 3
— —
— l —
DLIN

Figure 1: Structure of Reductions

Outline: In Figure 1, an equality between neighboring games indicates that the left-hand
game can be conceptually (information-theoretically) changed to the right-hand game. An
approximate equality between them indicates that the gap between them is upper-bounded by
the advantage of the problem indicated.

The DLIN Problem is defined in Definition 3. Problems 1-3 are defined in Definitions 15-17,
respectively. We have shown that the intractability of (complicated) Problems 1 and 2 is reduced
to that of the DLIN Problem through several intermediate steps, or intermediate problems, in
[24]. They are indicated in Figure 1 by dotted arrows. The intractability of Problems 3 is also
reduced to that of the DLIN Problem in a similar manner and is indicated in Figure 1 by a
dotted arrow.

Problem 1 is used for evaluating the gap between advantages of adversary in Game 0 and
1 (Lemma 5). Problem 2 is used for evaluating the gaps between advantages of adversary in
Game 2-h" and 2-h (Lemma 6) and between those in Game 2-h and 2-(h + 1) (Lemma 7).
Problem 3 is used for evaluating the gap of those in Game 3-h and 3-(h + 1) (Lemma 8). They
are indicated in Figure 1 by arrows. The gap between Games 3-v5 and Game 4 are evaluated
without computational assumptions (Lemma 9).

Proof of Lemma 5

Lemma 5 For any adversary A, there exists a probabilistic machine By, whose running time
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18 essentially the same as that of A, such that for any security parameter A, \Advg‘))(}\) —
AdvA ()] < Advl YA+ (d+2)/q.

Proof. In order to prove Lemma 5, we construct a probabilistic machine B; against Problem
1 by using any adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B is given Problem 1 instance (param—, { B, I@f}tzo,m,dﬂ, €30, {€p,t,1, €15 =1, d+1;j=2,...n;)-
2. Bj plays a role of the challenger in the security game against adversary A.
3. At the first step of the game, By sets
Dy := (dij)j=1,.. 341 = (br2, ..., by b1, be g1, o by 3n, 1) fort=0,...,d+1,
Dy i= (di;)j=1,.3m+1 = (btos -, 001, 001,07 i1y 0y 5, 1) fort=0,...,d+1,

Dt = (dy1,. .., dipy, din1) fort=0,...,d+1,
]:D)z< = (d;fk,l"‘"d;nt’d;ﬁk,Qnt—Fl?'"7d;3nt) fOI“ t — ].,,d+ ].

By obtains D; and ﬁ);‘ from B; and @2‘ in the Problem 1 instance, and returns pk :=
(1}, hk, paramy, {Dy}emo, a1, {D] b1, a41, b 5) to A, where hk < KHj.

4. When a KeyGen (resp. AltSig) query is issued, 31 answers a correct secret key (resp. signature)
computed by using {Bj };~0,.. d+1, i.e., normal key (resp.signature).

5. When Bj receives an output (m’,S, ") from A (where S’ := (M, p)), By calculates

verification text (co,...,cpr1) as follows:
Cp = (—80 — 3g+1)e/370 + Cbo,g, c;, = Z?tz_ll Cij€tj+1 + Cin€311 for 1 = 1,... ,f + 1,
— — —7

where f il F, , 51 = (s1,.. s) =M. fT s9:= T Y 05001 R, =

L), p(i) = (8, 0), then ;= (si—i—HiUi,l,Givi,g, . ,szmt),lf p(i) = ﬂ( t,v5),

2D

then ¢ = 8;(vi1,...,Vip,) for 1 < i < €,Cpp1 := (sp41 — Ops1 - Hpo (/|| ), 6p41),
and egy1,€:j (j =2,...,n) are from the Problem 1 instance. B; verifies the signature
(m/, S, 8") using Ver with the above (cy, ..., cpy1), and outputs 3 := 1 if the verification

succeeds, (' := 0 otherwise.

