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Duality for Minmax Fractional Problems Involving

Generalized Arcwise Connected Type I∗

JIA Jihong1† LI Zemin2

Abstract This paper deals with a minmax fractional problems in terms of the
right derivative of the function with respect to an arc. Under arcwise connected type I
and generalized arcwise connected type I assumptions, a dual model is proposed for the
minmax fractional problems. Furthermore, weak duality theorem, strong duality theorem
and strict converse duality theorem are established.
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0 Introduction

Liu and Wu[1] investigated a minimax fractional programming involving η-invex, η-

pseudoinvex and η-quasi-invex functions, and presented sufficient Kuhn-Tucker conditions

and three dual models. Avriel and Zang[2] defined the right derivative of a real-valued

function with respect to a continuous vector-valued function called an arc. Mehra and

Bhatia[3] discussed a static minmax programming problem in term of the right derivative of

functions involved with respect to the same arc, and obtained sufficient optimality conditions.

Mond-Weir type dual was proposed and duality results were established.2�-*� 2008 ' 5 E 8 -�
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This paper is going to develop a minmax fractional programming problem by using

the notion of generalized arewise connected type I. Some notations and preliminary results

are given in section 2. A dual problem are formulated and duality results are developed in

section 3.

1 Notations and Preliminaries

Definition 1.1
[2] A set X ⊆ Rn is said to be arcwise connected (AC) if for every pair

of points x1, x2 ∈ X , there exists a continuous vector-valued function Hx1,x2
: [0, 1] → X ,

called an arc, such that Hx1,x2
(0) = x1 and Hx1,x2

(1) = x2.

Definition 1.2
[2] Let ϕ : X → R, where X ⊆ Rn is an AC set. Let x1, x2 ∈ X

and Hx1,x2
is an arc connecting x1 and x2 in X . The function ϕ is said to possess a right

derivative, denoted by ϕ+(Hx1,x2
(0)), with respect to the arc Hx1,x2

at θ = 0 if

ϕ+(Hx1,x2
(0)) := lim

θ→0+

ϕ(Hx1,x2
(θ)) − ϕ(x1)

θ

exists.

Clearly, if ϕ : X → R has a right derivative with respect to the arc Hx1,x2
at θ = 0,

then

ϕ(Hx1,x2
(θ)) = ϕ(x1) + θϕ+(Hx1,x2

(0)) + θα(θ),

where θ ∈ [0, 1] and α : [0, 1] → R satisfies lim
θ→0+

α(θ) = 0.

Let X ⊆ Rn be AC. For any x1 and x2 in X , let Hx1,x2
be an arc connecting them. Let

ϕ : X → R and ψ : X → R possess right derivatives with respect to the arc Hx1,x2
at θ = 0.

Now we introduce the following concepts.

Definition 1.3 (ϕ(·), ψ(·)) is called arcwise connected type I (CN-type I), if for every

x1, x2 ∈ X,

ϕ(x2) − ϕ(x1) > ϕ+(Hx1,x2
(0)),

−ψ(x1) > ψ+(Hx1,x2
(0)).

Definition 1.4 (ϕ(·), ψ(·)) is called P-Q-arcwise connected type I (PQCN-type I), if

for every x1, x2 ∈ X,

ϕ+(Hx1,x2
(0)) > 0 ⇒ ϕ(x2) > ϕ(x1),

−ψ(x1) 6 0 ⇒ ψ+(Hx1,x2
(0)) 6 0.

Definition 1.5 (ϕ(·), ψ(·)) is called Q-P-arcwise connected type I (QPCN-type I), if

for every x1, x2 ∈ X,

ϕ(x2) 6 ϕ(x1) ⇒ ϕ+(Hx1,x2
(0)) 6 0,

ψ+(Hx1,x2
(0)) > 0 ⇒ −ψ(x1) > 0. (1.1)
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If in the above definition, inequality (1.1) is satisfied as

ψ+(Hx1,x2
(0)) > 0 ⇒ −ψ(x1) > 0 for x1 6= x2,

then we say that (ϕ(·), ψ(·)) is Q-strictly-P-arcwise connected type I (QSTPCN-type I).

Let A be a topological vector space and B a nonempty set in A. Let B̄ denote the

closure of B and B∗ = {b∗ ∈ A∗|〈b, b∗〉 > 0, ∀b ∈ B}, where A∗ is the dual space of A.

