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Abstract

This paper presents a fully secure (adaptive-predicate unforgeable and private) attribute-
based signature (ABS) scheme in the standard model. The security of the proposed ABS
scheme is proven under standard assumptions, the decisional linear (DLIN) assumption and
the existence of collision resistant (CR) hash functions. The admissible predicates of the
proposed ABS scheme are more general than those of the existing ABS schemes, i.e., the
proposed ABS scheme is the first to support general non-monotone predicates, which can
be expressed using NOT gates as well as AND, OR, and Threshold gates, while the existing
ABS schemes only support monotone predicates. The proposed ABS scheme is efficient and
practical. Its efficiency is comparable to (several times worse than) that of the most efficient
(almost optimally efficient) ABS scheme the security for which is proven in the generic group
model.

∗An extended abstract was presented at Public Key Cryptography – PKC 2011, LNCS 6571, pages 35-52.
This is the full paper.
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1 Introduction

1.1 Background

The concept of digital signatures was introduced in the seminal paper by Diffie and Hellman
in 1976. In this concept, a pair comprising a secret signing key, sk, and public verification key,
pk, is generated for a signer, and signature σ of message m generated using sk is verified by
the corresponding pk. Hence, the signer of (m,σ) using sk is identified through pk. Although
it is one of the requirements of signatures, there is no flexibility or privacy in the relationship
between signers and claims attested by signatures due to the tight relation between sk and pk.

Recently, versatile and privacy-enhanced variants of digital signatures have been studied,
where the relation between a signing key and verification key is more flexible or sophisticated.
In this class of signatures, the signing key and verification key are parameterized by attribute
x and predicate v, respectively, and signed message (m,σ) generated by the signing key with
parameter x, skx, is correctly verified by public-key pk and parameter v, (pk,v), iff predicate v
accepts attribute x, i.e., v(x) holds. The privacy of signers in this class of signatures requires
that a signature (for predicate v) generated by skx (where v(x) holds) release no information
regarding attribute x except that v(x) holds.

When predicate v is the equality with parameter v (i.e., v(x) holds iff x = v), the class of
signatures for this predicate is identity-based signatures (IBS) [27]. Here note that there is no
room for privacy in IBS, since predicate v uniquely identifies attribute x of the signer’s secret
key, skx, such that x = v.

Group signatures [10] are also in this class of signatures with another type of predicate
v, where v(x) holds iff predicate parameter v is the group identity (or pkv is a public key
identifying group v) and attribute x is a member identity of group v (or skx is a secret key of
member x of group v). Due to the privacy requirement, signatures generated using skx release
no information regarding member identity x except that x is a member of group v (Note that
the concept of group signatures traditionally requires the privacy-revocation property as well as
the above-mentioned privacy).

Recently, this class of signatures with more sophisticated predicates, attribute-based signa-
tures (ABS), has been studied [12, 14, 15, 18, 19, 20, 21, 26, 30], where x for signing key skx is
a tuple of attributes (x1, . . . , xi), and v for verification is a threshold or access structure predi-
cate. The widest class of predicates in the existing ABS schemes are monotone access structures
[20, 21], where predicate v is specified by a monotone span program (MSP), (M,ρ), along with
a tuple of attributes (v1, . . . , vj), and v(x) holds iff MSP (M,ρ) accepts the truth-value vector
of (T(xi1 = v1), . . . ,T(xij = vj)). Here, T(ψ) := 1 if ψ is true, and T(ψ) := 0 if ψ is false (For
example, T(x = v) := 1 if x = v, and T(x = v) := 0 if x �= v). In general, such a predicate can
be expressed using AND, OR, and Threshold gates.

An example of such monotone predicate v for ABS is (Institute = Univ. A) AND (TH2(
(Department = Biology), (Gender = Female), (Age = 50’s)) OR (Position = Professor)), where
TH2 means the threshold gate with threshold value 2. Attribute xA of Alice is ((Institute :=
Univ. A), (Department := Biology), (Position := Postdoc), (Age := 30), (Gender := Female))),
and attribute xB of Bob is ((Institute := Univ. A), (Department := Mathematics), (Position
:= Professor), (Age := 45) (Gender := Male))). Although their attributes, xA and xB, are
quite different, it is clear that v(xA) and v(xB) hold, and that there are many other attributes
that satisfy v. Hence Alice and Bob can generate a signature on this predicate, and due to the
privacy requirement of ABS, a signature for v releases no information regarding the attribute
or identity of the signer, i.e., Alice or Bob (or other), except that the attribute of the signer
satisfies v.

There are many applications of ABS such as attribute-based messaging (ABM), attribute-
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based authentication, trust-negotiation and leaking secrets (see [20, 21] for more details).
The security conditions for ABS are given hereafter (see Section 3.2 for the formal defini-

tions).

Unforgeability: A valid signature should be produced only by a single signer whose attribute
x satisfies the claimed predicate v, not by a collusion of users who pooled their attributes
together. More formally, no poly-time adversary can produce a valid signature for a pair
comprising predicate and message (v,m), even if the adversary adaptively chooses (v,m)
after executing secret-key and signing oracle attacks, provided that x where v(x) holds
is not queried to the secret-key oracle and (v,m) is not queried to the signing oracle
(We simply call this unforgeability “adaptive-predicate unforgeability” or more simply
“unforgeability”).

We can also define a weaker class of unforgeability, ‘selective-predicate unforgeability,’
where an adversary should choose predicate v for the forgery signature before executing
secret-key and signing oracle attacks.

Privacy: A signature for predicate v generated using secret key skx releases no information
regarding attribute x except that v(x) holds.

More formally, for any pair of attributes (x1,x2), predicate v and message m, for which
v(x1) and v(x2) hold simultaneously, the distributions of two valid signatures σ(m,v, skx1)
and σ(m,v, skx2) are equivalent, where σ(m,v, skx) is a correctly generated signature for
(m,v) using correct secret key skx with attribute x (We simply call this condition “pri-
vacy”).

Full Security: We say that an ABS scheme is fully secure if it satisfies adaptive-predicate
unforgeability and privacy.

Maji, Prabhakaran, and Rosulek [20, 21] presented ABS schemes for the widest class of
predicates among the existing ABS schemes, monotone access structure predicates, which cover
threshold predicates as special cases. The scheme shown in [20] is an almost optimally efficient
ABS scheme, but the security was only proven in the generic group model. The scheme shown
in [21] is the only existing ABS scheme for which (full) security was proven in the standard
model. It is, however, much less efficient and more complicated than the scheme in [20] since it
employs the Groth-Sahai NIZK protocols [11] as building blocks.

Li, Au, Susilo, Xie and Ren [18], Li and Kim [19], and Shahandashti and Safavi-Naini [26]
presented ABS schemes that are proven to be secure in the standard model. However, the
proven security is not the full security, but a weaker level of security with selective-predicate
unforgeability. Moreover, the admissible predicates in [19] are limited to conjunction or (n, n)-
threshold predicates, and those of [18, 26] are limited to (k, n)-threshold predicates.

Guo and Zeng [12] and Yang, Cao and Dong [30] presented ABS schemes for threshold
predicates, but their security definitions do not include the privacy condition of ABS.

Khader [14, 15] presented ABS schemes for monotone access structure predicates. These
schemes, however, do not satisfy the privacy condition of ABS, since they only conceal the
identity of the signer. They also reveal the attributes that the signer used to generate the
signature. In addition, the security is proven in a non-standard model, the random oracle
model.

Based on this background, there are two major problems in the existing ABS schemes.

1. No ABS scheme for non-monotone predicates, which can be expressed using NOT gates
as well as AND, OR and Threshold gates, has been proposed (even in a weaker security
notion or a non-standard model).
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2. The only fully secure ABS scheme in the standard model [21] is much less efficient than
the (almost optimally efficient) ABS scheme in the generic group model [20].

Non-monotone predicates should be used in many ABS applications. For example, annual
review reports in the Mathematics Department of University A are submitted by reviewers, and
these reports are anonymously signed by the reviewers through ABS with some predicates. The
predicates may be selected freely by them (signers) except that it should be in the following
form: NOT((Institute = Univ. A) AND (Department = Mathematics)) AND (· · · ).

1.2 Our Results

This paper addresses these problems simultaneously.

• This paper proposes the first fully secure (i.e., adaptive-predicate unforgeable and perfectly
private) ABS scheme for a wide class of predicates, non-monotone access structures, where
x for signing key skx is a tuple of attributes (x1, . . . , xi), non-monotone predicate v is
specified by a span program (SP) (M,ρ) along with a tuple of attributes (v1, . . . , vj), and
v(x) holds iff SP (M,ρ) accepts the truth-value vector of (T(xi1 = v1), . . . ,T(xij = vj)).

Our scheme can be generalized using non-monotone access structures combined with inner-
product relations (see Definition 5 and the remark). More precisely, attribute x for signing
key skx is a tuple of attribute vectors (e.g., (−→x 1, . . . ,

−→x i) ∈ F
n1+···+ni
q ), and predicate v

for verification is a non-monotone access structure or span program (SP) (M,ρ) along
with a tuple of attribute vectors (e.g., (−→v 1, . . . ,

−→v j) ∈ F
n1+···+nj
q ), where the component-

wise inner-product relations for attribute vectors (e.g., {−→x iι · −→v ι = 0 or not }ι∈{1,...,j})
are input to SP (M,ρ). Namely, v(x) holds iff the truth-value vector of (T(−→x i1 · −→v 1 =
0), . . . ,T(−→x ij · −→v j = 0)) is accepted by SP (M,ρ).

Remark: In our scheme (Section 4), attribute x is expressed by the form Γ := {(t, xt) |
t ∈ T ⊆ {1, . . . , d}} in place of just an attribute tuple (x1, . . . , xi), where t identifies a
sub-universe or category of attributes, and xt is an attribute in sub-universe t (examples
of (t, xt) are (Name, Alice) and (Age, 38)). Predicate v is expressed by S := (M,ρ), where
ρ is abused as ρ (defined by SP) combined with {(ti, vi) | i = 1, . . . , �} (see Definitions 4
and 5 for the difference regarding ρ in SP and S).

• The proposed ABS scheme is proven to be fully secure under standard assumptions, the
decisional linear (DLIN) assumption (over prime order pairing groups) and the existence
of collision resistant (CR) hash functions, in the standard model.

• In contrast to the ABS scheme in [21] that employs the Groth-Sahai NIZK protocols,
our ABS scheme is more directly constructed without using any general subprotocols like
NIZK. Our construction is based on the dual pairing vector spaces (DPVS) proposed by
Okamoto and Takashima [22, 23, 16, 24], which can be realized from any type of (e.g.,
symmetric or asymmetric) prime order bilinear pairing groups. See Section 2.1 for the
concept and actual construction of DPVS.

• To prove the security (especially the unforgeability), this paper employs the techniques
for fully secure functional encryption (FE) [16, 24], which elaborately combine the dual
system encryption methodology proposed by Waters [29] and DPVS.

Note that although the techniques for the FE schemes in [16, 24] can be employed for
ABS, it is still a challenging task to construct a fully secure ABS scheme, since the
security requirements of ABS and FE differ in some important points, for example, the
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privacy condition is required in ABS but there is no counterpart notion in FE. This paper
develops several novel techniques for our ABS scheme. See Section 4.1 for more details.

• The efficiency of the proposed ABS scheme is comparable to that of the most efficient
ABS scheme in the generic group model [20], and better than that of the only existing
fully secure ABS scheme in the standard model [21]. See Section 4.4 for a comparison.

• This paper also presents an extension, multi-authority (MA) setting, of the proposed ABS
scheme in Section 5. One of the merits of our MA-ABS scheme is that it is seamlessly
extended from the original (single-authority (SA)) setting, in which the signing and verifi-
cation algorithms of the MA-ABS scheme are essentially the same as those of the original
ABS (SA-ABS) scheme.

In MA-ABS, each authority called an attribute authority is responsible for a single (or
multiple) category of attributes, and a user obtains a part of secret key for each attribute
from an attribute authority responsible for the category of the attribute. In our MA-ABS
model, a central trustee in addition to attribute authorities is required but no interac-
tion among attribute authorities (and the trustee) is necessary, and different attribute
authorities may not trust each other, nor even be aware of each other.

We prove that the proposed MA-ABS scheme is fully secure under the DLIN assumption
and CR hash functions in the standard model (see Appendix F for the proof). Our
MA-ABS scheme is almost as efficient as the original SA-ABS scheme.

1.3 Related Works

• Ring and mesh signatures: Ring and mesh signatures [25, 5] are related to ABS.

In the ring signatures, the claimed predicate on a signature of message m is that m is
endorsed by one of the users identified by the list of public keys (pk1, pk2, . . .), or the
predicate is a disjunction of a list of public keys. A valid ring signature can be generated
by one of the listed users.

The mesh signatures are an extension of ring signatures, where the predicate is an access
structure on a list of pairs comprising a message and public key (mi, pki), and a valid
mesh signature can be generated by a person who has enough standard signatures σi on
mi, each valid under pki, to satisfy the given access structure.

A crucial difference between mesh signatures and ABS is the security against the collusion
of users. In mesh signatures, several users can collude by pooling their signatures together
and create signatures that none of them could produce individually. That is, such collusion
is considered to be legitimate in mesh signatures. In contrast, the security against collusion
attacks is one of the basic requirements in ABS and MA-ABS, as described in Section 1.1
and Section 5.

• Anonymous credentials (ACs): Another related concept is ACs [2, 3, 6, 7, 8, 9].
The notion of ACs also provides a functionality for users to demonstrate anonymously
possession of attributes, but the goals of ACs and ABS differ in several points.

As mentioned in [21], ACs and ABS aim at different goals: ACs target very strong
anonymity even in the registration phase, whereas under less demanding anonymity re-
quirements in the registration phase, ABS aims to achieve more expressive functionalities,
more efficient constructions and new applications. In addition, ABS is a signature scheme
and a simpler primitive compared with ACs.
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1.4 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from
A according to its distribution. When A is a set, y U← A denotes that y is uniformly selected
from A. y := z denotes that y is set, defined or substituted by z. When a is a fixed value,
A(x) → a (e.g., A(x) → 1) denotes the event that machine (algorithm) A outputs a on input
x. A function f : N→ R is negligible in λ, if for every constant c > 0, there exists an integer n
such that f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \ {0} by F
×
q . A vector symbol denotes

a vector representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors −→x =

(x1, . . . , xn) and −→v = (v1, . . . , vn), −→x · −→v denotes the inner-product
∑n

i=1 xivi. The vector
−→
0

is abused as the zero vector in F
n
q for any n. XT denotes the transpose of matrix X. A bold

face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace generated by b1, . . . , bn
(resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN ) and B
∗ := (b∗1, . . . , b∗N ), (x1, . . . , xN )B :=∑N

i=1 xibi and (y1, . . . , yN )B∗ :=
∑N

i=1 yib
∗
i .

2 Preliminaries

2.1 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G �= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [22,
23, 16, 24] constructed by using symmetric bilinear pairing groups given in Definition 1.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN ) of V, where

ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V

and y := (H1, . . . , HN ) ∈ V. This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if
e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if
i = j, and 0 otherwise, and e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k �= j,

which can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Gj ,
N−i︷ ︸︸ ︷

0, . . . , 0) where x := (G1, . . . , GN ). We
call φi,j “canonical maps”.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a descrip-
tion of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can be
constructed by using Gbpg.
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The asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), is given in Appendix A.2. The

above symmetric version is obtained by identifying V = V
∗ and A = A

∗ in the asymmetric
version. (For another construction of DPVS using higher genus Jacobians, see [22].)