When g = 0, it is straightforward that the distribution by Bj’s simulation is equivalent to that
in Game 0. When § = 1, the distribution by B;’s simulation is equivalent to that in Game 1
except for the case that sg+ spy; = 0 or there exists an ¢ € {1,..,£+ 1} such that ¢; ,, =0, i.e.,
except with probability (¢ + 2)/q < (d + 2)/q since ¢ < d. 0

Proof of Lemma 6

Lemma 6 For any adversary A, there exists a probabilistic machine B , whose running time

is essentially the same as that of A, such that for any security parameter X, ]Adv(2 h)()\) —
ht

AdVETI (0 < AdvE2 (N) + (d+3)/g. where B, () := BS (h, ).

Proof. In order to prove Lemma 6, we construct a probabilistic machine B; against Problem
2 by using an adversary A in a security game (Game 2-h or 2-h") as a black box as follows:

1. B; is given an integer h and a Problem 2 instance,

(paramﬁ’7 {Bt) ]B;fk}t:(),..,zh ]Bd—l-l) ]B;kl_l,_la h2707 €p, {hg7t7j7 et,j}til,..,d;j:L..,nta {h'jH_l’j}j:l,Z)'
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2. B;’ plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B provides A a public key pk := (1%, hk, param+, {@g}tzo,_”’d_l’_l’
{Bi}ie1,..a11, by 5) of Game 2-h (and 2-h), where hk < KHy, B] == (by1, .-, byn brsn+1),

and B} := (b} 1,...,b},,,bi0,, 1, -+ bigp,) from the Problem 2 instance.
4. When the 1-th key query is issued for attribute ' := {(t, @';)}, By answers as follows:

(a) When 1 < ¢ < h, Bf answers semi-functional key {kj};er where T := {0, (d +
L1),(d+1,2)}u{t | 1 <t<d(t7x;) €T} with Egs. (3) and (15), that is
computed by using {B; };—o .. 4+1 of the Problem 2 instance.

(b) When ¢ = h+1, By calculates {k} }1er by using hj0: ARG, =1, dij=1,.n0 {P4 1 Hi=1,2
of the Problem 2 instance as follows:

ki :=hj,, ki=3 7 2 by, for (t, 7)) €T,
* * * * U * * .
kd+1,j = h’d+1,j -+ Td+1,j Where rd+1,j — Span<bd+175, bd+1,6> fOI' ] = 1, 2.
(c) When ¢ > h + 2, B answers normal key {kj}ter with Eqs. (2) and (3), that is

computed by using {B} };~o_. 4+1 of the Problem 2 instance.

5. When a AltSig query is issued, By answers a correct signature computed by using {@}f H=0,..d+1,
i.e., normal signature.

6. When Bj receives an output (m/,S',8"*) from A (where S’ := (M, p)), By computes
semi-functional verification text (cg,...,cpr1) as follows: ¢gpyq is calculated as Eq. (12)
with By, 1 from the Problem 2 instance, and using sg;1 in ¢ 1,

Qg Oy Ty fort=1,....d k=1,...,r =12,
Jo=>j—1 (Qr,1€0 + AR 2b01)
fort=1,....,d; k=1,....r; j=1,...,n4

fta] = at716t7] + at=2bt7]7 ft’k’.? = &k7let7] + ak’2bt7j7
co := —fo — s¢+1bo,1 + qo,
For 1 <i </,

if p(i) = (t, V), €= 00 vijfj+ Dper Mik Sk + @i

if p(i) = —(t, 04), =350, MigFing) + @i,

U U .
where (M; 1)i=1,. tk=1,.r = M, go < span(bga), and g; < span(b; 3n,+1)- B; verifies

the signature (m/,S’, s”*) using Ver with the above {¢;}i—o__¢+1, and outputs 3 := 1 if
the verification succeeds, 3’ := 0 otherwise.