For some nonempty set Y , let RY = πY R denote the product space under a product

topology. Then the topological dual space of RY is the generalized finite sequence space

consisting of all the functions u : Y → R with finite support. The set RY
+ = πY R+ denotes

the convex cone of all nonnegative functions on Y . Then (RY
+)∗ = Λ = {λ = (λy)y∈Y : ∃ a

finite set Y0 ⊆ Y such that λy = 0, ∀y ∈ Y \Y0 and λy > 0, ∀y ∈ Y0}.

Definition 1.6
[3] Let ϕ : X → R and G : X × Y → R, where X and Y are arbitrary

sets. The pair (ϕ,G) is called convexlike on X , if for every x1, x2 ∈ X there exist x3 ∈ X

and θ ∈ (0, 1) such that

ϕ(x3) 6 (1 − θ)ϕ(x1) + θϕ(x2)

and

G(x3, y) 6 (1 − θ)G(x1, y) + θG(x2, y), ∀y ∈ Y.

We now consider the following minmax fractional programming problem:

(P) min F (x) = sup
y∈Y

f(x, y)

h(x, y)
,

s.t. g(x) 6 0, x ∈ X,

where

(a) X is an open AC subset of Rn, and Y is a compact subset of Rn;

(b) f : X × Y → R is nonnegative, and f(x, ·) is continuous on Y for any x ∈ X ;

(c) h : X × Y → R is positive, and h(x, ·) is continuous on Y for any x ∈ X ;

(d) g : X → Rp;

(e) the right derivatives of the functions f(·, y), h(·, y) and g(·) with respect to an arc

Hx1,x2
at θ = 0 exist, ∀x1, x2 ∈ X, ∀y ∈ Y ;

(f) f+(Hx1,x2
(0), ·) and h+(Hx1,x2

(0), ·) are continuous on Y, ∀x1, x2 ∈ X .

We let J = {1, 2, · · · , p}, J(x) = {j ∈ J |gj(x) = 0},

Y (x) =

{

y ∈ Y

∣

∣

∣

∣

f(x, y)

h(x, y)
= sup

z∈Y

f(x, z)

h(x, z)

}

,
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The feasible set of problem (P) is defined as K = {x ∈ X |g(x) 6 0}.

Definition 1.7 x∗ ∈ K is called a (P)-optimal solution, if

sup
y∈Y

f(x∗, y)

h(x∗, y)
6 sup

y∈Y

f(x, y)

h(x, y)
, ∀x ∈ K.

Consider the following problem (Pv) associated with (P):

(Pv) min sup
y∈Y

[f(x, y) − vh(x, y)],

s.t. g(x) 6 0.

Lemma 1.1 Let x∗ be a (P)-optimal solution and v = sup
y∈Y

f(x∗,y)
h(x∗,y) . Then x∗ is a

(Pv)-optimal solution.

Proof If x∗ is not a (Pv )-optimal solution, then there exists a feasible x of (Pv ) such

that

sup
y∈Y

[f(x, y) − vh(x, y)] < sup
y∈Y

[f(x∗, y) − vh(x∗, y)]. (1.2)

Because

sup
y∈Y

[

f(x∗, y)

h(x∗, y)
− v

]

= 0 ⇒ sup
y∈Y

[

f(x∗, y) − vh(x∗, y)

h(x∗, y)

]

= 0

and h(x∗, y) > 0, we have

sup
y∈Y

[f(x∗, y) − vh(x∗, y)] 6 0.

By (1.2), we get

sup
y∈Y

[f(x, y) − vh(x, y)] < 0,

and hence

sup
y∈Y

[

f(x, y) − vh(x, y)

h(x, y)

]

< 0.

Therefore

sup
y∈Y

f(x, y)

h(x, y)
< v = sup

y∈Y

f(x∗, y)

h(x∗, y)
,

which contradicts the (P)-optimality of x∗. Hence the result follows.

For any t > 0 and x ∈ X , define

Φj(x) = g+
j (Hx∗,x(0)) + t, j ∈ J(x∗),

G(x, y) = f+(Hx∗,x(0), y) − vh+(Hx∗,x(0), y) + t, y ∈ Y (x∗),

and
Ω(x∗, t) = {(u, r)| r = (rj)j∈J(x∗) and there exists x ∈ X such that

Φj(x) 6 rj , j ∈ J(x∗), G(x, y) 6 u(y), ∀y ∈ Y (x∗)}.