2.2 Decisional Linear (DLIN) Assumption

Definition 3 (DLIN Assumption) The DLIN problem is to guess β ∈ {0, 1}, given (paramG,

G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ), where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

κ, δ, ξ, σ
U← Fq, Y0 := (δ + σ)G, Y1

U← G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β U← {0, 1}. For a probabilistic machine E, we define the advantage of E for the DLIN prob-
lem as: AdvDLIN

E (λ) :=
∣∣∣Pr

[
E(1λ, �)→1

∣∣∣ � R←GDLIN
0 (1λ)

]
− Pr

[
E(1λ, �)→1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ .
The DLIN assumption is: For any probabilistic polynomial-time adversary E, the advantage
AdvDLIN

E (λ) is negligible in λ.

2.3 Collision Resistant (CR) Hash Functions

Let λ ∈ N be a security parameter. A collision resistant (CR) hash function family, H, associated
with Gbpg and a polynomial, poly(·), specifies two items:

• A family of key spaces indexed by λ. Each such key space is a probability space on
bit strings denoted by KHλ. There must exist a probabilistic polynomial-time algorithm
whose output distribution on input 1λ is equal to KHλ.

• A family of hash functions indexed by λ, hk
R← KHλ and D := {0, 1}poly(λ). Each such

hash function Hλ,Dhk maps an element of D to an element of F
×
q with q that is the first

element of output paramG of Gbpg(1λ). There must exist a deterministic polynomial-time
algorithm that on input 1λ, hk and � ∈ D, outputs Hλ,Dhk (�).

Let E be a probabilistic polynomial-time machine. For all λ, we define
AdvH,CR

E (λ) := Pr[(�1, �2) ∈ D2 ∧ �1 �= �2 ∧Hλ,Dhk (�1) = Hλ,Dhk (�2)], where D := {0, 1}poly(λ), hk
R←

KHλ, and (�1, �2)
R← E(1λ, hk,D). H is a collision resistant (CR) hash function family if for any

probabilistic polynomial-time adversary E , AdvH,CR
E (λ) is negligible in λ.

3 ABS for Non-monotone Predicates

3.1 Span Programs and Non-monotone Access Structures

Definition 4 (Span Programs [1]) Let {p1, . . . , pn} be a set of variables. A span program
over Fq is a labeled matrix, M̂ := (M,ρ), where M is a (�×r) matrix over Fq and ρ is a labeling
of the rows of M by literals from {p1, . . . , pn,¬p1, . . . , ¬pn} (every row is labeled by one literal),
i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1, . . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For every input
sequence δ ∈ {0, 1}n define submatrix Mδ of M consisting of those rows whose labels are set
to 1 by the input δ, i.e., either rows labeled by some pi such that δi = 1 or rows labeled by
some by some ¬pi such that δi = 0. (i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if
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[ρ(j) = pi]∧ [δi = 1] or [ρ(j) = ¬pi]∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where
Mj is the j-th row of M .)

Span program M̂ accepts δ if and only if
−→
1 ∈ span〈Mδ〉, i.e., some linear combination of the

rows of Mδ gives the all one vector,
−→
1 . (The row vector has the value 1 in each coordinate.) A

span program computes boolean function f if it accepts exactly those inputs δ where f(δ) = 1.
A span program is called monotone if the labels of the rows are only the positive literals

{p1, . . . , pn}. Monotone span programs compute monotone functions. (So, a span program in
general is “non”-monotone.)

We assume that no row Mi (i = 1, . . . , �) of the matrix M is
−→
0 . We now introduce a

non-monotone access structure with evaluating map γ by using the inner-product of attribute
vectors in a general form. Although we will show the notion, security definition and security
proof of the proposed ABS scheme in this general form, we will describe the proposed ABS
scheme in a simpler form in Section 4.2. We will show this simpler form of Definition 5 in the
remark.

Definition 5 (Inner-Products of Attribute Vectors and Access Structures) Ut (t = 1,
. . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes, each of which is expressed by
a pair of sub-universe id and nt-dimensional vector, i.e., (t,−→v ), where t ∈ {1, . . . , d} and
−→v ∈ F

nt
q \ {

−→
0 }.

We now define such an attribute to be a variable, p, of span program M̂ := (M,ρ) i.e.,
p := (t,−→v ). Access structure S is span program M̂ := (M,ρ) along with variables p :=
(t,−→v ), p′ := (t′,−→v ′), . . ., i.e., S := (M,ρ) such that ρ : {1, . . . , �} → {(t,−→v ), (t′,−→v ′), . . .,
¬(t,−→v ),¬(t′,−→v ′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t,−→x t) | −→x t ∈ F
nt
q \ {

−→
0 }, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program M̂ :=
(M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t,−→v i)] ∧[(t,−→x t) ∈ Γ]
∧[−→v i · −→x t = 0] or [ρ(i) = ¬(t,−→v i)] ∧[(t,−→x t) ∈ Γ] ∧[−→v i · −→x t �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff
−→
1 ∈ span〈(Mi)γ(i)=1〉.

Remark 1 The simplest form of the inner-product relations in the above-mentioned access
structures, that is for ABS in Section 4.2, is a special case when nt = 2 for all t ∈ {1, . . . , d},
and −→x := (1, x) and −→v := (v,−1). Hence, (t,−→x t) := (t, (1, xt)) and (t,−→v i) := (t, (vi,−1)), but
we often denote them shortly by (t, xt) and (t, vi). Then, S := (M,ρ) such that ρ : {1, . . . , �} →
{(t, v), (t′, v′), . . . ¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span program
M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) = (t, vi)] ∧[(t, xt) ∈ Γ]
∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ] ∧[vi �= xt]. Set γ(i) = 0 otherwise.

Remark 2 When a user has multiple attributes in a sub-universe (category) t, we can employ
dimension nt > 2. For instance, a professor (say Alice) in the science faculty of a university is
also a professor in the engineering faculty of this university. If the attribute authority of this
university manages sub-universe t := “faculties of this university”, Alice obtains a secret key for
(t, �xt := (1,−(a+ b), ab) ∈ Fq

3) with a := “science” and b := “engineering” from the authority.
When a user verifies a signature for an access structure with a single negative attribute ¬(t,
“science”), the verification text is encoded as ¬(t, �vi := (a2, a, 1)) with a := “science”. Since
�xt ·�vi = 0, Alice cannot make a valid signature for an access structure with the negative attribute
¬(t, “science”). For such a case with nt > 2, see Appendix C with a general form of our ABS
scheme.
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We now construct a secret-sharing scheme for a (non-monotone) access structure (span
program).

Definition 6 A secret-sharing scheme for access structure S := (M,ρ) is:

1. Let M be an � × r matrix, and column vector
−→
f T := (f1, . . . , fr)T

U← F
r
q . Then, s0 :=

−→
1 · −→f T =

∑r
k=1 fk is the secret to be shared, and −→s T := (s1, . . . , s�)T := M · −→f T is the

vector of � shares of secret s0 and share si belongs to ρ(i).

2. If access structure S := (M,ρ) accepts Γ, i.e.,
−→
1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} →

{0, 1}, then there exist constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} |
γ(i) = 1} and

∑
i∈I αisi = s0. Furthermore, these constants {αi} can be computed in

time polynomial in the size of matrix M .

3.2 Definitions and Security of ABS

Definition 7 (Attribute-Based Signatures : ABS) An attribute-based signature scheme
consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter and format −→n :=
(d;n1, . . . , nd) of attributes. It outputs public parameters pk and master key sk.

KeyGen This is a randomized algorithm that takes as input a set of attributes, Γ := {(t,−→x t)|−→x t
∈ F

nt
q \ {

−→
0 }, 1 ≤ t ≤ d}, pk and sk. It outputs signature generation key skΓ.

Sig This is a randomized algorithm that takes as input message m, access structure S := (M,ρ),
signature generation key skΓ, and public parameters pk such that S accepts Γ. It outputs
signature σ.

Ver This takes as input message m, access structure S, signature σ and public parameters pk.
It outputs boolean value accept := 1 or reject := 0.

An ABS scheme should have the following correctness property: for all (sk, pk) R← Setup(1λ,
−→n ), all messages m, all attribute sets Γ, all signing keys skΓ

R← KeyGen(pk, sk,Γ), all access
structures S such that S accepts Γ, and all signatures σ R← Sig(pk, skΓ,m,S), it holds that
Ver(pk,m,S, σ) = 1 with probability 1.

Definition 8 (Perfect Privacy) An ABS scheme is perfectly private, if, for all (sk, pk) R←
Setup(1λ, −→n ), all messages m, all attribute sets Γ1 and Γ2, all signing keys skΓ1

R← KeyGen(pk,

sk,Γ1) and skΓ2

R← KeyGen(pk, sk,Γ2), all access structures S such that S accepts Γ1 and S

accepts Γ2, distributions Sig(pk, skΓ1 ,m, S) and Sig(pk, skΓ2 ,m,S) are equal.

For an ABS scheme with prefect privacy, we define algorithm AltSig(pk, sk,m,S) with S and
master key sk instead of Γ and skΓ: First, generate skΓ

R← KeyGen(pk, sk, Γ) for arbitrary Γ
which satisfies S, then σ R← Sig(pk, skΓ, m, S). return σ.

Since the correct distribution on signatures can be perfectly simulated without taking any
private information as input, signatures must not leak any such private information of the signer.

Definition 9 (Unforgeability) For an adversary, A, we define AdvABS,UF
A (λ) to be the suc-

cess probability in the following experiment for any security parameter λ. An ABS scheme is
existentially unforgeable if the success probability of any polynomial-time adversary is negligible:
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1. Run (sk, pk) R← Setup(1λ,−→n ) and give pk to the adversary.

2. The adversary is given access to oracles KeyGen(pk, sk, ·) and AltSig(pk, sk, ·, ·).
3. At the end, the adversary outputs (m′,S′, σ′).

We say the adversary succeeds if (m′,S′) was never queried to the AltSig oracle, S
′ does not

accept any Γ queried to the KeyGen oracle, and Ver(pk,m′,S′, σ′) = 1.

4 Proposed ABS Scheme

4.1 Construction Ideas

Here, we will show some basic ideas to construct the proposed ABS scheme. Our ABS scheme is
constructed on a ciphertext policy (CP) functional encryption (FE) scheme [24], which is adap-
tively payload-hiding against chosen-plaintext attacks. The description of the CP-FE scheme
is given in the full version of [24].

Roughly speaking, a secret signing key, skΓ, with attribute set Γ and a verification text, −→c ,
with access structure S (for signature verification) in our ABS scheme correspond to a secret
decryption key, skΓ, with Γ and a ciphertext, −→c , with S in the CP-FE scheme, respectively.
No counterpart of a signature, −→s ∗, in the ABS exists in the CP-FE, and the privacy property
for signature −→s ∗ is also specific in ABS. Signature −→s ∗ in ABS may be interpreted to be a
decryption key specialized to decrypt a ciphertext with access structure S, that is delegated
from secret key skΓ.

The algorithms of the proposed ABS scheme can be described in the light of such corre-
spondence to the CP-FE scheme:

Setup Almost the same as that in the CP-FE scheme except that {B̂∗t }t=1,...,d+1 are revealed
as a public parameter in our ABS, while they are secret in the CP-FE scheme. They are
published in our ABS for the signature generation procedure Sig to meet the privacy of
signers (for randomization). This implies an important gap between CP-FE and ABS.

KeyGen Almost the same as that in the CP-FE scheme except that a (7 dimensional) space with
basis B

∗
d+1 is additionally introduced in our ABS and two elements k∗d+1,1 and k∗d+1,2 in this

space are included in a secret signing key in order to embed the hash value, Hλ,Dhk (m ||S),
of message m and access structure S in signature −→s ∗.

Sig Specific in ABS. To meet the privacy condition for −→s ∗, a novel technique is employed to
randomly generate a signature from skΓ and {B̂∗t }t=1,...,d+1.

Ver Signature −→s ∗ in the ABS is an endorsement to message m by a signer with attributes
accepted by access structure S. The signature verification in our ABS checks whether sig-
nature (or specific decryption key) −→s ∗ works as a decryption key to decrypt a verification
text (or a ciphertext) associated with S and Hλ,Dhk (m ||S).

Security proofs Roughly speaking, the adaptive-predicate unforgeability of the ABS under
the KeyGen oracle attacks can be guaranteed by the adaptive payload-hiding property of
the CP-FE, since a forged signature implies a decryption key specified for the challenge
ciphertext to break the payload-hiding. Note that there are many subtleties in the proof
of unforgeability for the ABS, e.g., the unforgeability should be ensured in the ABS even
when publishing {B̂∗t }t=1,...,d+1 for the privacy requirement, while they are secret in the
CP-FE. We develop a novel technique to resolve the difficulty. See Appendices D and E
for more details.
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4.2 Construction

For simplicity, here, we describe our ABS scheme for a specific parameter −→n := (d; 2, . . . , 2)
(see the remark of Definition 5). A general form of our ABS scheme is given in Appendix C.

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) = ¬(t, v),
where ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is
injective for S := (M,ρ). We can relax the restriction by using the method given in Appendix
F in the full version of [24].

Setup(1λ, −→n := (d; 2, . . . , 2)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, ψ

U← F
×
q , N0 := 4, Nt := 7 for t = 1, . . . , d+ 1,

for t = 0, . . . , d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (X−1

t )T,
bt,i := (χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At , B

∗
t := (b∗t,1, . . . , b∗t,Nt

),

gT := e(G,G)ψ, param−→n := ({paramVt
}t=0,...,d+1, gT ),

B̂0 := (b0,1, b0,4), B̂t := (bt,1, bt,2, bt,7) for t = 1, . . . , d+ 1,

B̂
∗
t := (b∗t,1, b

∗
t,2, b

∗
t,5, b

∗
t,6) for t = 1, . . . , d+ 1,

sk := b∗0,1, pk := (1λ, hk, param−→n , {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3).

return sk, pk.

KeyGen(pk, sk, Γ := {(t, xt) | 1 ≤ t ≤ d}) :

δ
U← F
×
q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq for t = 1, . . . , d; ι = 1, 2;
k∗0 := ( δ, 0, ϕ0, 0 )B∗

0
,

k∗t := (δ( 1, xt ), 0, 0, ϕt,1, ϕt,2, 0)B∗
t

for (t, xt) ∈ Γ,
k∗d+1,1 := ( δ( 1, 0 ), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗

d+1
,

k∗d+1,2 := ( δ( 0, 1 ), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗
d+1
,

T := {0, (d+ 1, 1), (d+ 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t, xt) ∈ Γ},
return skΓ := (Γ, {k∗t }t∈T ).