Remark 4 fo,ftvj,ﬁ%j fort=1,...,d;k=1,...,r;5 =1,...,n; calculated in the step 6 in
the above simulation are expressed as:

Op = apiw + apa, Tpi= T,

fr = Qkiw +ara, s0:=D 1 fr, gk = k1T, a0 = )4y ks

wo = ao/uo, (Etji)ji=1,.m =Tt Zt; (Etkji)jl=1,..n0 = Gk * Zt,

Jo = (s0,w0,0,0),,

ng n ne 1
=~
L 1 .
f}fvj T ( 0775, 6, 0™, €t,5,1y s Et,G,nes 0, 0 )Bw
R j—1 —J = =
ft,k),j T ( 0/ 7fk:70nt Ja €t,k,j,17 "7€t,k,j,nt7 OTLz’ 0 )Bw
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where ug,w, 7, {Z; };=1,... 4 are defined in Problem 2. Note that variables {0, 7 }1=1,... a4, { fies Gk Jo=1,...r
are independently and uniformly distributed. Therefore, {c;};—o,... ¢ are distributed as Eqgs. (10)

and (14) except wg := ag/ro, i.e., worg = ag, using ag and ro := ug S F, in kj (Eq. (13)).

Claim 1 The distribution of the view of adversary A in the above-mentioned game simulated
by By given a Problem 2 instance with 3 € {0,1} is the same as that in Game 2-h (resp. Game
2-ht ) if =0 (resp. B =1) except with probability (d+2)/q (resp. 1/q).

Proof. It is clear that B; ’s simulation of the public-key generation (step 3) and the «-th key
query’s answer for ¢ # h+ 1 (cases (a) and (c) of step 4) is perfect, i.e., exactly the same as the
Setup and the KeyGen oracle in Game 2-h and Game 2-h*.

Therefore, to prove this lemma we will show that the joint distribution of the (h+ 1)-th key
query’s answer and verification text {¢;}i=o,. ¢+1 by B;r ’s simulation given a Problem 2 instance
with 3 is equivalent to that in Game 2-h (resp. Game 2-h™), when 3 =0 (resp. 3 =1).

When g = 0, it is straightforward to show that they are equivalent except for that § defined
in Problem 2 is zero or there exists i € {0,..., ¢} such that w; = 0 withi =0 or p(i) = (t, V),

= = . — —_ — : :
or w; = 0 with p(i) = = (¢, v';), where w; and w; are defined in Egs. (10) and (11) i.e., except
with probability (¢ +2)/q < (d 4 2)/q since £ < d.

When 3 = 1, the distribution by B3 ’s simulation is Egs. (3) and (13) for the key and Egs.
(10), (12), and (14) for the elements in V, {¢;}i=o,. ¢+1, used for verifying the output of A,
where the distribution is the same as that defined in these equations except wqy := ag/ro, i.e.,

. - =T U . * .
worg = ag, using ag := 1-¢ " and rg < Fy in k§ (Eq. (13)) from Remark 4. The corresponding
distribution in Game 2-h" is Egs. (3) and (13) and Egs. (10), (12), and (14) where rq, wo & F,
as defined in the equations.

Therefore, we will show that ag is uniformly and independently distributed from the other

variables in the joint distribution of B;r ’s simulation. Since ag := 1. g T is only related to

(a1,...,a0)" := M -g"T and U; = (Zt_l)T holds, ay is only related to {w;}i=1_ s, {%i}izlw.’g
and {73},5:17__7,1, where 7 := (e, Teme) = (1, .. Xep,) - Upin Eq. (13) fort =1,...,d,
and E)z = (wi,l, e ,wi,m) = (ai + TiVi 1, TiVi2, - - - 77—ivi,nt) - Zy and w; = (@i,l, ce ,@imt) =
a;i(Vi1, .., Vin,) - Zy in Eq. (14) for i = 1,...,¢ with t := p(i). (p is defined at the start of
Section 4.) With respect to the joint distribution of these variables, there are five cases for each
i €{1,...,¢}. Note that for any i € {1,...,¢}, (Z,U;) with t := p(i) is independent from the
other variables, since p is injective:

1. y(i) =1and [p(i) = (t, V) A (t, T €T A ¥ 2 =0].
Then, from Lemma 4, the joint distribution of (w;, 7¢) is uniformly and independently
distributed on C,, := {(W, 7)|w - 7 = a;} (over Z, & GL(nt,Fy)).
2. v(i) =1 and [p(i) = ~(t,v;) A (t,T) €D A Uy- T4 #0).
Then, from Lemma 4, the joint distribution of (%l, 7¢) is uniformly and independently
distributed on C(%,.z,y.q, (over Z; & GL(n,Fy)).
3. y(i) =0and [p(i) = (t, V) A (t,7) €T] (ie.,, V- T4 #0).
Then, from Lemma 4, the joint distribution of (W, 7;) is uniformly and independently

distributed on C(% .z ,).7,4q, (OVer Z & GL(nt,Fy)) where 7; is defined in Remark 4. Since
7; is uniformly and independently distributed on F,, the joint distribution of (Wi, T¢) is
uniformly and independently distributed over FQQ’“.
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4. y(i) =0 and [p(i) = ~(t, V) A (t,7¢) €T (ie.
Then, from Lemma 4, the joint distribution of (
distributed on Cj (over Z; & GL(nt,Fy)).

5. [p(i) = (t,0) A (t,74) €T or [p(i) = =(t, Vi) A (8, 7) €T).

Then, the distribution of w; is uniformly and independently distributed on F," (over
Z & GL(ny, Fy)).

V- Ty =0).

S

i, 7¢) is uniformly and independently

We then observe the joint distribution (or relation) of ay, {ﬁi}izl,_.x, {%i}izlmg and {77t }4—1. 4.

Those in cases 3-5 are obviously independent from ag. Q)ue to the restriction of adversary A’s
key queries, 1 ¢ span{(M;),()—1). Therefore, ag := 1 - g1 is independent from the joint
distribution of {a; := M; - g’ | v(i) = 1} (over the random selection of g’), which can be
given by (wW;, 7¢) in case 1 and (ﬁ)“ 7'¢) in case 2. Thus, ag is uniformly and independently
distributed from the other variables in the joint distribution of B; ’s simulation.

Therefore, the view of adversary A in the game simulated by B; given a Problem 2 instance
with 8 = 1 is the same as that in Game 2-h™ except that § defined in Problem 2 is zero i.e.,

except with probability 1/q. O

Proof of Lemma 7

Lemma 7 For any adversary A, there exists a probabilistic machine By, whose running time
is essentially the same as that of A, such that for any security parameter X, |Adv§'h+)()\) —
AT 0] < AdVEZ (A) + (d+3) /g, where Bajia(-) i= Ba(h,-).

Ba 1
Proof. In order to prove Lemma 7, we construct a probabilistic machine Bs against Problem
2 by using an adversary A in a security game (Game 2-h* or 2-(h + 1)) as a black box. By acts
in the same way as B in the proof of Lemma 6 except the following two points:

1. In case (b) of step 4; kj; is calculated as

ki = hi3 o + 1055 2,
where r{, Y Fg, and hj g, by 5 are in the Problem 2 instance.

2. In the last step; if the verification succeeds, By outputs 3 := 0. Otherwise, By outputs
B =1.

When 3 = 0, it is straightforward that the distribution by Bs’s simulation is equivalent to
that in Game 2-(h + 1) except that ¢ defined in Problem 2 is zero, i.e., except with probability
1/q. When 3 = 1, the distribution by By’s simulation is equivalent to that in Game 2-h™ except
that & defined in Problem 2 is zero or there exists i € {0, ..., ¢} such that w; = 0 with i = 0 or
p(i) = (t,7), or W; = 0 with p(i) = =(t, v';) where w; and W, are defined in Egs. (10) and
(11), i.e., except with probability (¢ + 2)/q < (d +2)/q. 0

Proof of Lemma 8

Lemma 8 For any adversary A, there exist probabilistic machines Bs and &4, whose run-
ning time are essentially the same as that of A, such that for any security parameter X,
AV POy — AT ()] < AdVE, () + AdvE SR(\) + 3/q, where By () == B(h,-) and
Eun() = Ealh,-).

