The Wiener Index of Trees with Prescribed Diameter＊

XING Baohua ${ }^{1 \dagger} \quad$ CAI Gaixiang ${ }^{1}$

Abstract

The Wiener index $W(G)$ of a graph G is defined as the sum of $d_{G}(u, v)$ over all pairs of vertices，where $d_{G}(u, v)$ is the distance between vertices u and v in G ．In this paper，we characterize the tree with third－minimum Wiener index and introduce the method of obtaining the order of the Wiener indices among all the trees with given order and diameter，respectively．

Keywords Wiener index，diameter，tree，distance
Chinese Library Classification O223
2010 Mathematics Subject Classification 90C70，90C05

固定直径的树的 Wiener 指数

那抱花 ${ }^{1 \dagger}$ 蔡改香 ${ }^{1}$

摘要 图 G 的 Wiener 指数定义为图中所有点对 u, v 的距离之和 $\sum d_{G}(u, v)$ ．在给定顶点和直径的所有树中具有第三小 Wiener 指数的树的特征，得到这类树的 Wiener 指数排序的方法．

关键词 Wiener 指数，直径，树，距离
中图分类号 O221
数学分类号 $90 \mathrm{C} 70,90 \mathrm{C} 05$

0 Introduction

The Wiener index of a graph G ，defined in［1］，is

$$
W(G)=\sum_{u, v \in V(G)} d_{G}(u, v)
$$

where $d_{G}(u, v)$ is the distance between u and v in G and the sum goes over all the pairs of vertices．Since the Wiener index was introduced by Wiener in $1947^{[1]}$ ，numerous of its chemical applications were reported and its mathematical properties were understood（see ［1－5］）．Recently，finding the graphs with minimum or maximum topological indices including Wiener index attracted the attention of many researchers and lots of results are achieved（see

[^0]$[6-12]$). For example, Liu and $\operatorname{Pan}^{[6]}$ obtained the graphs with the minimum and secondminimum Wiener indices among all graphs with given order and diameter. Deng and Xiao ${ }^{[8]}$ gave the maximum Wiener polarity index of trees with n vertices and k pendants. Chen and Zhang ${ }^{[9]}$ characterized all extremal graphs which attain the lower bound of Wiener index of unicyclic graphs of order n with girth and the matching number $\beta \geqslant 3 g / 2$. Lin ${ }^{[11]}$ characterized the graphs with the minimum and maximum Wiener indices among all graphs with given order and clique number. More results of the Wiener index, we refer the readers to [2].

All graphs considered in this paper are finite, simple and undirected. For a vertex x of a graph G, we denote the degree of x by $d(x)$. The diameter of a $\operatorname{graph} G, \operatorname{diam}(G)$, is the maximum distance between any two vertices of G. The distance of a vertex $x, D_{G}(x)$, is the sum of distances between x and all other vertices of G. The order of a graph G is denoted by $n(G)$. Let P_{n} and S_{n} denote the path and star of order $n, T_{n-3,1}^{1}$ is a tree of order n obtained from the star S_{n-1} by attaching a pendant vertex to one pendant vertex of S_{n-1}. In order to formulate our results, we define some trees as follows.

We use $G=P_{d}^{v_{1} v_{2} \cdots v_{k}}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ to denote the tree of order n obtained from a path $P_{d}=v_{0} v_{1} \cdots v_{d}$ by identifying a tree T_{i} to vertex v_{i} of $P_{d}(1 \leqslant i \leqslant k, 1 \leqslant k \leqslant d-1)$, where v_{i} is the root of T_{i}, let $l_{k}=n\left(T_{k}\right)-1$ and $l=l_{1}+l_{2}+\cdots+l_{k}$, then $l=n-d-1$. If $T_{i} \cong S_{i}$, let

$$
G_{1}=P_{d}^{v_{1} v_{2} \cdots v_{k}}\left(S_{l_{1}+1}, S_{l_{2}+1}, \cdots, S_{l_{k}+1}\right),
$$