Sig(pk, skΓ, m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t, xt)},
then compute I and {αi}i∈I such that

∑
i∈I αiMi =

−→
1 ,

and I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },

ξ
U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi =
−→
0 },

Remark : If detM �= 0, the set contains only 0�, i.e., all βi = 0 for i = 1, . . . , �.

s∗0 := ξk∗0 + r∗0, where r∗0
U← span〈b∗0,3〉,

s∗i := γi · ξk∗t +
∑2

ι=1 yi,ι · b∗t,ι + r∗i for 1 ≤ i ≤ �,
where r∗i

U← span〈b∗t,5, b∗t,6〉, and γi,−→y i := (yi,1, yi,2) are defined as
if i ∈ I ∧ ρ(i) = (t, vi), γi := αi,

−→y i := βi(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt ,
−→y i :=

βi
vi − yi (1, yi),
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where yi
U← Fq\{vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, −→y i := βi(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, −→y i :=
βi

vi − yi (1, yi),

where yi
U← Fq\{vi},

s∗�+1 := ξ(k∗d+1,1 + Hλ,Dhk (m ||S) · k∗d+1,2) + r∗�+1,

where r∗�+1
U← span〈b∗d+1,5, b

∗
d+1,6〉,

return −→s ∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ),−→s ∗) :
−→
f

U← F
r
q ,
−→s T := (s1, . . . , s�)T := M · −→f T,

s0 :=
−→
1 · −→f T, η0, η�+1, θ�+1, s�+1

U← Fq,

c0 := ( −s0 − s�+1, 0, 0, η0 )B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t, vi), return 0 if s∗i �∈ Vt, else

ci := ( si + θivi, −θi, 0, 0, 0, 0, ηi )Bt , where θi, ηi
U← Fq,

if ρ(i) = ¬(t, vi), return 0 if s∗i �∈ Vt, else

ci := ( si( vi, −1 ), 0, 0, 0, 0, ηi )Bt , where ηi
U← Fq,

c�+1 := ( s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1 )Bd+1
,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

[Correctness]∏�+1
i=0 e(ci, s

∗
i ) = e(c0,k

∗
0)
ξ ·∏i∈I e(ci,k

∗
t )
γiξ ·∏�

i=1

∏2
ι=1 e(ci, b

∗
t,ι)

yi,ι · e(c�+1, s
∗
�+1)

= g
ξδ(−s0−s�+1)
T ·∏i∈I g

ξδαisi

T ·∏�
i=1 g

βisi

T · gξδs�+1

T

= g
ξδ(−s0−s�+1)
T · gξδs0T · gξδs�+1

T = 1.

4.3 Security

Theorem 1 The proposed ABS scheme is perfectly private.

Theorem 2 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2 , E2, E3, E4, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
∑ν1−1

h=0

(
AdvDLIN

E+2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν1 − 1), E3,h(·) := E3(h, ·), E4,h(·) :=
E4(h, ·) (h = 1, . . . , ν2), ν1 is the maximum number of A’s KeyGen queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

The proofs of Theorems 1 and 2 (for a general form of our ABS) are given in Appendices D
and E, respectively.
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4.4 Performance

Table 1: Comparison with the Existing ABS Schemes

MPR08 [20] MPR10 [21] MPR10 [21] Proposed
(Boneh-Boyen

based)
(Waters
based)

Signature size
(# of group elts)

�+ r + 2 51�+ 2r + 18λ�
36�+ 2r
+9λ+ 12

7�+ 11

Model
generic group

model
standard
model

standard
model

standard
model

Security full full full full

Assumptions CR hash
q-SDH and

DLIN
DLIN

DLIN and
CR hash

Predicates monotone monotone monotone non-monotone
Sig. size example 1

(� = 10, r = 5,
λ = 128)

17 23560 1534 81

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 282400 4864 711

In this section, we compare the efficiency and security of the proposed ABS scheme with
the existing ABS schemes in the standard model (two typical instantiations) [21] as well as the
ABS scheme in the generic group model [20] (as a benchmark). Since all of these schemes can
be implemented over a prime order pairing group, the size of a group element can be around
the size of Fq (e.g., 256 bits). In Table 1, � and r represent the size of the underlying access
structure matrix M for a predicate, i.e., M ∈ F

�×r
q . For example, some predicate with 4 AND

and 5 OR gates as well as 10 variables may be expressed by a 10 × 5 matrix, and a predicate
with 49 AND and 50 OR gates as well as 100 variables may be expressed by a 100× 50 matrix
(see the appendix of [17]). λ is the security parameter (e.g., 128).

5 Multi-Authority ABS (MA-ABS)

5.1 Definitions and Security of MA-ABS

Definition 10 (Multi-Authority ABS : MA-ABS) A multi-authority ABS scheme con-
sists of the following algorithms/protocols.

TSetup This is a randomized algorithm. The signature trustee runs algorithm TSetup(1λ) which
outputs trustee public key tpk and trustee secret key tsk.

UserReg This is a randomized algorithm. When a user with user id uid registers with the
signature trustee, the trustee runs UserReg(tpk, tsk, uid) which outputs public user-token
tokenuid. The trustee gives tokenuid to the user.

ASetup This is a randomized algorithm. Attribute authority t (1 ≤ t ≤ d) who wishes to
issue attributes runs ASetup(tpk) which outputs attribute-authority public key apkt and

14



attribute-authority secret key askt. The attribute authority, t, publishes apkt and stores
askt.

AttrGen This is a randomized algorithm. When attribute authority t issues user uid a secret key
associated with attribute xt, first it obtains (from the user) her user-token tokenuid, and
runs token verification algorithm TokenVerify(tpk, uid, tokenuid). If the token is verified,
then it runs AttrGen(tpk, t, askt, tokenuid, xt) that outputs attribute secret key uskt. The
attribute authority gives uskt to the user.

Sig This is a randomized algorithm. A user signs message m with claim-predicate (access struc-
ture) S := (M,ρ), only if there is a set of attributes Γ such that S accepts Γ, the user
has obtained a set of keys {uskt | (t, xt) ∈ Γ} from the attribute authorities. Then sig-
nature σ can be generated using Sig(tpk, tokenuid, {apkt, uskt | (t, xt) ∈ Γ},m,S), where
uskt

R← AttrGen(tpk, t, askt, tokenuid, xt).

Ver To verify signature σ on message m with claim-predicate (access structure) S, a user runs
Ver(tpk, {apkt},m,S, σ) which outputs boolean value accept := 1 or reject := 0.

Definition 11 (Perfect Privacy of MA-ABS) A MA-ABS scheme is perfectly private, if,
for all (tsk, tpk) R← TSetup(1λ), all uidι (ι = 1, 2), all tokenuidι

R← UserReg(tpk, tsk, uidι) (ι =
1, 2), all (askt, apkt)

R← ASetup(tpk) (1 ≤ t ≤ d), all messages m, all attribute sets Γι associ-
ated with uidι (ι = 1, 2), all signing keys {uskt,ι

R← AttrGen(tpk, t, askt, tokenuidι , xt,ι)}(t,xt,ι)∈Γι
}

(ι = 1, 2), all access structures S such that S accepts Γ1 and S accepts Γ2, the distribu-
tions Sig(tpk, tokenuid1 , {apkt, uskt,1 | (t, xt,1) ∈ Γ1},m,S) and Sig(tpk, tokenuid2 , {apkt, uskt,2 |
(t, xt,2) ∈ Γ2},m,S) are equal.

For a MA-ABS scheme with perfect privacy, we define algorithm AltSig(tpk, tsk, {apkt, askt},
m,S) with S, trustee secret key tsk and attribute-authority secret keys askt instead of Γ, tokenuid

and {uskt}(t,xt)∈Γ: First, generate tokenuid
R← UserReg(tpk, tsk, uid) for arbitrary uid and uskt

R←
AttrGen(tpk, t, askt, tokenuid, xt)}(t,xt)∈Γ for arbitrary Γ := {(t, xt)} which satisfies S, then σ

R←
Sig(tpk, tokenuid, {apkt, uskt | (t, xt) ∈ Γ},m,S). Return σ.

Let T be the set of authorities. We assume each attribute is assigned to one authority.

Definition 12 (Unforgeability of MA-ABS) For an adversary, we define AdvMA-ABS,UF
A (λ)

to be the success probability in the following experiment for any security parameter λ. A MA-
ABS scheme is existentially unforgeable if the success probability of any polynomial-time adver-
sary is negligible:

1. Run (tsk, tpk) R← TSetup(1λ) and give tpk to the adversary A. For authorities t ∈ T , run
(askt, apkt)

R← ASetup(tpk) and give {apkt}t∈T to A. Adversary A specifies a set T̃ ⊂ T
of corrupt attribute authorities, and gets {askt}t∈ eT .

2. The adversary A is given access to oracles UserReg, AttrGen and AltSig over S := T \ T̃ .

3. At the end, the adversary outputs (m′,S′, σ′).

Let Γuidi := {(t ∈ S, xt)} (i ∈ {1, . . . , ν1}) queried to the AttrGen oracle with uidi. We say
the adversary succeeds, if (m′,S′) was never queried to the AltSig oracle, S

′ does not accept
Γuidi with any uidi (i ∈ {1, . . . , ν1}) queried to the AttrGen oracle, S

′ is specified over S, and
Ver(pk,m′,S′, σ′) = 1.
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Remark 3 The model regarding corrupted authorities in this definition is weaker than that in
[21]. Roughly, the security on this model implies that no adversary A can forge a signature
with a predicate S

′
S unless A issues key queries for ΓS such that S

′
S accepts ΓS , where S

′
S and

ΓS are a predicate and attributes over uncorrupted parties S. On the other hand, the security
on the model in [21] implies that no adversary A can forge a signature with a predicate S

′
S∪ eT

unless A issues key queries for ΓS such that, for some Γ eT , S
′
S∪eT accepts (ΓS ∪ Γ eT ).

5.2 Construction

The key idea of our construction of MA-ABS scheme is to share Guid := δG1 as well as G0 and
G1 among attribute authorities to generate δb∗t,i by each authority t. Hence, G0 and G1 are
included in tpk and Guid := δG1 is shared with attribute authorities through the user’s token
tokenuid.

For matrix X := (χi,j)i,j=1,...,N ∈ F
N×N
q and element v in N -dimensional V, X(v) denotes∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j} (Definition 2). Similarly, for matrix (ϑi,j) :=
(X−1)T, (X−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v). It holds that e(X(x), (X−1)T(y)) = e(x,y) for

any x,y ∈ V.
Moreover, (GSIG,S,V) is a (conventional) unforgeable signature scheme.

TSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

hk
R← KHλ, (verk, sigk) R← GSIG(1λ) N0 := 4, Nd+1 := 7, κ, ξ

U← F
×
q ,

for t = 0, d+ 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (X−1

t )T,
bt,i := κ(χt,i,1, . . . , χt,i,Nt)At , Bt := (bt,1, . . . , bt,Nt),
b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At , B

∗
t := (b∗t,1, . . . , b∗t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,
B̂0 := (b0,1, b0,4), B̂d+1 := (bd+1,1, bd+1,2, bd+1,7),

B̂
∗
d+1 := (b∗d+1,1, b

∗
d+1,2, b

∗
d+1,5, b

∗
d+1,6),

tsk := (b∗0,1, sigk),

tpk := (1λ, hk, {paramVt
, B̂t}t=0,d+1, b

∗
0,3, B̂

∗
d+1, gT , G0, G1, verk),

return (tsk, tpk).

UserReg(tpk, tsk, uid) : δ U← F
×
q , ϕ0, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq, Guid := δG1,

k∗0 := ( δ, 0, ϕ0, 0 )B∗
0
,

k∗d+1,1 := ( δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0 )B∗
d+1
,

k∗d+1,2 := ( δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0 )B∗
d+1
,

usk0 := (k∗0,k
∗
d+1,1,k

∗
d+1,2), σuid := S(sigk, (uid, Guid)),

return tokenuid := (uid, Guid, σuid, usk0).

ASetup(tpk) : uj,i := (0i−1, Gj , 07−i) for j=0, 1; i=1, .., 7, Xt
U← GL(7,Fq),

Bt := (bt,i)i=1,...,7 := (Xt(u0,1), . . . , Xt(u0,7)),
B
∗
t := (b∗t,i)i=1,...,7 := ((X−1

t )T(u1,1), . . . , (X−1
t )T(u1,7)),

B̂t := (bt,1, bt,2, bt,7), B̂
∗
t := (b∗t,1, b

∗
t,2, b

∗
t,5, b

∗
t,6),

return (askt := Xt, apkt := (B̂t, B̂∗t )).
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TokenVerify(tpk, uid, tokenuid) holds iff V(verk, (uid, Guid), σuid) = 1.

AttrGen(tpk, t, askt, tokenuid, xt ∈ Fq) : ϕt,1, ϕt,2
U← Fq,

k∗t := (X−1
t )T(( Guid, xtGuid, 0, 0, ϕt,1G1, ϕt,2G1, 0 )),

that is, k∗t = ( δ, δxt, 0, 0, ϕt,1, ϕt,2, 0 )B∗
t
,

return uskt := k∗t .

Sig(tpk, tokenuid, {apkt, uskt
R← AttrGen(tpk, t, askt, tokenuid, xt) | (t, xt) ∈ Γ},

m,S := (M,ρ)) and Ver(tpk, {apkt}t=1,...,d, m, S := (M,ρ),−→s ∗) are
essentially the same as those in Section 4.2.

5.3 Security

Theorem 3 The proposed MA-ABS scheme is perfectly private.

Theorem 4 The proposed MA-ABS scheme is unforgeable (adaptive-predicate unforgeable) un-
der the DLIN assumption and the existence of collision resistant hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2 , E2, E3, E4, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
∑ν1−1

h=0

(
AdvDLIN

E+2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν1 − 1), E3,h(·) := E3(h, ·), E4,h(·) :=
E4(h, ·) (h = 1, . . . , ν2), ν1 is the maximum number of A’s UserReg queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

The proofs of Theorems 3 and 4 are given in Appendix F.
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A Dual Pairing Vector Spaces (DPVS)

A.1 Summary

We now briefly explain our approach, DPVS, constructed on symmetric pairing groups (q,G,
GT , G, e), where q is a prime, G and GT are cyclic groups of order q, G is a generator of G,
e : G × G → GT is a non-degenerate bilinear pairing operation, and e(G,G) �= 1. Here we
denote the group operation of G by addition and GT by multiplication, respectively. Note that
this construction also works on asymmetric pairing groups (in this paper, we use symmetric
pairing groups for simplicity of description).

Vector space V: V :=

N︷ ︸︸ ︷
G× · · · ×G, whose element is expressed by N -dimensional vector,

x := (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N).

Canonical base A: A := (a1, . . . ,aN ) of V, where a1 := (G, 0, . . . , 0), a2 := (0, G, 0, . . . , 0),
. . . ,aN := (0, . . . , 0, G).

Pairing operation: e(x,y) :=
∏N
i=1 e(xiG, yiG) = e(G,G)

PN
i=1 xiyi = e(G,G)

−→x ·−→y ∈ GT ,
where x := (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V, y := (y1G, . . . , yNG) = y1a1 +
· · · + yNaN ∈ V, −→x := (x1, . . . , xN ) and −→y := (y1, . . . , yN ). Here, x and y can be
expressed by coefficient vector over basis A such that (x1, . . . , xN )A = (−→x )A := x and
(y1, . . . , yN )A = (−→y )A := y.
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Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V using a uni-
formly chosen (regular) linear transformation, X := (χi,j)

U← GL(N,Fq), such that
bi =

∑N
j=1 χi,jaj , (i = 1, . . . , N). A is also changed to basis B

∗ := (b∗1, . . . , b∗N ) of V,
such that (ϑi,j) := (XT )−1, b∗i =

∑N
j=1 ϑi,jaj , (i = 1, . . . , N). We see that e(bi, b∗j ) =

e(G,G)δi,j , (δi,j = 1 if i = j, and δi,j = 0 if i �= j) i.e., B and B
∗ are dual orthonormal

bases of V.

Here, x := x1b1 + · · · + xNbN ∈ V and y := y1b
∗
1 + · · · + yNb∗N ∈ V can be ex-

pressed by coefficient vectors over B and B
∗ such that (x1, . . . , xN )B = (−→x )B := x and

(y1, . . . , yN )B∗ = (−→y )B∗ := y, and e(x,y) = e(G,G)
PN

i=1 xiyi = e(G,G)
−→x ·−→y ∈ GT .

Intractable problem: One of the most natural decisional problems in this approach is the
decisional subspace problem [22]. It is to tell v := vN2+1bN2+1 + · · · + vN1bN1 (=
(0, . . . , 0, vN2+1, . . . , vN1)B), from u := v1b1 + · · · + vN1bN1 (= (v1, . . . , vN1)B), where
(v1, . . . , vN1)

U← Fq
N1 and N2 + 1 < N1.