Proof. In order to prove Lemma 8, we construct a probabilistic machine B3 against Problem 3
by using any adversary A in a security game (Game 3-(h — 1) or 3-h) as a black box as follows:
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1. Bj is given an integer h and a Problem 3 instance,
(param, {B¢, B} bi—0,a+1, {Be, B hi=1,...0: R} o, €0. {Ry j he=1, . dij=1, om0 ARG g1 > €415 Fi=1,2)-
2. B3 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B provides A a public key pk := (1*, hk, param—, {@Q}t:07.._7d+1,
{@f}t:17,,,7d+1,b373) of Game 3-(h — 1) (and 3-h), where hk R KH,, I?BQ = (be1,..., b,

bt 3n,+1), and B} := (B 1,500, BEon, 415 - - -5 b 3y, ), that are obtained from the Problem
3 instance.

4. When KeyGen query is issued for attribute I' := {(t, 7';)}, B3} answers semi-functional
key {k}}ier where T := {0, (d+1,1),(d+1,2)}u{t | 1<t <d, (t, ) € I'}, with Egs.
(3) and (15), that is computed by using {B} };—¢... 4+1 of the Problem 3 instance.

5. When the (-th AltSig query is issued for attribute S := (M, p), B3 answers as follows:

(a) When 1 < ¢ < h — 1, B3 answers semi-functional signature s * with Eqgs. (5) and
(16), that is computed by using {B;j };—o, . ¢+1 of the Problem 3 instance.

(b) When ¢ = h, By calculates 8™ := (s, .., s, 1) by using {@f}tzo,._7d+1, h% o
{h;‘7j}t:1’,_7d;j:17.,7nt, {hg,d+1,j}j=172 of the Problem 3 instance as follows:

sp=hjo, 8= ZFl zihi;+r fori=1,....¢,

* * AD *
841 = hg g+ HE (m|[S) - h.av1.2;

where () < {(G) | Yiny GMi = T}, and if p(i) = (
T Vi =0, zi1 = G}, if pi) = ~(t, T;), then T <2 {
75 2 Span(bf gn, 1y - s by, ) With t:= p(i) fori =1,...,

(c) When ¢ > h + 1, B3 answers normal signature s * with Eqs. (4), (5), and (6), that
is computed by using {B} };~o,... ¢+1 of the Problem 3 instance.

6. When B3 receives an output (m’,S’, s’*) from A, B3 calculates semi-functional verification
text € := (co,...,cep1) with Egs. (10), (11), and (12) as follows: ¢; for i = 1,...,¢ are
calculated as Eq. (11) by using bases {B;}/=1, .4, and using the coefficient so := > ;_; f&,

U = _
o, ) — ]Fq forl=1,2, fo:=areg + OéQbO’l,
fat1j = areqp1j +agbar1j,  fap1; = areqpr; + agbgp;  for j =1,2;

= = AD
co = —sobo1 — fo+qo, cev1 = faria —H (S - fagi1 + fari2 + @,

U U .
where g < span(bo4), qr+1 < span(bgy17), and bo1,eq, bit1j, €441, for j = 1,2 are
from the Problem 3 instance. Bs verifies the signature (m’,S', s”*) using Ver with the
above (¢, ..., cpr1), and outputs 3’ := 1 if the verification succeeds, 3’ := 0 otherwise.

Claim 2 The pair of signature 8* generated in case (b) of step 5 and verification text €
generated in step 6 has the same distribution as that in Game 3-(h — 1) (resp. Game 3-h) when
B =0 (resp. B = 1) except with probability 1/q (resp. Advgl’chR()\)—i-Q/q for a probabilistic machine

&y with essentially same running time as that of A, where &y p,(-) == Ea(h,-)).
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Proof. We consider the joint distribution of € and §*. Clearly, a part of verification text,
ci,...,¢¢, and a part of signature, s7,...,s;, are the same as those in Game 3-(h — 1) and
Game 3-h. Hence, we only consider ¢g, ¢s41, 8, and sy ;.