Lemma 1.2(Necessary Optimality Condition) Suppose that
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(i) x∗ is a (P)-optimal solution;

(ii) (Φj , G)j∈J(x∗) are convexlike on X ;

(iii) There exist a neighborhood U of the zero element “0” in RY (x∗) and constants δ =

(δj)j∈J(x∗) such that the set Ω(x∗, t)∩U × πj∈J(x∗)(−∞, δj ] is a nonempty closed set,

∀t > 0.

Then, there exist an integer α > 0, scalars λi > 0, (1 6 i 6 α), µj > 0, (1 6 j 6 p), vectors

yi ∈ Y (x∗), (1 6 i 6 α), and v ∈ R+ such that

α
∑

i=1

λi[f
+(Hx∗,x(0), yi) − vh+(Hx∗,x(0), yi)] +

p
∑

j=1

µjg
+
j (Hx∗,x(0)) > 0, ∀x ∈ X ;

f(x∗, yi) − vh(x∗, yi) = 0, ∀1 6 i 6 α;

µjgj(x
∗) = 0, ∀1 6 j 6 p;

α
∑

i=1

λi +

p
∑

j=1

µj 6= 0.

Proof Since x∗ is a (P)-optimal solution, by Lemma 1.1, there exists a v such that x∗

is a (Pv )-optimal solution. The theorem now follows by applying Theorem 3.1 of [3] to (Pv)

at (x∗, v).

2 Duality

In this section, we introduce a kind of dual model to the minmax problem (P). Let

G =
{

(α, λ, ȳ)| α is a positive integer, λ ∈ Rα
+,

α
∑

i=1

λi = 1, ȳ = (y1, y2, · · · , yα)

with yi ∈ Y (x), 1 6 i 6 α for some x ∈ X
}

.

For ȳ = (y1, y2, · · · , yα) ⊂ Y (x), we define

Ω(α, λ, ȳ) =
{

(z, µ, v) ∈ X ×R
p
+ ×R+ |f(z, yi) − vh(z, yi) = 0, 1 6 i 6 α;

p
∑

j=1

µjgj(z) > 0;

α
∑

i=1

λi[f
+(Hz,w(0), yi) − vh+(Hz,w(0), yi)] +

p
∑

j=1

µjg
+
j (Hz,w(0)) > 0, ∀w ∈ X

}

.

Thus, we can define the following dual problem

(D) max
(α,λ,ȳ)∈G

sup
(z,µ,v)∈Ω(α,λ,ȳ)

F (z) = sup
y∈Y

f(z, y)

h(z, y)
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The feasible set of problem (D) is defined as

S = {(z, µ, v, α, λ, ȳ)|(α, λ, ȳ) ∈ G, (z, µ, v) ∈ Ω(α, λ, ȳ)}

Theorem 2.1(Weak Duality) Suppose that

(i) x ∈ K;

(ii) (z, µ, v, α, λ, ȳ) ∈ S;

(iii) one of the following conditions hold:

(a)
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

is PQCN-type I on K;

(b) [f(·, yi) − vh(·, yi), g(·)], (1 6 i 6 α) are CN-type I on K ;

(c)
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

is QSTPCN-type I on K.

Then,

sup
y∈Y

f(x, y)

h(x, y)
> F (z).

Proof (a) Because −
p
∑

j=1

µjgj(z) 6 0 and the PQCN-ness of
[ α

∑

i=1

λi(f(·, yi)−vh(·, yi)),

p
∑

j=1

µjgj(·)
]

, we have

p
∑

j=1

µjg
+
j (Hz,x(0)) 6 0. (2.1)

Consequently, (z, µ, v, α, λ, ȳ) ∈ S and (2.1) yield

α
∑

i=1

λi[f
+(Hz,x(0), yi) − vh+(Hz,x(0), yi)] > 0. (2.2)

By the PQCN-ness of
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

and (2.2), we have

α
∑

i=1

λi[f(x, yi) − vh(x, yi)] >

α
∑

i=1

λi[f(z, yi) − vh(z, yi)] = 0. (2.3)

Therefore there exists i0 such that f(x, yi0) − vh(x, yi0 ) > 0. It follows that

sup
y∈Y

f(x, y)

h(x, y)
>
f(x, yi0)

h(x, yi0)
> v =

f(z, yi0)

h(z, yi0)
.