Trapdoor: Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2

〉. Given v := vN2+1bN2+1 + · · ·+
vN1bN1 or u := v1b1 + · · ·+ vN1bN1 , we can tell v from u using t∗ since e(v, t∗) = 1 and
e(u, t∗) �= 1 with high probability.

Advantage of this approach: Higher dimensional vector treatment of bilinear pairing groups
have been already employed in literature especially in the areas of IBE, ABE and BE
(e.g., [4, 11]). For example, in a typical vector treatment, two vector forms of P :=
(x1G, . . . , xNG) and Q := (y1G, . . . , yNG) are set and pairing for P and Q is operated as
e(P,Q) :=

∏N
i=1 e(xiG, yiG). Such treatment can be rephrased in this approach such that

P = x1a1 + · · ·+ xNaN (= (x1, . . . , xN )A), and Q = y1a1 + · · ·+ yNaN (= (y1, . . . , yN )A)
over canonical basis A.

The major drawback of this approach is the easily decomposable property over A (i.e., the
decisional subspace problem is easily solved). That is, it is easy to decompose xiai =
(0, . . . , 0, xiG, 0, . . . , 0) from P := x1a1 + · · ·xNaN = (x1G, . . . , xNG).

In contrast, our approach employs basis B, which is linearly transformed from A using a
secret random matrix X ∈ Fq

n×n. A remarkable property over B is that it seems hard to
decompose xibi from P ′ := x1b1 + · · ·xNbN (and the decisional subspace problem seems
intractable). In addition, the secret matrix X (and the dual orthonormal basis B

∗ of V)
can be used as a source of the trapdoors to the decomposability (and distinguishability for
the decisional subspace problem through the pairing operation over B and B

∗ as mentioned
above). The hard decomposability (and indistinguishability) and its trapdoors are ones of
the key tricks in this paper. Note that composite order pairing groups are often employed
with similar tricks such as hard decomposability (and indistinguishability) of a composite
order group to the prime order subgroups and its trapdoors through factoring (e.g., [13,
28]).

A.2 Dual Pairing Vector Spaces by Direct Product of Asymmetric Pairing
Groups

Definition 13 “Asymmetric bilinear pairing groups” (q,G1,G2,GT , G1, G2, e) are a tuple of
a prime q, cyclic additive groups G1,G2 and multiplicative group GT of order q, G1 �= 0 ∈
G1, G2 �= 0 ∈ G2, and a polynomial-time computable nondegenerate bilinear pairing e : G1 ×
G2 → GT i.e., e(sG1, tG2) = e(G1, G2)st and e(G1, G2) �= 1.
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Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups paramG := (q,G1,G2,GT , G1, G2, e) with security parameter λ.

Definition 14 “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A
∗, e) by direct product of

asymmetric pairing groups paramG := (q,G1,G2,GT , G1, G2, e) are a tuple of a prime q, two N -

dimensional vector spaces V :=

N︷ ︸︸ ︷
G1 × · · · ×G1 and V

∗ :=

N︷ ︸︸ ︷
G2 × · · · ×G2 over Fq, a cyclic group

GT of order q, and their canonical bases i.e., A := (a1, . . . ,aN ) of V and A
∗ := (a∗1, . . . ,a∗N )

of V
∗, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G1,

N−i︷ ︸︸ ︷
0, . . . , 0) and a∗i := (

i−1︷ ︸︸ ︷
0, . . . , 0, G2,

N−i︷ ︸︸ ︷
0, . . . , 0) with the following

operations:

1. [Non-degenerate bilinear pairing] The pairing on V and V
∗ is defined by e(x,y) :=

∏N
i=1 e(Di,

Hi) ∈ GT where (D1, . . . , DN ) := x ∈ V and (H1, . . . , HN ) := y ∈ V
∗. This is non-

degenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,a∗j ) = g

δi,j
T where δi,j = 1 if i = j, and 0 otherwise, and

e(G1, G2) �= 1 ∈ GT .

2. [Distortion maps] Linear transformation φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if

k �= j can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Dj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where (D1, . . . , DN ) := x.

Moreover, linear transformation φ∗i,j on V
∗ s.t.φ∗i,j(a

∗
j ) = a∗i and φ∗i,j(a

∗
k) = 0 if k �= j

can be easily achieved by φ∗i,j(y) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Hj ,

N−i︷ ︸︸ ︷
0, . . . , 0) where (H1, . . . , HN ) := y. We

call φi,j and φ∗i,j “distortion maps”.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N), N ∈ N and a description of bi-
linear pairing groups paramG, and outputs a description of paramV := (q,V,V∗,GT ,A,A

∗, e)
constructed above with security parameter λ and N -dimensional (V,V∗).

B Anonymous Credentials

The notion of anonymous credentials (ACs) [2, 3, 6, 7, 8, 9] provides a functionality for users
to demonstrate anonymously possession of attributes, but the goals of ACs and ABS differ in
several points.

First of all, ABS is a class of signatures, which are non-interactive primitives and can be used
as transferable digital evidence, while ACs are typically (non-transferable) interactive protocols
to prove the possession of credentials. Nevertheless, chosen-message-attack secure signatures
can be employed to construct an interactive protocol by signing a random number challenge
from a verifier, and non-interactive ACs [3] have been proposed. So, we will focus on the other
properties of ABS and ACs rather than the difference in signatures and interactive protocols.

Although the basic ABS is in the single-authority setting, we often consider a multi-authority
(MA) setting of ABS (see the last item of Section 1.2 and Section 5), and AC also considers
multiple authorities. So in this comparison we will use the MA settings of ABS and AC.

The first difference between ABS and ACs is the number of attributes for which an attribute
authority is responsible. In MA-ABS, each authority can issue credentials (or keys) to users
for an unbounded number of attributes (e.g., q = O(2λ) many attributes, where λ is the secu-
rity parameter), and a user reveals only a predicate on the attributes that the user possesses,
rather than the individual attributes themselves. In contrast, an authority in ACs is typically
considered to be responsible for only a single attribute. Therefore, the public key size increases

21



linearly with the number of attributes in ACs, while the size in MA-ABS increases with the
number of authorities. Camenisch and Groß [6] introduce an AC system with an unbounded
number of attributes for an authority, but the admissible predicates are limited to a single
level of disjunctions or conjunctions of attributes, whereas more general predicates are typically
available in ABS.

The second difference is the anonymity when a user registers with multiple authorities (or
requests multiple authorities to issue credentials/keys with attributes). In ACs the multiple
registrations of a user cannot be linked to each other, while they can be linked in MA-ABS
schemes. For example, in the MA-ABS in Section 5, a user provides a token (a kind of identity
for a user) to multiple authorities. However, this information in the registration stage is the
only information that MA-ABS leaks, and no privacy is revealed after the registration stage,
e.g., even colluding authorities cannot identify the user when a user proves some predicate on
the credentials in MA-ABS. This provides sufficient anonymity in many applications.

As a summary, ACs and ABS aim at different goals: ACs target very strong anonymity even
in the registration phase, whereas under less demanding anonymity requirements in the regis-
tration phase, ABS aims to achieve more expressive functionalities, more efficient constructions
and new applications. In addition, ABS is a signature scheme and a simpler primitive compared
with ACs.

C General Form of the Proposed ABS Scheme

This section provides a general form description of the proposed ABS scheme, while Section 4
describes a simpler form of the ABS scheme.

The security proof of the proposed ABS scheme will be given in this appendix for the general
form of the ABS scheme.

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t,−→v ) or ρ(i) = ¬(t,−→v ),
where ρ is given in access structure S := (M,ρ). In the proposed scheme, we assume that ρ̃ is
injective for S := (M,ρ). We can relax the restriction by using the method given in Appendix
F in the full version of [24].

In the description of the scheme, we assume that an input vector, −→x t := (xt,1, . . . , xt,nt),
is normalized such that xt,1 := 1. (If −→x t is not normalized, change it to a normalized one
by (1/xt,1) · −→x t, assuming that xt,1 is non-zero). In addition, we assume that input vector−→v i := (vi,1, . . . , vi,nt) satisfies that vi,nt �= 0. We refer to Section 1.4 for notations on DPVS.

We describe random dual orthonormal basis generator Gob below, which is used as a sub-
routine in the proposed ABS scheme.

Gob(1λ,−→n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), ψ

U← F
×
q ,

n0 := 1, nd+1 := 2, Nt := 3nt + 1 for t = 0, . . . , d+ 1,
for t = 0, . . . , d+ 1, paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (XT

t )−1,

bt,i := (χt,i,1, . . . , χt,i,Nt)At =
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt),

b∗t,i := (ϑt,i,1, . . . , ϑt,i,Nt)At =
∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗t,1, . . . , b∗t,Nt

),

gT := e(G,G)ψ, param−→n := ({paramVt
}t=0,...,d+1, gT )

return (param−→n , {Bt,B∗t }t=0,...,d+1).

We note that gT = e(bt,i, b∗t,i) for t = 0, . . . , d+ 1; i = 1, . . . , Nt.
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Setup(1λ, −→n := (d;n1, . . . , nd)) :

hk
R← KHλ, n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ,−→n ),

B̂t := (bt,1, . . . , bt,nt , bt,3nt+1) for t = 0, . . . , d+ 1,

B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt

) for t = 1, . . . , d+ 1,

return sk := b∗0,1, pk := (1λ, hk, param−→n , {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3).

KeyGen(pk, sk, Γ := {(t,−→x t := (xt,1, . . . , xt,nt) ∈ Fq
nt) | 1 ≤ t ≤ d}) :

δ
U← F
×
q , ϕ0, ϕt,ι, ϕd+1,1,ι, ϕd+1,2,ι

U← Fq for t = 1, . . . , d; ι = 1, . . . , nt;
k∗0 := (δ, 0, ϕ0, 0)B∗

0
,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
k∗t := ( δ(xt,1, . . . , xt,nt), 0nt , ϕt,1, . . . , ϕt,nt , 0 )B∗

t
for (t,−→x t) ∈ Γ,

k∗d+1,1 := (δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0)B∗
d+1
,

k∗d+1,2 := (δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0)B∗
d+1
,

T := {0, (d+ 1, 1), (d+ 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t,−→x t) ∈ Γ},
return skΓ := (Γ, {k∗t }t∈T ).

Sig(pk, skΓ, m, S := (M,ρ)) : If S := (M,ρ) accepts Γ := {(t,−→x t)},
then compute I and {αi}i∈I such that

∑
i∈I αiMi =

−→
1 ,

and I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t = 0]
∨ [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t �= 0] },

ξ
U← F
×
q , (βi)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi =
−→
0 },

s∗0 := ξk∗0 + r∗0, where r∗0
U← span〈b∗0,3〉,

s∗i := γi · ξk∗t +
∑nt

ι=1 yi,ι · b∗t,ι + r∗i , for 1 ≤ i ≤ �,
where r∗i

U← span〈b∗t,2nt+1, . . . , b
∗
t,3nt
〉, and γi,−→y i := (yi,1, . . . , yi,nt) are defined as

if i ∈ I ∧ ρ(i) = (t,−→v i), γi := αi,
−→y i U← {−→y i | −→y i · −→v i = 0 ∧ yi,1 = βi},

if i ∈ I ∧ ρ(i) = ¬(t,−→v i), γi := αi/(−→v i · −→x t), −→y i U← {−→y i | −→y i · −→v i = βi},
if i �∈ I ∧ ρ(i) = (t,−→v i), γi := 0, −→y i U← {−→y i | −→y i · −→v i = 0 ∧ yi,1 = βi},
if i �∈ I ∧ ρ(i) = ¬(t,−→v i), γi := 0, −→y i U← {−→y i | −→y i · −→v i = βi},

s∗�+1 := ξ(k∗d+1,1 + Hλ,Dhk (m ||S) · k∗d+1,2) + r∗�+1, where r∗�+1
U← span〈b∗d+1,5, b

∗
d+1,6〉,

return −→s ∗ := (s∗0, . . . , s
∗
�+1).

Ver(pk, m, S := (M,ρ),−→s ∗) :
−→
f

R← Fq
r, −→s T := (s1, . . . , s�)T := M · −→f T, s0 :=

−→
1 · −→f T, η0, η�+1, θ�+1, s�+1

U← Fq,

c0 := (−s0 − s�+1, 0, 0, η0)B0 ,

for 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i := (vi,1, . . . , vi,nt) ∈ Fq

nt),

return 0 if s∗i �∈ Vt, else θi, ηi
U← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
ci := ( si + θivi,1, θivi,2, . . . , θivi,nt , 0nt , 0nt , ηi )Bt ,
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if ρ(i) = ¬(t,−→v i),
return 0 if s∗i �∈ Vt, else ηi

U← Fq,
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si(vi,1, . . . , vi,nt), 0nt , 0nt , ηi )Bt ,

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m ||S), θ�+1, 0, 0, 0, 0, η�+1)Bd+1
,

return 0 if e(b0,1, s
∗
0) = 1,

return 1 if
∏�+1
i=0 e(ci, s

∗
i ) = 1, return 0 otherwise.

[Correctness]∏�+1
i=0 e(ci, s

∗
i ) = e(c0,k

∗
0)
ξ ·∏i∈I e(ci,k

∗
i )
γiξ ·∏�

i=1

∏nt
ι=1 e(ci, b

∗
t,ι)

yi,ι · e(c�+1,k
∗
�+1)

= g
ξδ(−s0+s�+1)
T ·∏i∈I g

ξδαisi

T

∏�
i=1 g

βisi

T · g−ξδs�+1

T = g
ξδ(−s0+s�+1)
T · gξδs0T · g−ξδs�+1

T = 1.

D Proof of Theorem 1

Theorem 1 The proposed ABS scheme is perfectly private.

Proof. Before strating the proof, we first define function AltSig specified in the proposed ABS
scheme as follows:

AltSig(pk, sk, m, S)

δ̃
U← F
×
q , ϕ0

U← Fq,

(ζi)
U← {(ζ1, . . . , ζ�) |

∑�
i=1 ζiMi =

−→
1 }, s∗0 := (δ̃, 0, ϕ0, 0)B∗

0
,

for i = 1, . . . , �,

if ρ(i) = (t,−→v i), then −→z i U← {−→z i | −→z i · −→v i = 0, zi,1 = δ̃ζi},
if ρ(i) = ¬(t,−→v i), then −→z i U← {−→z i | −→z i · −→v i = δ̃ζi}.

}
(1)

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
s∗i := ( zi,1, .., zi,nt , 0nt , σi,1, .., σi,nt , 0 )B∗

t
where σi,ι

U← Fq for ι = 1, .., nt,

s∗�+1 := (δ̃(1,Hλ,Dhk (m ||S)), 0, 0, σ�+1,1, σ�+1,2, 0)B∗
d+1

where σ�+1,1, σ�+1,2
U← Fq,

return −→s ∗ := (s∗0, . . . , s
∗
�+1).

Remark: Theorem 1 implies that AltSig defined above is equivalent to AltSig defined just after
Definition 8, and this justifies the notations.

We now start the proof. This theorem is true if the following statement is true, where AltSig
is defined above:

For all (sk, pk) R← Setup(1λ, −→n ), all messages m, all attribute sets Γ, all signing keys
skΓ

R← KeyGen(pk, sk,Γ), all access structures S such that S accepts Γ, the distributions of
Sig(pk, skΓ,m,S) and AltSig(pk, sk,m,S) are equal.