the root v_{i} is the center of the star $S_{l_{i}+1}$. Write

$$
\begin{aligned}
H_{1}= & \left\{P_{d}^{v_{i}}\left(T_{i}\right): 1 \leqslant i \leqslant d-1\right\} \text { and } T_{n, d, i}=P_{d}^{v_{i}}\left(S_{n-d}\right), X_{n, d, i}=P_{d}^{v_{i}}\left(T_{n-d-3,1}^{1}\right) ; \\
H_{2}= & \left\{P_{d}^{v_{i} v_{j}}\left(T_{i}, T_{j}\right): 1 \leqslant i<j \leqslant 1\right\} \text { and } Z_{n, d, i, j}=P_{d}^{v_{i} v_{j}}\left(S_{n-d-1}, S_{2}\right), \\
& \left.A_{n, d, i, j}\right) P_{d}^{v_{i} v_{j}}\left(S_{n-d-2}, S_{3}\right) ; \\
H_{3}= & \left\{P_{d}^{v_{d} v_{j} v_{m}}\left(T_{i}, T_{j}, T_{m}\right): 1 \leqslant i<j<m \leqslant d-1\right\} \text { and } B_{n, d, i, j, m}=P_{d}^{v_{i} v_{j} v_{m}}\left(S_{2}, S_{n-d-2},\right. \\
& \left.S_{2}\right) .
\end{aligned}
$$

Some of these graphs are depicted in Fig.1. We follow [3] for other graph-theoretical terminologies and notations not defined here.

Fig. 1
Let T be a tree of order n with diameter d. If $d=n-1$, then $T \cong P_{n}$; if $d=n-2$, then T is a tree obtained from the path $P_{d}=v_{0} v_{1} \cdots v_{d}$ by attaching a pendant vertex to the vertex v_{i} of $P_{d},\left(d\left(v_{i}\right)=2\right)$; if $n-3 \leqslant d \leqslant n-5$, then the research on Wiener index of T is easy; and if $d=2$, then $T \cong S_{n}$. Therefore, in the following, we assume that $3 \leqslant d \leqslant n-6$. Let $T_{n, d}=\left\{G: G=P_{d}^{v_{1} v_{2} \cdots v_{k}}\left(T_{1}, T_{2}, \cdots, T_{k}\right)\right.$ is a tree with order n and
diameter $d, 3 \leqslant d \leqslant n-6\}$. In this paper, the third-minimum Wiener index of tree in the set $T_{n, d}(3 \leqslant d \leqslant n-6)$ is characterized.

1 Lemmas

Lemma 1.1 ${ }^{[2]}$ Let T be a tree of order n. Then $W(T) \geqslant W\left(S_{n}\right)$ and the equality holds if and only if $T \cong S_{n}$.

By Lemma 1.1, we have the result. Let H be a connected graph and T_{l} be a tree of order l with $V(H) \cap V\left(T_{l}\right)=\{v\}$. Then $W\left(H v T_{l}\right) \geqslant W\left(H v S_{l}\right)$, and equality holds if and only if $H v T_{l} \cong H v S_{l}$, where v is identified with the center of the star S_{l} in $H v S_{l}$.

Lemma 1.2 ${ }^{[11]}$ Let H, X, Y be three connected, pairwise disjoint graphs. Suppose that u, v are two vertices of H, v^{\prime} is a vertex of X, u^{\prime} is a vertex of Y. Let G be the graph obtained from H, X, Y by identifying v with v^{\prime} and u with u^{\prime}, respectively. Let G_{1}^{*} be the graph obtained from H, X, Y by identifying vertices $v, v^{\prime}, u^{\prime}$, and let G_{2}^{*} be the graph obtained from H, X, Y by identifying vertices $u, v^{\prime}, u^{\prime}$. Then

$$
W\left(G_{1}^{*}\right)<W(G) \quad \text { or } \quad W\left(G_{2}^{*}\right)<W(G)
$$