When 8 = 0, it is straightforward the joint distribution of o, cpy1, 5, and sy, | are the
same as those in Game 3-(h — 1) except that ¢ defined in Problem 3 is zero, i.e., except with
probability 1/q.

When 3 = 1, as in Remark 4, we need to check that wg in ¢g (given in Eq. (10)), Wy
in cp41 (given in Eq. (12)), 7y in s and ?gﬂ in s7,, (given in Eq. (16)) are distributed as
in those in Game 3-h, i.e., these are uniformly and independently distributed (with negligible
probability). These are given as

-1 — ~ n ADy N 7
wo = —Uy Sp+1, Wepl = (8e+1 — 01 - HE (M [[S ),94+1> Zd,

~ = AD
To = U, Tiy1 = 17Hhk (mHS) 'Ud-‘rlv

where ug & IFqX, 5[+1,§[+1 & F,, which are independent from all the other variables and

u — . = ~ ~ .
U1 — GL(2,Fy), Zg41 = (Ud_i_ll)T. Since (m,S) # (m/,S'), Wer1- 7 os1 = abpiq + 5p11 with
nonzero « (:: Hﬁl’(D (m][S) — Ha\l’(D(m’ || S/ )) except with probability Adv?th()\) for a probabilis-
tic machine &, ;, with essentially same running time as that of A.

Then, coefficients ug and 79 are uniformly and independently distributed, which are inde-

X
q

~ e U
5¢41,0p41 < Fq and a # 0. Moreover,
—
. P — . . . . .
from Lemma 4, pair ( 7 s41, Wyy1) is uniformly distributed in Cﬁ)ur?eﬂ = C’(wu1 I There-

fore, the joint distribution of ¢, ¢/41, 83, and s;, | are the same as those in Game 3-h except that
—

= ~ ~ . U
pendent from Wy, 1- 7 ¢11 = abpyq +5¢41 since ug — F

§ defined in Problem 2 is zero or wyyq- 7 41 = 0 i.e., except with probability Adv?ﬁlR(A) +2/q.
This completes the proof of Claim 2. 7
Therefore, [Adv(y "™ (0) = AdviT (V)] < AdvES , (A)+AdVE RN +1/g+2/g = AdVES () +

Ean 3,h

Adv?ﬁR(A) + 3/q from Shoup’s difference lemma. This completes the proof of Lemma 8. O

Proof of Lemma 9
Lemma 9 For any adversary A, Advfj"W)()\) < Adv%)()\) +1/q.

Proof. To prove Lemma 9, we will show distribution (param, {I@t}t:07.,,d+1, {I/B\S;f H=1..d+1, b; 3

{sk(FJ)*}j:L“’,,l, {?(j)*}jzl,..,vw c¢) in Game 3-5 and that in Game 4 are equivalent, where skg)*
is the answer to the j-th key query, s * is that to the j-th signature query, and € is the
verification text (cq,...,cpr1). By the definition of these games, we only need to consider
elements in Vy. We define new dual orthonormal bases Dy and Df of Vj as follows: We generate

g Y Fy, and set
doo = (0,1,0,0)5 = 0bo,1 + bo 2, d5,1 =(1,-6,0,0)p = b3,1 — 01)6’2.

Let ]D)o = (b071,d072,b073,b074) and DS = (da,17b6,2’b6,3’b6,4)' Then, ]D)[) and ]D)S are dual
orthonormal, and are distributed the same as the original bases, By and By.

The Vo components {k[()j)*}jzl,m,,jl in keys, {s(()j)*}j:lw,y2 in signatures, and verification
text ¢p in Game 3-v5 are expressed over bases By and B as k(()j)* = (5(j),r(()j), goéj), O)BF}? séj)* =

(g(])7 ?g])a Uéj)7 O)BS and Co = (_80 — S¢+1, Wo, 07 770)1530~ Then7
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where 9U) = r(()j ) + 606U) which are uniformly, independently distributed since r[()j » Y Fq,
sg" = (00,7, 08, 0)g; = 007 + 050, 0", 0)p5 = (69,99, 0, 0}
where 9(0) ;= ?‘éj ) + 66U) which are uniformly, independently distributed since ?{Oj ) Y F,, and
co = (—s0 — 8e+1,w0,0,Mm0)By = (=80 — Sr41 — Hwo, wo, 0,1m0)py = (S0, wo, 0,70)m,

where sp := —sg — Sg+1 — Qwp which is uniformly, independently distributed since 6 J F, if
wo #20.