In the proposed ABS scheme, (s∗0, . . . , s∗�+1)
R← Sig(pk, skΓ,m,S) are expressed by

s∗i := (zi,1, . . . , zi,nt , 0
nt , σi,1, . . . , σi,nt , 0)B∗

t
(i = 0, . . . , �+ 1),

where −→z i := (zi,1, . . . , zi,nt) and −→z 0 := (ξδ), −→z �+1 := ξδ(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,

if i ∈ I ∧ ρ(i) = (t,−→v i), −→z i = αiξδ
−→x t +−→y i
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where −→y i U← {−→y i | −→y i · −→v i = 0 ∧ yi,1 = βi},
if i ∈ I ∧ ρ(i) = ¬(t,−→v i), −→z i = (αi/(−→v i · −→x t))ξδ−→x t +−→y i

where −→y i U← {−→y i | −→y i · −→v i = βi},
if i �∈ I ∧ ρ(i) = (t,−→v i), −→z i = −→y i where −→y i U← {−→y i | −→y i · −→v i = 0 ∧ yi,1 = βi},
if i �∈ I ∧ ρ(i) = ¬(t,−→v i), −→z i = −→y i where −→y i U← {−→y i | −→y i · −→v i = βi}.

Let −→α ′ := (α′1, . . . , α′�+1) such that α′i := αi if i ∈ I and α′i := 0 if i �∈ I, then it can be rephrased
by

−→z 0 := (ξδ), −→z �+1 := ξδ(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,
−→z i U← {−→z i | −→z i · −→v i = 0 ∧ zi,1 = ξδα′i + βi} if ρ(i) = (t,−→v i),
−→z i U← {−→z i | −→z i · −→v i = ξδα′i + βi} if ρ(i) = ¬(t,−→v i),

On the other hand, (s∗0, . . . , s∗�+1)
R← AltSig(pk, sk,m,S) are expressed by

s∗i := (zi,1, . . . , zi,nt , 0
nt , σi,1, . . . , σi,nt , 0)B∗

t
(i = 0, . . . , �+ 1), where

−→z 0 := (δ̃), −→z �+1 := δ̃(1,Hλ,Dhk (m ||S)),
for 1 ≤ i ≤ �,
−→z i U← {−→z i | −→z i · −→v i = 0 ∧ zi,1 = δ̃ζi} if ρ(i) = (t,−→v i),
−→z i U← {−→z i | −→z i · −→v i = δ̃ζi} if ρ(i) = ¬(t,−→v i),

For any {α′i} such that
∑�

i=1 α
′
iMi =

−→
1 , the distributions of

(ξδ, ξδα′1 + β1, . . . , ξδα
′
� + β�) s.t. ξ, δ

U← F
×
q , (βi)

U← {(βi) |
∑�

i=1 βiMi =
−→
0 } and

(δ̃, δ̃ζ1, . . . , δ̃ζ�) s.t. δ̃
U← F
×
q , (ζi)

U← {(ζi) |
∑�

i=1 ζiMi =
−→
1 }

are equivalent. Therefore, distributions Sig(pk, skΓ,m,S) and AltSig(pk, sk,m,S) are equivalent.
��

E Proof of Theorem 2

Theorem 2 The proposed ABS scheme is unforgeable (adaptive-predicate unforgeable) under
the DLIN assumption and the existence of collision resistance (CR) hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2 , E2, E3, E4, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvABS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
∑ν1−1

h=0

(
AdvDLIN

E+2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν1 − 1), E3,h(·) := E3(h, ·), E4,h(·) :=
E4(h, ·) (h = 1, . . . , ν2), ν1 is the maximum number of A’s KeyGen queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.
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E.1 Proof Outline

As mentioned in Section 4.1, secret signing keys and verification texts in our ABS are the
counterparts of secret decryption keys and ciphertexts in CP-FE. Based on this correspondence,
we follow the dual system encryption methodology proposed by Waters [29], at the top level of
strategy of the unforgeability proof.

In the methodology, verification texts (ciphertexts), secret keys and signatures have two
forms, normal and semi-functional. In our proof, we also introduce another form, pre-semi-
functional for verification texts and secret keys. The real system uses only normal verifica-
tion texts, normal secret keys and normal signatures, and semi-functional/pre-semi-functional
verification texts, keys and signatures are used only in a sequence of security games for the
unforgeability proof.

To prove this theorem, we employ Game 0 (original unforgeability game) through Game 4.
In Game 1, the verification text is changed to semi-functional. When at most ν1 secret key
(KeyGen) queries are issued by an adversary, there are 2ν1 game changes from Game 1 (Game
2-0), Game 2-0+, Game 2-1 through Game 2-(ν1 − 1)+, Game 2-ν1. When at most ν2 signing
(AltSig) queries are issued by an adversary, there are ν2 game changes from Game 2-ν1 (Game
3-0), Game 3-1 through Game 3-ν2. The final game, Game 4, is changed from Game 3-ν2.
Since c0 in the verification text is uniformly randomized in Game 4, the probability that any
signature output by an adversary is correctly verified by using the randomized verification text
is negligible in Game 4. As usual, we prove that the advantage gaps between neighboring games
are negligible.

A normal secret key, sk∗ norm
Γ (with attribute set Γ), is a correct form of the secret key of

the proposed ABS scheme, and is expressed by Eqs. (2)–(3). Similarly, a normal verification
text −→c norm

S
:= (c0, . . . , c�+1) (with access structure S) is Eqs. (7)–(9), and a normal signature−→s ∗ norm, is Eqs. (4)–(6).

A semi-functional secret key, sk∗ semi
Γ , is Eqs. (15),(3), and a semi-functional verification

text, −→c semi
S

, is Eqs. (10)-(12). A pre-semi-functional secret key, sk∗ pre-semi
Γ , and pre-semi-

functional verification text, −→c pre-semi
S

, are Eqs. (13),(3) and Eqs. (10),(14),(12). A semi-
functional signature, −→s ∗ semi, is Eqs. (16), (5).

In Game 2-h, the first h keys are semi-functional while the remaining keys are normal, the
verification text is semi-functional, and the signatures are normal. In Game 2-h+, the first h
keys are semi-functional and the (h+ 1)-th key is pre-semi-functional while the remaining keys
are normal, the verification text is pre-semi-functional, and the signatures are normal. In Game
3-h, the first h signatures are semi-functional while the remaining signatures are normal, and
all keys and the verification text are semi-functional.

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β

U← {0, 1} of Problem 1. We then show
that the distribution of the secret keys and verification texts replied by the simulator is almost
equivalent to those of Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of
Problem 1 is almost equivalent to the advantage gap between Games 0 and 1 (Lemma 5). The
advantage of Problem 1 is proven to be bounded by that of the DLIN assumption with ignoring
a negligible factor (Lemma 1).

The advantage gap between Games 2-h and 2-h+ is similarly shown to be bounded by the
advantage of Problem 2 (i.e., of the DLIN assumption) with ignoring a negligible factor (Lemmas
6 and 2). Here, we introduce special form of pre-semi-functional keys and verification texts,
sk∗ spec.pre-semi

Γ , and −→c spec.pre-semi
S

, such that they are equivalent to pre-semi-functional keys and

verification texts except that w0r0 = a0 :=
∑r

k=1 gk and r0
U← Fq (note that r0, w0

U← Fq for
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pre-semi-functional keys and verification texts). The special form of pre-semi-functional keys
and verification texts can be simulated by using Problem 2 with β = 1. From the definition,
sk∗ spec.pre-semi

Γ can decrypt −→c spec.pre-semi
S

for any Γ with S accepts Γ (i.e., it is hard for simulator
B+

2 to tell (sk∗ spec.pre-semi
Γ , −→c spec.pre-semi

S
) for Game 2-h+ from (sk∗ norm

Γ , −→c semi
S

) for Game 2-h
under the assumption of Problem 2). In addition, a0 is independently distributed from the
other variables when S does not accept Γ (shown in Proof of Claim 1 by using Lemma 4). That
is, the joint distribution of sk∗ pre-semi

Γ and −→c pre-semi
S

is equivalent to that of sk∗ spec.pre-semi
Γ and

−→c spec.pre-semi
S

, when S does not accept Γ (i.e., B+
2 ’s simulation using Problem 2 with β = 1 is

the same distribution as that of Game 2-h+ for the adversary’s view).
The advantage gap between Games 2-h+ and 2-(h + 1) is similarly shown to be bounded

by the advantage of Problem 2 (i.e., of the DLIN assumption) with ignoring a negligible factor
(Lemmas 7 and 2).

The advantage gap between Games 3-(h− 1) and 3-h is similarly shown to be bounded by
the advantage of Problem 3 (i.e., of the DLIN assumption) and the CR hash function with
ignoring a negligible factor (Lemmas 8 and 3).

Finally we show that Game 3-ν2 can be conceptually changed to Game 4 with a negligible
error probability (Lemma 9).

E.2 Main Part of the Proof

To prove Theorem 2, we consider the following (2ν1 + ν2 + 3) games. In Game 0, a part framed
by a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a KeyGen query for Γ := {(t,−→x t)} are:

k∗0 := (δ, 0 , ϕ0, 0)B∗
0
,

k∗t := (δ(xt,1, . . . , xt,nt), 0nt , ϕt,1, . . . , ϕt,nt , 0)B∗
t

for (t,−→x t) ∈ Γ,

}
(2)

k∗d+1,1 := (δ(1, 0), 0, 0, ϕd+1,1,1, ϕd+1,1,2, 0)B∗
d+1
,

k∗d+1,2 := (δ(0, 1), 0, 0, ϕd+1,2,1, ϕd+1,2,2, 0)B∗
d+1
,

}
(3)

where δ U← F
×
q , ϕ0, ϕt,i, ϕd+1,1,i, ϕd+1,2,i

U← Fq for t ∈ T and i = 1, . . . , nt. The reply to an
AltSig query for (m,S) with S := (M,ρ) are:

s∗0 := (δ̃, 0 , σ0, 0)B∗
0
, (4)

s∗i := (zi,1, . . . , zi,nt , 0
nt , σi,1, . . . , σi,nt , 0)B∗

t
for i = 1, . . . , �+ 1, (5)

s∗�+1 := (δ̃(1,Hλ,Dhk (m ||S)), 0, 0 , σ�+1,1, σ�+1,2, 0)B∗
d+1
, (6)

where, δ̃ U← F
×
q , σ0, σi,ι

U← Fq for ι = 1, . . . , nt, (ζi)
U← {(ζi) |

∑�
i=1 ζiMi =

−→
1 }, and

if ρ(i) = (t,−→v i), then −→z i U← {−→z i | −→z i · −→v i = 0, zi,1 = δ̃ζi}, if ρ(i) = ¬(t,−→v i), then
−→z i U← {−→z i | −→z i · −→v i = δ̃ζi}.
The components c0, . . . , c�+1 (verification text) for (m′,S′) with S

′ := (M,ρ) generated in
Ver for verifying the output of the adversary are:

c0 := (−s0 − s�+1, 0 , 0, η0)B0 , (7)

for 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i), ci := (si + θivi,1, θivi,2, . . . , θivi,nt , 0nt , 0nt , ηi)Bt ,

if ρ(i) = ¬(t,−→v i), ci := (si(vi,1, . . . , vi,nt), 0nt , 0nt , ηi)Bt ,

⎫⎪⎪⎬⎪⎪⎭ (8)
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c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m′ ||S′), θ�+1, 0, 0 , 0, 0, η�+1)Bd+1
, (9)

where
−→
f

R← Fq
r, −→s T := (s1, . . . , s�)T := M ·−→f T, s0 :=

−→
1 ·−→f T, η0, ηi, θi, s�+1

U← Fq (i =
1, . . . , �+ 1).

Game 1 : Same as Game 0 except that the verification text (c0, . . . , c�+1) for (m′,S′) with
S
′ := (M,ρ) generated in Ver for verifying the output of the adversary are:

c0 := (−s0 − s�+1, w0 , 0, η0)B0 , (10)

for 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i), ci := (si + θivi,1, θivi,2, .., θivi,nt , wi,1, .., wi,nt , 0nt , ηi)Bt ,

if ρ(i) = ¬(t,−→v i), ci := (si(vi,1, .., vi,nt), wi,1, .., wi,nt , 0nt , ηi)Bt ,

⎫⎪⎪⎬⎪⎪⎭(11)

c�+1 := (s�+1 − θ�+1 · Hλ,Dhk (m′ ||S′), θ�+1, w�+1,1, w�+1,2 , 0, 0, η�+1)Bd+1
, (12)

where w0
U← Fq, (wi,1, . . . , wi,nt), (wi,1, . . . , wi,nt)

U← Fq
nt for i = 1, . . . , � + 1, and all the

other variables are generated as in Game 0.

Game 2-h+ (h = 0, . . . , ν1 − 1) : Game 2-0 is Game 1. Game 2-h+ is the same as Game
2-h except that k∗t for t = 0 and (t,−→x t) ∈ Γ of the reply to the (h+ 1)-th KeyGen query,
and (c1, . . . , c�) of the verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for
verifying the output of the adversary are:

k∗0 := (δ, r0 , ϕ0, 0)B∗
0
,

k∗t := (δ(xt,1, . . . , xt,nt), rt,1, . . . , rt,nt , ϕt,1, . . . , ϕt,nt , 0)Bt for (t,−→x t) ∈ Γ,

⎫⎬⎭(13)

for 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i), ci := (si + θivi,1, θivi,2, .., θivi,nt , wi,1, .., wi,nt , 0nt , ηi)Bt ,

if ρ(i) = ¬(t,−→v i), ci := (si(vi,1, .., vi,nt), wi,1, .., wi,nt , 0nt , ηi)Bt ,

⎫⎪⎪⎬⎪⎪⎭(14)

where r0
U← Fq,

−→g U← Fq
r, −→a T := (a1, . . . , a�)T := M ·−→g T, τi

U← Fq (i = 1, . . . , �), Zt
U←

GL(nt,Fq), Ut := (Z−1
t )T for t = 1, . . . , d,

(wi,1, . . . , wi,nt) := (ai + τivi,1, τivi,2, . . . , τivi,nt) · Zt,
(wi,1, . . . , wi,nt) := ai(vi,1, . . . , vi,nt) · Zt,
(rt,1, . . . , rt,nt) := (xt,1, . . . , xt,nt) · Ut,

and all the other variables are generated as in Game 2-h.

Game 2-(h + 1) (h = 0, . . . , ν1 − 1) : Game 2-(h + 1) is the same as Game 2-h+ except
that k∗t for (t,−→x t) ∈ Γ of the reply to the (h+ 1)-th KeyGen query, and (c1, . . . , c�) of the
verification text for (m′,S′) with S

′ := (M,ρ) generated in Ver for verifying the output of
the adversary are:

k∗0 := (δ, r0, ϕ0, 0)B∗
0
,

k∗t := (δ(xt,1, . . . , xt,nt), 0nt , ϕt,1, . . . , ϕt,nt , 0)Bt for (t,−→x t) ∈ Γ,

}
(15)

for 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i), ci := (si + θivi,1, θivi,2, .., θivi,nt , wi,1, .., wi,nt , 0nt , ηi)Bt ,

if ρ(i) = ¬(t,−→v i), ci := (si(vi,1, .., vi,nt), wi,1, .., wi,nt , 0nt , ηi)Bt ,
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where (wi,1, . . . , wi,nt), (wi,1, . . . , wi,nt)
U← Fq

nt for i = 1, . . . , �, and all the other variables
are generated as in Game 2-h+.

Game 3-h (h = 1, . . . , ν2) : Game 3-0 is Game 2-ν1. Game 3-h is the same as Game 3-(h−1)
except that s∗0, s∗�+1 of the reply to the h-th AltSig query for (m,S) are:

s∗0 := (δ̃, r̃0 , σ0, 0)B∗
0
,

s∗�+1 := (δ̃(1,Hλ,Dhk (m ||S)), r̃�+1,1, r̃�+1,2 , σ�+1,1, σ�+1,2, 0)B∗
d+1
,

⎫⎬⎭ (16)

where r̃0
U← Fq, (r̃�+1,1, r̃�+1,2)

U← Fq
2, and all the other variables are generated as in

Game 3-(h− 1).