Since yi0 ∈ Y (z), we have

f(z, yi0)

h(z, yi0)
= sup

y∈Y

f(z, y)

h(z, y)
= F (z).
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Thus the conclusion of the theorem is true under condition (a).

(b) By the given hypothesis, we have

[f(x, yi) − vh(x, yi)] − [f(z, yi) − vh(z, yi)] > f+(Hz,x(0), yi) − vh+(Hz,x(0), yi),

−gj(z) > g+
j (Hz,x(0)), 1 6 j 6 p.

Therefore

α
∑

i=1

λi[(f(x, yi) − vh(x, yi)) − (f(z, yi) − vh(z, yi))] >

α
∑

i=1

λi[f
+(Hz,x(0), yi) − vh+(Hz,x(0), yi)], (2.4)

−

p
∑

j=1

µjgj(z) >

p
∑

j=1

µjg
+
j (Hz,x(0)). (2.5)

By −
p
∑

j=1

µjgj(z) 6 0 and (2.5), we get

p
∑

j=1

µjg
+
j (Hz,x(0)) 6 0. (2.6)

Consequently, (z, µ, v, α, λ, ȳ) ∈ S, (2.6) and (2.4) yield

α
∑

i=1

λi[f(x, yi) − vh(x, yi)] >

α
∑

i=1

λi[f(z, yi) − vh(z, yi)] = 0,

which is the same as (2.3). The remaining part of the proof is the same as that under

hypothesis (a).

(c) By the QSTPCN-ness of
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

and the condition

(ii), we in turn have the followings:

−
p
∑

j=1

µjgj(z) 6 0 ⇒
p
∑

j=1

µjg
+
j (Hz,x(0)) < 0

⇒
α
∑

i=1

λi[f
+(Hz,x(0), yi) − vh+(Hz,x(0), yi)] > 0

⇒
α
∑

i=1

λi[f(x, yi) − vh(x, yi)] >
α
∑

i=1

λi[f(z, yi) − vh(z, yi)] = 0.

The remaining part of the proof is the same as that under hypothesis (a).

Theorem 2.2 (Strong Duality) Suppose that

(i) x∗ is a (P)-optimal solution;

(ii) there exists w∗ ∈ X such that g+
j (Hx∗,w∗(0)) < 0, 1 6 j 6 p;
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(iii) the conditions of Lemma 2.2 are satisfied;

Then, there exists (α∗, λ∗, y∗) ∈ G and µ∗ ∈ R
p
+, v ∈ R+ such that (x∗, µ∗, v∗) ∈ Ω(α∗, λ∗, y∗).

Further, if one of the following conditions hold:

(a)
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

is PQCN-type I on K;

(b) [f(·, yi) − vh(·, yi), g(·)], (1 6 i 6 α) are CN-type I on K ;

(c)
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

is QSTPCN-type I on K.

Then (x∗, µ∗, v∗, α∗, λ∗, y∗) is a (D)-optimal solution, and the two problems (P) and (D)

have the same extremal value.

Proof By Lemma 1.2, there exist an integer α∗ > 0, scalars λ̄ ∈ Rα∗

+ , µ̄ ∈ R
p
+, v

∗ ∈ R+,

and vectors y∗i ∈ Y (x∗), 1 6 i 6 α∗ such that

α∗

∑

i=1

λ̄i[f
+(Hx∗,w(0), y∗i ) − v∗h+(Hx∗,w(0), y∗i )]

+

p
∑

j=1

µ̄jg
+
j (Hx∗,w(0)) > 0, ∀w ∈ X (2.7)

f(x∗, y∗i ) − v∗h(x∗, y∗i ) = 0, 1 6 i 6 α∗ (2.8)
p

∑

j=1

µ̄jgj(x
∗) > 0 (2.9)

α∗

∑

i=1

λ̄i +

p
∑

j=1

µ̄j 6= 0 (2.10)