In the light of the adversary’s view, both (By, Bjj) and (Do, Dj) are consistent with public key
pk := (1%, paramy, {B}i—o,...a+1, {Bf bem,...a1, b 3). Therefore, {ski* 21 o, {50}, 0,
and € can be expressed as keys, signatures, and verification text in two ways, in Game 3-u
over bases {B;, B} };—o, . 4+1 and in Game 4 over bases Do, Dj, {B¢, B} }1=1,. 4+1. Thus, Game
3-v5 can be conceptually changed to Game 4 if wg # 0, i.e., except with probability 1/q. O

Proof of Lemma 10

Lemma 10 For any adversary A, Advff)()\) =1/q.

Proof. Let (sg,...,s} ) be signature A outputs. If e(bo1,s5) = 1, the verification fails
by the definition of Ver. Otherwise, the verification fails except with negligible probability
regardless of the output of the adversary since coefficient sy of by 1 in ¢y (Eq. (17)) is uniform
and independent from all the other variables, and coefficient of bg ; in s( is nonzero. Hence,

AdViY (0 = 1/q. 0

F Proofs of Theorems 3 and 4

Theorem 3 The proposed MA-ABS scheme is perfectly private.
The proof is essentially equivalent to that for Theorem 1. O

Theorem 4 The proposed MA-ABS scheme is unforgeable (adaptive-predicate unforgeable)
under the DLIN assumption and the existence of collision resistance hash functions.

For any adversary A, there exist probabilistic machines 81,5;,52,53,54, whose running
times are essentially the same as that of A, such that for any security parameter A,

AV AR () < AdVREN (V) + ST (AdvDL'N()\) + AdvgHM (A))

+ &
SZh 2,h+1

+Y (Adv?;:l'\'()\) + Advi R ()\)) Y
where €55, () == & (h,-), Eap11 () = Ex(hy-) (B = 0,...,01 = 1), E3u(:) = E3(h,-), Ean(-) =
Es(h,) (h=1,...,1v9), 11 is the maximum number of A’s UserReg queries, vy is the mazimum
number of A’s AltSig queries, and € :== ((2d + 16)vy + 8vp + 2d + 11) /q.

Proof. (Sketch) The proof of this theorem is equivalent to that of Theorem 2 except the proofs
of Lemmas 5, 6, 7 and 8 are slightly changed; Lemmas 5 and 8 in this proof employ Problems
4 and 5 (to be shown below) in place of Problems 1 and 3, respectively, and Lemmas 6 and 7
employ Problem 5 in place of Problem 2.

Problems 1, 2 and 3 that do not include parameters Gg,G1 and dG1 cannot be used to
simulate the security games of the MA-ABS scheme, because Gy, G1 and G are employed in
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the security games. Therefore, modified problems, Problems 4 and 5, where Gy, G1 and §dG are

included, are introduced and employed in the simulation of the security games of the MA-ABS
scheme. 0

Problems 4 and 5 and the related lemmas

We show Problems 4 and 5 and the related lemmas below.
We describe random dual orthonormal basis generator Go,’' below, which is used as a sub-

routine in Problems 4 and 5.
Gop' (11, 70) : paramg := (¢, G, G, G, €) & Gipg(1),

no:=1, ngr1 =2, k& J Fy,

fort=0,...,d+1,
Ny:=3n;+1fort=0,...,d+ 1, paramy, := (¢, Vs, Gr, A ) := gdpvs(l)‘, Ny, paramg),
Xy = (xtig)ig © GLINGEY), (D15)ig = (XP) 7,
bri = K(Xtids - XtV A = K D0y Xt @y B = (be, ... byw,),
by = €t i, = €N Djany, BY == (1., by,

Go = kG, Gi:=¢G, gr:=e(G,G)",

param+ := ({paramy, }1=o, .d+1, 97);

return (param, {B:, B} }+—0...d+1, Go, G1).