Game 4 : Same as Game 3-ν2 except that c0 generated in Ver for verifying the output of the
adversary is:

c0 := ( s̃0 , w0, 0, η0)B0 , (17)

where s̃0
U← Fq (i.e., independent from all the other variables).

Let Adv
(0)
A (λ) be AdvABS,UF

A (λ) in Game 0, and Adv
(1)
A (λ),Adv

(2-h+)
A (λ),Adv

(2-h)
A (λ),Adv

(3-h)
A (λ),

Adv
(4)
A (λ) be the advantage of A in Game 1, 2-h, 2-h+, 3-h, 4, respectively. It is obtained that

Adv
(4)
A (λ) = 1/q by Lemma 10.
We will show five lemmas (Lemmas 5–9) that evaluate the gaps between pairs of Adv

(0)
A (λ),

Adv
(1)
A (λ),Adv

(2-h)
A (λ),Adv

(2-h+)
A (λ),Adv

(2-(h+1))
A (λ) for h = 0, . . . , ν1 − 1, Adv

(3-h)
A (λ) for h =

1, . . . , ν2, Adv
(4)
A (λ). From these lemmas and Lemmas 1–3, we obtain AdvABS,UF

A (λ) = Adv
(0)
A (λ)

≤
∣∣∣Adv

(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣ +
∑ν1−1

h=0

∣∣∣Adv
(2-h)
A (λ)− Adv

(2-h+)
A (λ)

∣∣∣ +
∑ν1−1

h=0

∣∣∣Adv
(2-h+)
A (λ)−

Adv
(2-(h+1))
A (λ)

∣∣∣+∑ν2
h=1

∣∣∣Adv
(3-(h−1))
A (λ)− Adv

(3-h)
A (λ)

∣∣∣+∣∣∣Adv
(3-ν2)
A (λ)− Adv

(4)
A (λ)

∣∣∣+Adv
(4)
A (λ) ≤

AdvP1
B1

(λ)+
∑ν1−1

h=0 AdvP2
B+

2,h

(λ)+
∑ν1−1

h=0 AdvP2
B2,h+1

(λ) +
∑ν2

h=1

(
AdvP3

B3,h
(λ) + AdvH,CR

B4,h
(λ)

)
+(2(d+

3)ν1+3ν2+d+4)/q ≤ AdvDLIN
E1 (λ)+

∑ν1−1
h=0

(
AdvDLIN

E+2,h

(λ)+ AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ)+

AdvH,CR
E4,h

(λ)
)

+ ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q. This completes the proof of Theorem 2. ��

E.3 Lemmas for Theorem 2

We will show lemmas for the proof of Theorem 2. The proofs of the Lemmas 5–10 are given in
Appendix E.4.

Definition 15 (Problem 1) Problem 1 is to guess β ∈ {0, 1}, given (param−→n , {Bt, B̂∗t }t=0,...,d+1,

eβ,0, {eβ,t,1, et,i}t=1,...,d+1;i=2,...,nt)
R← GP1

β (1λ,−→n ), where

GP1
β (1λ,−→n ) : n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ,−→n ),

B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt+1) for t = 0, . . . , d+ 1,

ω, γ0, γt, w0, wt,1, . . . , wt,nt

U← Fq for t = 1, . . . , d+ 1,
e0,0 := (ω, 0, 0, γ0)B0 , e1,0 := (ω,w0, 0, γ0)B0 ,
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for t = 1, . . . , d+ 1;
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

e0,t,1 := ( ω, 0nt−1, 0nt , 0nt , γt )Bt ,
e1,t,1 := ( ω, 0nt−1, wt,1, .., wt,nt , 0nt , γt )Bt ,

et,i := ωbt,i for i = 2, . . . , nt,

return (param−→n , {Bt, B̂∗t }t=0,...,d+1, eβ,0, {eβ,t,1, et,i}t=1,...,d+1;i=2,...,nt).

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, �)→1

∣∣∣ � R←GP1
0 (1λ,−→n )

]
−Pr

[
B(1λ, �)→1

∣∣∣ � R←GP1
1 (1λ,−→n )

]∣∣∣ .
Lemma 1 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ)+

(d+ 7)/q.

Lemma 1 is proven similarly to Lemma 1 in [24]. ��

Definition 16 (Problem 2) Problem 2 is to guess β ∈ {0, 1}, given (param−→n , {B̂t,B∗t }t=0,..,d,

Bd+1, B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2)

R← GP2
β (1λ,−→n ), where

GP2
β (1λ,−→n ) : n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ,−→n ),

B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1) for t = 0, . . . , d,

u0, τ
U← F
×
q , ω, δ, δ0

U← Fq,

(zt,i,j)i,j=1,...,nt := Zt
U← GL(nt,Fq), (ut,i,j)i,j=1,...,nt := Ut := (Z−1

t )T for t = 1, . . . , d,
h∗0,0 := (δ, 0, δ0, 0)B∗

0
, h∗1,0 := (δ, u0, δ0, 0)B∗

0
, e0 := (ω, τu−1

0 , 0, 0)B0 ,

for t = 1, . . . , d; i = 1, . . . , nt;(
wt,i,j

)
i,j=1,...,nt

:= τ · Zt, δt,i,j
U← Fq for j = 1, . . . , nt,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 0i−1, δ, 0nt−i, 0nt , δt,i,1, .., δt,i,nt , 0 )B∗

t
,

h∗1,t,i := ( 0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt , δt,i,1, .., δt,i,nt , 0 )B∗
t
,

et,i := ( 0i−1, ω, 0nt−i, wt,i,1, .., wt,i,nt , 0nt , 0 )Bt

h∗d+1,i := δb∗d+1,i for i = 1, 2,

return (param−→n , {B̂t,B∗t }t=0,..,d,Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d;i=1,..,nt , {h∗d+1,i}i=1,2).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 15.

Lemma 2 For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 2 is proven similarly to Lemma 2 in [24]. ��

Definition 17 (Problem 3) Problem 3 is to guess β ∈ {0, 1}, given (param−→n , {B̂t,B∗t }t=0,d+1,
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{Bt,B∗t }t=1,..,d,h
∗
β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2)

R← GP3
β (1λ,−→n ), where

GP3
β (1λ,−→n ) : n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1)

R← Gob(1λ,−→n ),

B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1) for t = 0, d+ 1,

τ, u0
U← F
×
q , ω, δ, δ0

U← Fq,

h∗0,0 := (δ, 0, δ0, 0)B∗
0
, h∗1,0 := (δ, u0, δ0, 0)B∗

0
, e0 := (ω, τu−1

0 , 0, 0)B0 ,

h∗t,i := δb∗t,i for t = 1, . . . , d; i = 1, . . . , nt,

(ud+1,i,j) := Ud+1
U← GL(2,Fq), (zd+1,i,j) := Zd+1 := (U−1

d+1)
T for i, j = 1, 2,

for i = 1, 2,

δd+1,i,j
U← Fq for j = 1, 2,

h∗0,d+1,i := ( 0i−1, δ, 02−i, 02 δd+1,i,1, δd+1,i,2, 0 )B∗
d+1
,

h∗1,d+1,i := ( 0i−1, δ, 02−i, ud+1,i,1, ud+1,i,2, δd+1,i,1, δd+1,i,2, 0 )B∗
d+1
,

ed+1,i := ( 0i−1, ω, 02−i, τ(zd+1,i,1, zd+1,i,2), 02, 0 )Bd+1
,

return (param−→n , {B̂t,B∗t }t=0,d+1, {Bt,B∗t }t=1,..,d,

h∗β,0, e0, {h∗t,i}t=1,..,d;i=1,..,nt , {h∗β,d+1,i, ed+1,i}i=1,2),

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 3, AdvP3
B (λ), is

similarly defined as in Definition 15.

Lemma 3 For any adversary B, there is a probabilistic machine E, whose running time is es-
sentially the same as that of B, such that for any security parameter λ, AdvP3

B (λ) ≤ AdvDLIN
E (λ)+

5/q.

Lemma 3 is proven similarly to Lemma 2 in [24]. ��

Lemma 4 (Lemma 3 in [24]) For p ∈ Fq, let Cp := {(−→x ,−→v )|−→x · −→v = p} ⊂ V ×V ∗ where V
is n-dimensional vector space Fq

n, and V ∗ its dual. For all (−→x ,−→v ) ∈ Cp, for all (−→r ,−→w ) ∈ Cp,

Pr
Z

U← GL(n,Fq),

[−→x U = −→r ∧ −→v Z = −→w ] =
1
� Cp

,

where U := (Z−1)T.

Lemma 5 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + (d+ 2)/q.

Lemma 6 For any adversary A, there exists a probabilistic machine B+
2 , whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv
(2-h)
A (λ) −

Adv
(2-h+)
A (λ)| ≤ AdvP2

B+
2,h

(λ) + (d+ 3)/q, where B+
2,h(·) := B+

2 (h, ·).

Lemma 7 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h+)
A (λ) −

Adv
(2-(h+1))
A (λ)| ≤ AdvP2

B2,h+1
(λ) + (d+ 3)/q, where B2,h+1(·) := B2(h, ·).
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Lemma 8 For any adversary A, there exist probabilistic machines B3 and E4, whose run-
ning time are essentially the same as that of A, such that for any security parameter λ,
|Adv

(3-(h−1))
A (λ) − Adv

(3-h)
A (λ)| ≤ AdvP3

B3,h
(λ) + AdvH,CR

E4,h
(λ) + 3/q, where B3,h(·) := B3(h, ·) and

E4,h(·) := E4(h, ·).

Lemma 9 For any adversary A, Adv
(3-ν2)
A (λ) ≤ Adv

(4)
A (λ) + 1/q.

Lemma 10 For any adversary A, Adv
(4)
A (λ) = 1/q.