If λ̄ = 0, then (2.10) gives
p
∑

j=1

µ̄j 6= 0 and (2.7) reduces to

p
∑

j=1

µ̄jg
+
j (Hx∗,w(0)) > 0, ∀w ∈ X. (2.11)

On the other hand, by the hypothesis (ii), we can get

p
∑

j=1

µ̄jg
+
j (Hx∗,w∗(0)) < 0,

which contradicts (2.11) for w = w∗. Therefore, λ̄ 6= 0, i.e.,
α∗

∑

i=1

λ̄i 6= 0. Set τ =
α∗

∑

i=1

λ̄i, λ
∗ =

τ−1λ̄, µ∗ = τ−1µ̄, and y∗ = (y∗1 , y
∗

2 , · · · , y
∗

α∗). Then (α∗, λ∗, y∗) ∈ G and (x∗, µ∗, v∗, α∗, λ∗, y∗)
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is (D)-feasible. Now, if (x∗, µ∗, v∗, α∗, λ∗, y∗) is not (D)-optimal, then there exists a (D)-

feasible point (x, µ, v, α, λ, ȳ) such that

F (x) = sup
z∈Y

f(x, z)

h(x, z)
> F (x∗) = sup

z∈Y

f(x∗, z)

h(x∗, z)
,

which contradicts the weak duality between (P)-feasible point x∗ and (D)-feasible point

(x, µ, v, α, λ, ȳ) by Theorem 2.1. Thus, (x∗, µ∗, v∗, α∗, λ∗, y∗) is (D)-optimal solution. Since

F (x∗) = sup
z∈Y

f(x∗, z)

h(x∗, z)
,

the two problems (P) and (D) have the same extremal value.

Theorem 2.3 (Strict Converse Duality) Suppose that

(i) x∗ is a (P)-optimal solution and (z∗, µ∗, v∗, α∗, λ∗, y∗) is a (D)-optimal solution;

(ii) there exists w∗ ∈ X such that g+
j (Hx∗,w∗(0)) < 0, 1 6 j 6 p;

(iii) the conditions of Lemma 1.2 are satisfied;

(iv)
[ α

∑

i=1

λi(f(·, yi) − vh(·, yi)),
p
∑

j=1

µjgj(·)
]

is QSTPCN-type I on K.

Then, x∗ = z∗; that is, z∗ is a (P)-optimal solution.

Proof We shall assume that x∗ 6= z∗ and reach a contradiction. From Theorem 2.2,

we know that the two problem (P) and (D) have the same extremal value, i.e.,

sup
y∈Y

f(z∗, y)

h(z∗, y)
= F (z∗) = sup

y∈Y

f(x∗, y)

h(x∗, y)
(2.12)

Using the fact that −
p
∑

j=1

µ∗

jgj(z
∗) 6 0 and the assumption (iv) , we have

p
∑

j=1

µ∗

jg
+
j (Hz∗,x∗(0)) < 0. (2.13)

(2.13) together with (z∗, µ∗, v∗, α∗, λ∗, y∗) ∈ S yields

α∗

∑

i=1

λ∗i [f
+(Hz∗,x∗(0), y∗i ) − v∗h+(Hz∗,x∗(0), y∗i )] > 0. (2.14)

By (2.14) and the suppose (iv), we have

α∗

∑

i=1

λ∗i [f(x∗, y∗i ) − v∗h(x∗, y∗i )] >

α∗

∑

i=1

λ∗i [f(z∗, y∗i ) − v∗h(z∗, y∗i )] = 0.
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Therefore, there exists i0 such that f(x∗, y∗i0) − v∗h(x∗, y∗i0) > 0. It follows that

sup
y∈Y

f(x∗, y)

h(x∗, y)
>
f(x∗, y∗i0)

h(x∗, y∗i0)
> v∗ =

f(z∗, y∗i0)

h(z∗, y∗i0)
. (2.15)

Using the fact that y∗i0 ∈ Y (z∗), we get

f(z∗, y∗i0)

h(z∗, y∗i0)
= sup

y∈Y

f(z∗, y)

h(z∗, y)
= F (z∗). (2.16)

By (2.15) and (2.16), we have

sup
y∈Y

f(x∗, y)

h(x∗, y)
> sup

y∈Y

f(z∗, y)

h(z∗, y)
= F (z∗),

which contradicts (2.12). Hence, x∗ = z∗.
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