Definition 18 (Problem 4) Problem / is to guess 3 € {0,1}, given (param-, {Bt,@:}t:07'”7d+1,
€30, {€p,t,1,€titt=1,. d+1;i=2,...n.» Go, G1) — QP4(1’\ ), where

R
( n) ng = 1a Ng41 = 2a (paramﬁ>7 {Btaﬁr}tzo,...,d-i—laGOle) — gob/(:l)\v H))7
;k: (bt17"'7b;fk,nt7bz<,2nt+17'"’b;fk,3nt+1) fort:O,...,d+1,
U
W, Y0, Vt, Wo, Wt 15 - - -, Wt ny ‘_Fq for t = 1aad+ 17

e0,0 = (w7050570)15307 61,0 = (w7w0)0)70)15505
fort=1,...,d+1;

ng ng ng 1
% % % =
et = w, 0"t 0, o, Vo B
el,t,l = ( w’0n1717 wt,l; --7wt,nz7 O'flt’ Yt )Bta
eri:=wby; fori=2... n,

return (param, {B;, I/B\%Zk}t:07...,d+1, €3.0,1€st1:€tift=1, . .dt1:i=2,...n:> Go, G1).

for B S {0,1}. For a probabilistic machine B, the advantage of B for Problem 4, Advi*(\), is
similarly defined as in Definition 15.

Lemma 11 For any adversary B, there is a probabilistic machine £, whose running time

is essentially the same as that of B, such that for any security parameter \, Adv?()\) <
Adv2"N(N\) + (d+17)/q.

Lemma 11 is proven similarly to Lemma 1 in [24]. 0
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Definition 19 (Problem 5) Problem 5 is to guess 3 € {0, 1}, given (param, {I@t,IEB;"}t:U,
* * R
hjo.€0.{hG ;s €titi=1,. d+1:i=1,..n0» G0, G1,0G1) < 955(1’\77), where

cd+1

* R
gﬁp5(1)\’ H)) - No = 17 ng+1 = 27 (paramﬁ)a {Bta]Bt }t:(),...,d—i—lv GOa Gl) — gob/(1>\7 ﬁ)a
@t = (bt,la e 7bt,nw bt,2nt+17 e 7bt,3nz+1) fOI‘ t = 0, e ,d,

u u
uo, 7+ Ty, w,8,00 «— Fy,

U _
(2t04)ij=t,me = Zt & GL(nt,Fy),  (upij)ijet, . m = U= (Z; )T fort=1,...,d,
h’aO = (67075070)BS> T,O = (67 u075070)1536a €p = (W,Tual,O,O)]BO,
fort=1,...,d+1; i=1,...,n4

( Wi )i,jzl,...,nt =72, Otij & F, for j=1,...,n,

nt nt nt 1

~ ~ ~~
hat,i = ( Oi_l? 57 0nt_i7 Onta 5t,i717 ) 5t7i,nt7 0 )Bfa
hi,,:= ( 0714,0m7 Ut 15 o Ui s Oti,15 -+ Oting 0 Jp;s
e = (07 hw 0m Wil ey Wiy s 0™, 0 s

return (param, {B¢, B }i=o,..a+1, P05 €0 {Rj 140 €1 fi=1,.. d+15i=1,..n0» G0, G1,0G1).

for B Q {0,1}. For a probabilistic machine B, the advantage of B for Problem 5, Advf;()\), is
similarly defined as in Definition 15.

Lemma 12 For any adversary B, there exists a probabilistic machine £, whose running time

is essentially the same as that of B, such that for any security parameter X, Advlpg‘r’()\) <
AdvBEN (XY +5/4.

Lemma 12 is proven similarly to Lemma 2 in [24]. 0
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