E.4 Proofs of Lemmas 5–10

Problem 2

Game
0

Game 
1

Game 
2-0+

Game
2-1

Game 
2-(v1-1)+

Game 
2-v1

Game
4

Game 2-0=

… …
~~

…

Game 3-0=

Game
3-1

Game 
3-v2

…

~~~~~~~~~~~~~~~~

Problem 3Problem 1

=

DLIN

Figure 1: Structure of Reductions

Outline: In Figure 1, an equality between neighboring games indicates that the left-hand
game can be conceptually (information-theoretically) changed to the right-hand game. An
approximate equality between them indicates that the gap between them is upper-bounded by
the advantage of the problem indicated.

The DLIN Problem is defined in Definition 3. Problems 1–3 are defined in Definitions 15–17,
respectively. We have shown that the intractability of (complicated) Problems 1 and 2 is reduced
to that of the DLIN Problem through several intermediate steps, or intermediate problems, in
[24]. They are indicated in Figure 1 by dotted arrows. The intractability of Problems 3 is also
reduced to that of the DLIN Problem in a similar manner and is indicated in Figure 1 by a
dotted arrow.

Problem 1 is used for evaluating the gap between advantages of adversary in Game 0 and
1 (Lemma 5). Problem 2 is used for evaluating the gaps between advantages of adversary in
Game 2-h+ and 2-h (Lemma 6) and between those in Game 2-h and 2-(h + 1)+ (Lemma 7).
Problem 3 is used for evaluating the gap of those in Game 3-h and 3-(h+ 1) (Lemma 8). They
are indicated in Figure 1 by arrows. The gap between Games 3-ν2 and Game 4 are evaluated
without computational assumptions (Lemma 9).

Proof of Lemma 5

Lemma 5 For any adversary A, there exists a probabilistic machine B1, whose running time
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is essentially the same as that of A, such that for any security parameter λ, |Adv
(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ) + (d+ 2)/q.

Proof. In order to prove Lemma 5, we construct a probabilistic machine B1 against Problem
1 by using any adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B1 is given Problem 1 instance (param−→n , {Bt, B̂∗t }t=0,...,d+1, eβ,0, {eβ,t,1, et,j}t=1,...,d+1;j=2,...,nt).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 sets

Dt := (dt,j)j=1,...,3nt+1 := (bt,2, . . . , bt,nt , bt,1, bt,nt+1, . . . , bt,3nt+1) for t = 0, . . . , d+ 1,
D
∗
t := (d∗t,j)j=1,...,3nt+1 := (b∗t,2, . . . , b

∗
t,nt

, b∗t,1, b
∗
t,nt+1, . . . , b

∗
t,3nt+1) for t = 0, . . . , d+ 1,

D̂t := (dt,1, . . . ,dt,nt ,dt,3nt+1) for t = 0, . . . , d+ 1,

D̂
∗
t := (d∗t,1, . . . ,d

∗
t,nt

,d∗t,2nt+1, . . . ,d
∗
t,3nt

) for t = 1, . . . , d+ 1.

B1 obtains D̂t and D̂
∗
t from Bt and B̂

∗
t in the Problem 1 instance, and returns pk :=

(1λ, hk, param−→n , {D̂t}t=0,..,d+1, {D̂∗t }t=1,..,d+1, b
∗
0,3) to A, where hk

R← KHλ.

4. When a KeyGen (resp. AltSig) query is issued, B1 answers a correct secret key (resp. signature)
computed by using {B̂∗t }t=0,..,d+1, i.e., normal key (resp. signature).

5. When B1 receives an output (m′,S′,−→s ′∗) from A (where S
′ := (M,ρ)), B1 calculates

verification text (c0, . . . , c�+1) as follows:

c0 := (−s0 − s�+1)eβ,0 + ζb0,3, ci :=
∑nt−1

j=1 ci,jet,j+1 + ci,nteβ,t,1 for i = 1, . . . , �+ 1,

where
−→
f

R← Fq
r, −→s T := (s1, . . . , s�)T := M · −→f T, s0 :=

−→
1 · −→f T, θi, s�+1

U← Fq (i =
1, . . . , �+ 1), if ρ(i) = (t,−→v i), then −→c i := (si + θivi,1, θivi,2, . . . , θivi,nt), if ρ(i) = ¬(t,−→v i),
then −→c i := si(vi,1, . . . , vi,nt) for 1 ≤ i ≤ �,−→c �+1 := (s�+1 − θ�+1 · Hλ,Dhk (m′ ||S′), θ�+1),
and eβ,t,1, et,j (j = 2, . . . , nt) are from the Problem 1 instance. B1 verifies the signature
(m′,S′,−→s ′∗) using Ver with the above (c0, . . . , c�+1), and outputs β′ := 1 if the verification
succeeds, β′ := 0 otherwise.

When β = 0, it is straightforward that the distribution by B1’s simulation is equivalent to that
in Game 0. When β = 1, the distribution by B1’s simulation is equivalent to that in Game 1
except for the case that s0 + s�+1 = 0 or there exists an i ∈ {1, .., �+ 1} such that ci,nt = 0, i.e.,
except with probability (�+ 2)/q ≤ (d+ 2)/q since � ≤ d. ��

Proof of Lemma 6

Lemma 6 For any adversary A, there exists a probabilistic machine B+
2 , whose running time

is essentially the same as that of A, such that for any security parameter λ, |Adv
(2-h)
A (λ) −

Adv
(2-h+)
A (λ)| ≤ AdvP2

B+
2,h

(λ) + (d+ 3)/q, where B+
2,h(·) := B+

2 (h, ·).

Proof. In order to prove Lemma 6, we construct a probabilistic machine B+
2 against Problem

2 by using an adversary A in a security game (Game 2-h or 2-h+) as a black box as follows:

1. B+
2 is given an integer h and a Problem 2 instance,

(param−→n , {B̂t,B∗t }t=0,..,d,Bd+1,B
∗
d+1,h

∗
β,0, e0, {h∗β,t,j , et,j}t=1,..,d;j=1,..,nt , {h∗d+1,j}j=1,2).
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2. B+
2 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B+
2 providesA a public key pk := (1λ, hk, param−→n , {B̂′t}t=0,...,d+1,

{B̂∗t }t=1,...,d+1, b
∗
0,3) of Game 2-h (and 2-h+), where hk

R← KHλ, B̂
′
t := (bt,1, . . . , bt,nt , bt,3nt+1),

and B̂
∗
t := (b∗t,1, . . . , b∗t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt

) from the Problem 2 instance.

4. When the ι-th key query is issued for attribute Γ := {(t,−→x t)}, B+
2 answers as follows:

(a) When 1 ≤ ι ≤ h, B+
2 answers semi-functional key {k∗t }t∈T where T := {0, (d +

1, 1), (d + 1, 2)} ∪ {t | 1 ≤ t ≤ d, (t,−→x t) ∈ Γ} with Eqs. (3) and (15), that is
computed by using {B∗t }t=0,...,d+1 of the Problem 2 instance.

(b) When ι = h+1, B+
2 calculates {k∗t }t∈T by using h∗β,0, {h∗β,t,j}t=1,..,d;j=1,..,nt , {h∗d+1,j}j=1,2

of the Problem 2 instance as follows:

k∗0 := h∗β,0, k∗t :=
∑nt

j=1 xt,jh
∗
β,t,j for (t,−→x t) ∈ Γ,

k∗d+1,j := h∗d+1,j + r∗d+1,j where r∗d+1,j
U← span〈b∗d+1,5, b

∗
d+1,6〉 for j = 1, 2.

(c) When ι ≥ h + 2, B+
2 answers normal key {k∗t }t∈T with Eqs. (2) and (3), that is

computed by using {B∗t }t=0,...,d+1 of the Problem 2 instance.

5. When a AltSig query is issued, B+
2 answers a correct signature computed by using {B̂∗t }t=0,..,d+1,

i.e., normal signature.

6. When B+
2 receives an output (m′,S′,−→s ′∗) from A (where S

′ := (M,ρ)), B+
2 computes

semi-functional verification text (c0, . . . , c�+1) as follows: c�+1 is calculated as Eq. (12)
with Bd+1 from the Problem 2 instance, and using s�+1 in c�+1,

αt,l, α̃k,l
U← Fq for t = 1, . . . , d; k = 1, . . . , r; l = 1, 2,

f̃0 :=
∑r

k=1 (α̃k,1e0 + α̃k,2b0,1) ,
for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;

ft,j := αt,1et,j + αt,2bt,j , f̃t,k,j := α̃k,1et,j + α̃k,2bt,j ,

c0 := −f̃0 − s�+1b0,1 + q0,

For 1 ≤ i ≤ �,
if ρ(i) = (t,−→v i), ci :=

∑nt
j=1 vi,jft,j +

∑r
k=1Mi,kf̃t,k,nt + qi,

if ρ(i) = ¬(t,−→v i), ci :=
∑nt

j=1 vi,j(
∑r

k=1Mi,kf̃t,k,j) + qi,

where (Mi,k)i=1,...,�;k=1,...,r := M , q0
U← span〈b0,4〉, and qi

U← span〈bt,3nt+1〉. B+
2 verifies

the signature (m′,S′,−→s ′∗) using Ver with the above {ci}i=0,..,�+1, and outputs β′ := 1 if
the verification succeeds, β′ := 0 otherwise.

Remark 4 f0,ft,j , f̃t,k,j for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt calculated in the step 6 in
the above simulation are expressed as:

θt := αt,1ω + αt,2, τ̃t := αt,1τ,

fk := α̃k,1ω + α̃k,2, s0 :=
∑r

k=1 fk, gk := α̃k,1τ, a0 :=
∑r

k=1 gk,

w0 := a0/u0, (εt,j,l)j,l=1,..,nt := τ̃t · Zt, (ε̃t,k,j,l)j,l=1,..,nt := gk · Zt,
f0 = (s0, w0, 0, 0)B0 ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
ft,j := ( 0j−1, θt, 0nt−j , εt,j,1, .., εt,j,nt , 0nt , 0 )Bt ,

f̃t,k,j := ( 0j−1, fk, 0nt−j , ε̃t,k,j,1, .., ε̃t,k,j,nt , 0nt , 0 )Bt ,
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where u0, ω, τ, {Zt}t=1,...,d are defined in Problem 2. Note that variables {θt, τ̃t}t=1,...,d, {fk, gk}k=1,...,r

are independently and uniformly distributed. Therefore, {ci}i=0,...,� are distributed as Eqs. (10)

and (14) except w0 := a0/r0, i.e., w0r0 = a0, using a0 and r0 := u0
U← Fq in k∗0 (Eq. (13)).

Claim 1 The distribution of the view of adversary A in the above-mentioned game simulated
by B+

2 given a Problem 2 instance with β ∈ {0, 1} is the same as that in Game 2-h (resp. Game
2-h+) if β = 0 (resp. β = 1) except with probability (d+ 2)/q (resp. 1/q).

Proof. It is clear that B+
2 ’s simulation of the public-key generation (step 3) and the ι-th key

query’s answer for ι �= h+ 1 (cases (a) and (c) of step 4) is perfect, i.e., exactly the same as the
Setup and the KeyGen oracle in Game 2-h and Game 2-h+.

Therefore, to prove this lemma we will show that the joint distribution of the (h+1)-th key
query’s answer and verification text {ci}i=0,..,�+1 by B+

2 ’s simulation given a Problem 2 instance
with β is equivalent to that in Game 2-h (resp. Game 2-h+), when β = 0 (resp. β = 1).

When β = 0, it is straightforward to show that they are equivalent except for that δ defined
in Problem 2 is zero or there exists i ∈ {0, . . . , �} such that −→w i =

−→
0 with i = 0 or ρ(i) = (t,−→v i),

or
−→
w i =

−→
0 with ρ(i) = ¬(t,−→v i), where −→w i and

−→
w i are defined in Eqs. (10) and (11) i.e., except

with probability (�+ 2)/q ≤ (d+ 2)/q since � ≤ d.
When β = 1, the distribution by B+

2 ’s simulation is Eqs. (3) and (13) for the key and Eqs.
(10), (12), and (14) for the elements in V, {ci}i=0,...,�+1, used for verifying the output of A,
where the distribution is the same as that defined in these equations except w0 := a0/r0, i.e.,
w0r0 = a0, using a0 :=

−→
1 ·−→g T and r0

U← Fq in k∗0 (Eq. (13)) from Remark 4. The corresponding

distribution in Game 2-h+ is Eqs. (3) and (13) and Eqs. (10), (12), and (14) where r0, w0
U← Fq

as defined in the equations.
Therefore, we will show that a0 is uniformly and independently distributed from the other

variables in the joint distribution of B+
2 ’s simulation. Since a0 :=

−→
1 · −→g T is only related to

(a1, . . . , a�)T := M · −→g T and Ut = (Z−1
t )T holds, a0 is only related to {−→w i}i=1,...,�, {−→w i}i=1,...,�

and {−→r t}t=1,...,d, where −→r t := (rt,1, . . . , rt,nt) := (xt,1, . . . , xt,nt) ·Ut in Eq. (13) for t = 1, . . . , d,
and −→w i := (wi,1, . . . , wi,nt) := (ai + τivi,1, τivi,2, . . . , τivi,nt) · Zt and

−→
w i := (wi,1, . . . , wi,nt) :=

ai(vi,1, . . . , vi,nt) · Zt in Eq. (14) for i = 1, . . . , � with t := ρ̃(i). (ρ̃ is defined at the start of
Section 4.) With respect to the joint distribution of these variables, there are five cases for each
i ∈ {1, . . . , �}. Note that for any i ∈ {1, . . . , �}, (Zt, Ut) with t := ρ̃(i) is independent from the
other variables, since ρ̃ is injective:

1. γ(i) = 1 and [ρ(i) = (t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t = 0].

Then, from Lemma 4, the joint distribution of (−→w i,
−→r t) is uniformly and independently

distributed on Cai := {(−→w ,−→r )|−→w · −→r = ai} (over Zt
U← GL(nt,Fq)).

2. γ(i) = 1 and [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) ∈ Γ ∧ −→v i · −→x t �= 0].

Then, from Lemma 4, the joint distribution of (
−→
w i,
−→r t) is uniformly and independently

distributed on C(−→v i·−→x t)·ai
(over Zt

U← GL(nt,Fq)).

3. γ(i) = 0 and [ρ(i) = (t,−→v i) ∧ (t,−→x t) ∈ Γ] (i.e., −→v i · −→x t �= 0).

Then, from Lemma 4, the joint distribution of (−→w i,
−→r t) is uniformly and independently

distributed on C(−→v i·−→x t)·eτt+ai
(over Zt

U← GL(nt,Fq)) where τ̃t is defined in Remark 4. Since
τ̃t is uniformly and independently distributed on Fq, the joint distribution of (−→w i,

−→r t) is
uniformly and independently distributed over Fq

2nt .
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4. γ(i) = 0 and [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) ∈ Γ] (i.e., −→v i · −→x t = 0).

Then, from Lemma 4, the joint distribution of (
−→
w i,
−→r t) is uniformly and independently

distributed on C0 (over Zt
U← GL(nt,Fq)).

5. [ρ(i) = (t,−→v i) ∧ (t,−→x t) �∈ Γ] or [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) �∈ Γ].

Then, the distribution of −→w i is uniformly and independently distributed on Fq
nt (over

Zt
U← GL(nt,Fq)).

We then observe the joint distribution (or relation) of a0, {−→w i}i=1,..,�, {−→w i}i=1,..,� and {−→r t}t=1,..,d.
Those in cases 3-5 are obviously independent from a0. Due to the restriction of adversary A’s
key queries,

−→
1 �∈ span〈(Mi)γ(i)=1〉. Therefore, a0 :=

−→
1 · −→g T is independent from the joint

distribution of {ai := Mi · −→g T | γ(i) = 1} (over the random selection of −→g ), which can be
given by (−→w i,

−→r t) in case 1 and (
−→
w i,
−→r t) in case 2. Thus, a0 is uniformly and independently

distributed from the other variables in the joint distribution of B+
2 ’s simulation.

Therefore, the view of adversary A in the game simulated by B+
2 given a Problem 2 instance

with β = 1 is the same as that in Game 2-h+ except that δ defined in Problem 2 is zero i.e.,
except with probability 1/q. ��

Proof of Lemma 7

Lemma 7 For any adversary A, there exists a probabilistic machine B2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h+)
A (λ) −

Adv
(2-(h+1))
A (λ)| ≤ AdvP2

B2,h+1
(λ) + (d+ 3)/q, where B2,h+1(·) := B2(h, ·).

Proof. In order to prove Lemma 7, we construct a probabilistic machine B2 against Problem
2 by using an adversary A in a security game (Game 2-h+ or 2-(h+ 1)) as a black box. B2 acts
in the same way as B+

2 in the proof of Lemma 6 except the following two points:

1. In case (b) of step 4; k∗0 is calculated as

k∗0 := h∗β,0 + r′0b
∗
0,2,

where r′0
U← Fq, and h∗β,0, b

∗
0,2 are in the Problem 2 instance.

2. In the last step; if the verification succeeds, B2 outputs β′ := 0. Otherwise, B2 outputs
β′ := 1.

When β = 0, it is straightforward that the distribution by B2’s simulation is equivalent to
that in Game 2-(h+ 1) except that δ defined in Problem 2 is zero, i.e., except with probability
1/q. When β = 1, the distribution by B2’s simulation is equivalent to that in Game 2-h+ except
that δ defined in Problem 2 is zero or there exists i ∈ {0, . . . , �} such that −→w i = 0 with i = 0 or
ρ(i) = (t,−→v i), or

−→
w i = 0 with ρ(i) = ¬(t,−→v i) where −→w i and

−→
w i are defined in Eqs. (10) and

(11), i.e., except with probability (�+ 2)/q ≤ (d+ 2)/q. ��

Proof of Lemma 8

Lemma 8 For any adversary A, there exist probabilistic machines B3 and E4, whose run-
ning time are essentially the same as that of A, such that for any security parameter λ,
|Adv

(3-(h−1))
A (λ) − Adv

(3-h)
A (λ)| ≤ AdvP3

B3,h
(λ) + AdvH,CR

E4,h
(λ) + 3/q, where B3,h(·) := B3(h, ·) and

E4,h(·) := E4(h, ·).
Proof. In order to prove Lemma 8, we construct a probabilistic machine B3 against Problem 3
by using any adversary A in a security game (Game 3-(h− 1) or 3-h) as a black box as follows:
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1. B3 is given an integer h and a Problem 3 instance,

(param−→n , {B̂t,B∗t }t=0,d+1, {Bt,B∗t }t=1,..,d,h
∗
β,0, e0, {h∗t,j}t=1,..,d;j=1,..,nt , {h∗β,d+1,j , ed+1,j}j=1,2).

2. B3 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B3 providesA a public key pk := (1λ, hk, param−→n , {B̂′t}t=0,...,d+1,

{B̂∗t }t=1,...,d+1, b
∗
0,3) of Game 3-(h − 1) (and 3-h), where hk

R← KHλ, B̂
′
t := (bt,1, . . . , bt,nt ,

bt,3nt+1), and B̂
∗
t := (b∗t,1, . . . , b∗t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt

), that are obtained from the Problem
3 instance.

4. When KeyGen query is issued for attribute Γ := {(t,−→x t)}, B3,h answers semi-functional
key {k∗t }t∈T where T := {0, (d+1, 1), (d+1, 2)}∪{t | 1 ≤ t ≤ d, (t,−→x t) ∈ Γ}, with Eqs.
(3) and (15), that is computed by using {B∗t }t=0,...,d+1 of the Problem 3 instance.

5. When the ι-th AltSig query is issued for attribute S := (M,ρ), B3 answers as follows:

(a) When 1 ≤ ι ≤ h − 1, B3 answers semi-functional signature −→s ∗ with Eqs. (5) and
(16), that is computed by using {B∗t }t=0,...,�+1 of the Problem 3 instance.

(b) When ι = h, B3 calculates −→s ∗ := (s∗0, .., s∗�+1) by using {B̂∗t }t=0,..,d+1,h
∗
β,0,

{h∗t,j}t=1,..,d;j=1,..,nt , {h∗β,d+1,j}j=1,2 of the Problem 3 instance as follows:

s∗0 := h∗β,0, s∗i :=
∑n

j=1 zjh
∗
t,j + r∗i for i = 1, . . . , �,

s∗�+1 := h∗β,d+1,1 + Hλ,Dhk (m ||S) · h∗β,d+1,2,

where (ζi)
U← {(ζi) |

∑�
i=1 ζiMi =

−→
1 }, and if ρ(i) = (t,−→v i), then −→z i U← {−→z i |

−→z i · −→v i = 0, zi,1 = ζi}, if ρ(i) = ¬(t,−→v i), then −→z i U← {−→z i | −→z i · −→v i = ζi}, and

r∗i
U← span〈b∗t,2nt+1, . . . , b

∗
t,3nt
〉 with t := ρ̃(i) for i = 1, . . . , �.

(c) When ι ≥ h + 1, B3 answers normal signature −→s ∗ with Eqs. (4), (5), and (6), that
is computed by using {B∗t }t=0,...,�+1 of the Problem 3 instance.

6. When B3 receives an output (m′,S′,−→s ′∗) from A, B3 calculates semi-functional verification
text −→c := (c0, . . . , c�+1) with Eqs. (10), (11), and (12) as follows: ci for i = 1, . . . , � are
calculated as Eq. (11) by using bases {Bt}t=1,...,d, and using the coefficient s0 :=

∑r
k=1 fk,

αl, α̃l
U← Fq for l = 1, 2, f̃0 := α̃1e0 + α̃2b0,1,

fd+1,j := α1ed+1,j + α2bd+1,j , f̃d+1,j := α̃1ed+1,j + α̃2bd+1,j for j = 1, 2;

c0 := −s0b0,1 − f̃0 + q0, c�+1 := f̃d+1,1 − Hλ,Dhk (m′ ||S′) · fd+1,1 + fd+1,2 + q�+1,

where q0
U← span〈b0,4〉, q�+1

U← span〈bd+1,7〉, and b0,1, e0, bd+1,j , ed+1,j for j = 1, 2 are
from the Problem 3 instance. B3 verifies the signature (m′,S′,−→s ′∗) using Ver with the
above (c0, . . . , c�+1), and outputs β′ := 1 if the verification succeeds, β′ := 0 otherwise.

Claim 2 The pair of signature −→s ∗ generated in case (b) of step 5 and verification text −→c
generated in step 6 has the same distribution as that in Game 3-(h− 1) (resp.Game 3-h) when
β = 0 (resp.β = 1) except with probability 1/q (resp.AdvH,CR

E4,h
(λ)+2/q for a probabilistic machine

E4 with essentially same running time as that of A, where E4,h(·) := E4(h, ·)).
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Proof. We consider the joint distribution of −→c and −→s ∗. Clearly, a part of verification text,
c1, . . . , c�, and a part of signature, s∗1, . . . , s∗� , are the same as those in Game 3-(h − 1) and
Game 3-h. Hence, we only consider c0, c�+1, s

∗
0, and s∗�+1.

When β = 0, it is straightforward the joint distribution of c0, c�+1, s
∗
0, and s∗�+1 are the

same as those in Game 3-(h − 1) except that δ defined in Problem 3 is zero, i.e., except with
probability 1/q.

When β = 1, as in Remark 4, we need to check that w0 in c0 (given in Eq. (10)), −→w �+1

in c�+1 (given in Eq. (12)), r̃0 in s∗0 and
−→̃
r �+1 in s∗�+1 (given in Eq. (16)) are distributed as

in those in Game 3-h, i.e., these are uniformly and independently distributed (with negligible
probability). These are given as

w0 = −u−1
0 s̃�+1,

−→w �+1 =
(
s̃�+1 − θ̃�+1 · Hλ,Dhk (m′ ||S′), θ̃�+1

)
· Zd+1,

r̃0 = u0,
−→̃
r �+1 =

(
1,Hλ,Dhk (m ||S)

)
· Ud+1,

where u0
U← F

×
q , θ̃�+1, s̃�+1

U← Fq, which are independent from all the other variables and

Ud+1
U← GL(2,Fq), Zd+1 := (U−1

d+1)
T. Since (m,S) �= (m′,S′), −→w �+1 ·

−→̃
r �+1 = αθ̃�+1 + s̃�+1 with

nonzero α
(
:= Hλ,Dhk (m ||S)− Hλ,Dhk (m′ ||S′)

)
except with probability AdvH,CR

E4,h
(λ) for a probabilis-

tic machine E4,h with essentially same running time as that of A.
Then, coefficients u0 and r̃0 are uniformly and independently distributed, which are inde-

pendent from −→w �+1 ·
−→̃
r �+1 = αθ̃�+1+ s̃�+1 since u0

U← F
×
q , s̃�+1, θ̃�+1

U← Fq and α �= 0. Moreover,

from Lemma 4, pair (
−→̃
r �+1,

−→w �+1) is uniformly distributed in C−→w �+1·
−→er �+1

= C
αeθ�+1+es�+1

. There-
fore, the joint distribution of c0, c�+1, s

∗
0, and s∗�+1 are the same as those in Game 3-h except that

δ defined in Problem 2 is zero or −→w �+1 ·
−→̃
r �+1 = 0 i.e., except with probability AdvH,CR

E4,h
(λ)+2/q.

This completes the proof of Claim 2.
Therefore, |Adv

(3-(h−1))
A (λ)−Adv

(3-h)
A (λ)| ≤ AdvP3

B3,h
(λ)+AdvH,CR

E4,h
(λ)+1/q+2/q = AdvP3

B3,h
(λ)+

AdvH,CR
E4,h

(λ) + 3/q from Shoup’s difference lemma. This completes the proof of Lemma 8. ��

Proof of Lemma 9

Lemma 9 For any adversary A, Adv
(3-ν2)
A (λ) ≤ Adv

(4)
A (λ) + 1/q.

Proof. To prove Lemma 9, we will show distribution (param−→n , {B̂t}t=0,..,d+1, {B̂∗t }t=1,..,d+1, b
∗
0,3,

{sk(j)∗
Γ }j=1,..,ν1 , {−→s (j)∗}j=1,..,ν2 , c) in Game 3-ν2 and that in Game 4 are equivalent, where sk

(j)∗
Γ

is the answer to the j-th key query, −→s (j)∗ is that to the j-th signature query, and −→c is the
verification text (c0, . . . , c�+1). By the definition of these games, we only need to consider
elements in V0. We define new dual orthonormal bases D0 and D

∗
0 of V0 as follows: We generate

θ
U← Fq, and set

d0,2 := (θ, 1, 0, 0)B = θb0,1 + b0,2, d∗0,1 := (1,−θ, 0, 0)B = b∗0,1 − θb∗0,2.
Let D0 := (b0,1,d0,2, b0,3, b0,4) and D

∗
0 := (d∗0,1, b∗0,2, b∗0,3, b∗0,4). Then, D0 and D

∗
0 are dual

orthonormal, and are distributed the same as the original bases, B0 and B
∗
0.

The V0 components {k(j)∗
0 }j=1,...,ν1 in keys, {s(j)∗

0 }j=1,...,ν2 in signatures, and verification
text c0 in Game 3-ν2 are expressed over bases B0 and B

∗
0 as k

(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
, s

(j)∗
0 =

(δ̃(j), r̃(j)0 , σ
(j)
0 , 0)B∗

0
and c0 = (−s0 − s�+1, w0, 0, η0)B0 . Then,

k
(j)∗
0 = (δ(j), r(j)0 , ϕ

(j)
0 , 0)B∗

0
= (δ(j), r(j)0 + θδ(j), ϕ

(j)
0 , 0)D∗

0
= (δ(j), ϑ(j), ϕ

(j)
0 , 0)D∗

0
,
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where ϑ(j) := r
(j)
0 + θδ(j) which are uniformly, independently distributed since r(j)0

U← Fq,

s
(j)∗
0 = (δ̃(j), r̃(j)0 , σ

(j)
0 , 0)B∗

0
= (δ̃(j), r̃(j)0 + θδ̃(j), σ

(j)
0 , 0)D∗

0
= (δ̃(j), ϑ̃(j), σ

(j)
0 , 0)D∗

0

where ϑ̃(j) := r̃
(j)
0 + θδ̃(j) which are uniformly, independently distributed since r̃(j)0

U← Fq, and

c0 = (−s0 − s�+1, w0, 0, η0)B0 = (−s0 − s�+1 − θw0, w0, 0, η0)D0 = (s̃0, w0, 0, η0)D0

where s̃0 := −s0 − s�+1 − θw0 which is uniformly, independently distributed since θ U← Fq if
w0 �= 0.

In the light of the adversary’s view, both (B0,B
∗
0) and (D0,D

∗
0) are consistent with public key

pk := (1λ, param−→n , {B̂t}t=0,...,d+1, {B̂∗t }t=1,...,d+1, b
∗
0,3). Therefore, {sk(j)∗

Γ }j=1,...,ν1 , {−→s (j)∗}j=1,...,ν2 ,
and −→c can be expressed as keys, signatures, and verification text in two ways, in Game 3-ν2

over bases {Bt,B∗t }t=0,...,d+1 and in Game 4 over bases D0,D
∗
0, {Bt,B∗t }t=1,...,d+1. Thus, Game

3-ν2 can be conceptually changed to Game 4 if w0 �= 0, i.e., except with probability 1/q. ��

Proof of Lemma 10

Lemma 10 For any adversary A, Adv
(4)
A (λ) = 1/q.

Proof. Let (s′∗0 , . . . , s′∗�+1) be signature A outputs. If e(b0,1, s
′∗
0 ) = 1, the verification fails

by the definition of Ver. Otherwise, the verification fails except with negligible probability
regardless of the output of the adversary since coefficient s̃0 of b0,1 in c0 (Eq. (17)) is uniform
and independent from all the other variables, and coefficient of b∗0,1 in s′∗0 is nonzero. Hence,

Adv
(4)
A (λ) = 1/q. ��

F Proofs of Theorems 3 and 4

Theorem 3 The proposed MA-ABS scheme is perfectly private.

The proof is essentially equivalent to that for Theorem 1. ��
Theorem 4 The proposed MA-ABS scheme is unforgeable (adaptive-predicate unforgeable)
under the DLIN assumption and the existence of collision resistance hash functions.

For any adversary A, there exist probabilistic machines E1, E+
2 , E2, E3, E4, whose running

times are essentially the same as that of A, such that for any security parameter λ,

AdvMA-ABS,UF
A (λ) ≤ AdvDLIN

E1 (λ) +
∑ν1−1

h=0

(
AdvDLIN

E+2,h

(λ) + AdvDLIN
E2,h+1

(λ)
)

+
∑ν2

h=1

(
AdvDLIN

E3,h
(λ) + AdvH,CR

E4,h
(λ)

)
+ ε,

where E+
2,h(·) := E+

2 (h, ·), E2,h+1(·) := E2(h, ·) (h = 0, . . . , ν1 − 1), E3,h(·) := E3(h, ·), E4,h(·) :=
E4(h, ·) (h = 1, . . . , ν2), ν1 is the maximum number of A’s UserReg queries, ν2 is the maximum
number of A’s AltSig queries, and ε := ((2d+ 16)ν1 + 8ν2 + 2d+ 11)/q.

Proof. (Sketch) The proof of this theorem is equivalent to that of Theorem 2 except the proofs
of Lemmas 5, 6, 7 and 8 are slightly changed; Lemmas 5 and 8 in this proof employ Problems
4 and 5 (to be shown below) in place of Problems 1 and 3, respectively, and Lemmas 6 and 7
employ Problem 5 in place of Problem 2.

Problems 1, 2 and 3 that do not include parameters G0, G1 and δG1 cannot be used to
simulate the security games of the MA-ABS scheme, because G0, G1 and δG1 are employed in
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the security games. Therefore, modified problems, Problems 4 and 5, where G0, G1 and δG1 are
included, are introduced and employed in the simulation of the security games of the MA-ABS
scheme. ��
Problems 4 and 5 and the related lemmas

We show Problems 4 and 5 and the related lemmas below.
We describe random dual orthonormal basis generator Gob

′ below, which is used as a sub-
routine in Problems 4 and 5.

Gob
′(1λ,−→n ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

n0 := 1, nd+1 := 2, κ, ξ
U← F
×
q ,

for t = 0, . . . , d+ 1,
Nt := 3nt + 1 for t = 0, . . . , d+ 1, paramVt

:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j
U← GL(Nt,Fq), (ϑt,i,j)i,j := (XT

t )−1,

bt,i := κ(χt,i,1, . . . , χt,i,Nt)At = κ
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt),

b∗t,i := ξ(ϑt,i,1, . . . , ϑt,i,Nt)At = ξ
∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗t,1, . . . , b∗t,Nt

),

G0 := κG, G1 := ξG, gT := e(G,G)κξ,
param−→n := ({paramVt

}t=0,...,d+1, gT ),
return (param−→n , {Bt,B∗t }t=0,...,d+1, G0, G1).

Definition 18 (Problem 4) Problem 4 is to guess β ∈ {0, 1}, given (param−→n , {Bt, B̂∗t }t=0,...,d+1,

eβ,0, {eβ,t,1, et,i}t=1,...,d+1;i=2,...,nt , G0, G1)
R← GP4

β (1λ,−→n ), where

GP4
β (1λ,−→n ) : n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1, G0, G1)

R← Gob
′(1λ,−→n ),

B̂
∗
t := (b∗t,1, . . . , b

∗
t,nt

, b∗t,2nt+1, . . . , b
∗
t,3nt+1) for t = 0, . . . , d+ 1,

ω, γ0, γt, w0, wt,1, . . . , wt,nt

U← Fq for t = 1, . . . , d+ 1,
e0,0 := (ω, 0, 0, γ0)B0 , e1,0 := (ω,w0, 0, γ0)B0 ,

for t = 1, . . . , d+ 1;
nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷

e0,t,1 := ( ω, 0nt−1, 0nt , 0nt , γt )Bt ,
e1,t,1 := ( ω, 0nt−1, wt,1, .., wt,nt , 0nt , γt )Bt ,

et,i := ωbt,i for i = 2, . . . , nt,

return (param−→n , {Bt, B̂∗t }t=0,...,d+1, eβ,0, {eβ,t,1, et,i}t=1,...,d+1;i=2,...,nt , G0, G1).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 4, AdvP4
B (λ), is

similarly defined as in Definition 15.

Lemma 11 For any adversary B, there is a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP4

B (λ) ≤
AdvDLIN

E (λ) + (d+ 7)/q.

Lemma 11 is proven similarly to Lemma 1 in [24]. ��
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Definition 19 (Problem 5) Problem 5 is to guess β ∈ {0, 1}, given (param−→n , {B̂t,B∗t }t=0,..,d+1,

h∗β,0, e0, {h∗β,t,i, et,i}t=1,..,d+1;i=1,..,nt , G0, G1, δG1)
R← GP5

β (1λ,−→n ), where

GP5
β (1λ,−→n ) : n0 := 1, nd+1 := 2, (param−→n , {Bt,B∗t }t=0,...,d+1, G0, G1)

R← Gob
′(1λ,−→n ),

B̂t := (bt,1, . . . , bt,nt , bt,2nt+1, . . . , bt,3nt+1) for t = 0, . . . , d,

u0, τ
U← F
×
q , ω, δ, δ0

U← Fq,

(zt,i,j)i,j=1,...,nt := Zt
U← GL(nt,Fq), (ut,i,j)i,j=1,...,nt := Ut := (Z−1

t )T for t = 1, . . . , d,
h∗0,0 := (δ, 0, δ0, 0)B∗

0
, h∗1,0 := (δ, u0, δ0, 0)B∗

0
, e0 := (ω, τu−1

0 , 0, 0)B0 ,

for t = 1, . . . , d+ 1; i = 1, . . . , nt;(
wt,i,j

)
i,j=1,...,nt

:= τ · Zt, δt,i,j
U← Fq for j = 1, . . . , nt,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
h∗0,t,i := ( 0i−1, δ, 0nt−i, 0nt , δt,i,1, .., δt,i,nt , 0 )B∗

t
,

h∗1,t,i := ( 0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt , δt,i,1, .., δt,i,nt , 0 )B∗
t
,

et,i := ( 0i−1, ω, 0nt−i, wt,i,1, .., wt,i,nt , 0nt , 0 )Bt

return (param−→n , {B̂t,B∗t }t=0,..,d+1,h
∗
β,0, e0, {h∗β,t,i, et,i}t=1,..,d+1;i=1,..,nt , G0, G1, δG1).

for β U← {0, 1}. For a probabilistic machine B, the advantage of B for Problem 5, AdvP5
B (λ), is

similarly defined as in Definition 15.

Lemma 12 For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP5

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 12 is proven similarly to Lemma 2 in [24]. ��
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