Lemma 1.3 ${ }^{[6]}$ Let $P=v_{0} v_{1} \cdots v_{d}$ be a path of order $d+1$. Then

$$
D_{p}\left(v_{j}\right)=\frac{2 j^{2}-2 d j+d^{2}+d}{2}
$$

for $1 \leqslant j \leqslant d-1$. Moreover, if $1 \leqslant i<j \leqslant d / 2$, then

$$
D_{p}\left(v_{i}\right)>D_{p}\left(v_{j}\right)
$$

and if $d / 2 \leqslant i<j \leqslant d-1$, then

$$
D_{p}\left(v_{i}\right)<D_{p}\left(v_{j}\right)
$$

Lemma 1.4 Let $G=P_{d}^{v_{1} v_{2} \cdots v_{k}}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ be a tree of order n with diameter d, then

$$
\begin{aligned}
W(G)= & \frac{(d+1)^{3}-(d+1)}{6}+\sum_{i=1}^{k} l_{i} D_{P_{d}}\left(v_{i}\right)+\sum_{i=1}^{k} W\left(T_{i}\right) \\
& +d \sum_{i=1}^{k} w_{i}+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left(l_{i} w_{j}+l_{j} w_{i}+l_{i} l_{j} d_{P_{d}}\left(v_{i}, v_{j}\right)\right)
\end{aligned}
$$

where $l_{i}=n\left(T_{i}\right)-1, w_{i}=D_{T_{i}}\left(v_{i}\right)$ is the sum of distances between v_{i} and all other vertices of T_{i}.

Proof In order to verify the result, we divide the vertices of G into four cases:
(1) $x, y \in V\left(P_{d}\right)$, the sum of distances between x and y, denoted by W_{1}, then

$$
W_{1}=\frac{(d+1)^{3}-(d+1)}{6}
$$

(2) $x, y \in V\left(T_{i}-v_{i}\right), 1 \leqslant i \leqslant k$, the sum of distances between x and y, denoted by W_{2}, then

$$
W_{2}=\sum_{i=1}^{k}\left(W\left(T_{i}\right)-w_{i}\right)
$$

where $w_{i}=D_{T_{i}}\left(v_{i}\right)$ is the sum of distances between v_{i} and all other vertices of T_{i}.
(3) $x \in V\left(T_{i}-v_{i}\right), y \in V\left(T_{j}-v_{j}\right), 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant k$ and $i \neq j$, the sum of distances between x and y, denoted by W_{3}, then

$$
\begin{aligned}
d_{G}(x, y) & =d_{T_{i}}\left(x, v_{i}\right)+d_{P_{d}}\left(v_{i}, v_{j}\right)+d_{T_{j}}\left(v_{j}, y\right), \\
\sum_{x \in V\left(T_{i}-v_{i}\right)} \sum_{y \in V\left(T_{j}-v_{j}\right)} d_{G}(x, y) & =\sum_{x \in V\left(T_{i}-v_{i}\right)} \sum_{y \in V\left(T_{j}-v_{j}\right)}\left(d_{T_{i}}\left(x, v_{i}\right)+d_{P_{d}}\left(v_{i}, v_{j}\right)+d_{T_{j}}\left(v_{j}, y\right)\right) \\
& =\sum_{x \in V\left(T_{i}-v_{i}\right)}\left(l_{j} d_{T_{i}}\left(x, v_{i}\right)+w_{j}+l_{j} d_{P_{d}}\left(v_{i}, v_{j}\right)\right) \\
& =l_{j} w_{i}+l_{i} w_{j}+l_{i} l_{j} d_{P_{d}}\left(v_{i}, v_{j}\right)
\end{aligned}
$$

hence

$$
W_{3}=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left(l_{i} w_{j}+l_{j} w_{i}+l_{i} l_{j} d_{P_{d}}\left(v_{i}, v_{j}\right)\right)
$$

Where $l_{i}=n\left(T_{i}\right)-1$.
(4) $x \in V\left(T_{i}-v_{i}\right), y \in V\left(P_{d}\right), 1 \leqslant i \leqslant k$, the sum of distances between x and y, denoted by W_{4}, then

$$
\begin{aligned}
W_{4} & =\sum_{i=1}^{k} \sum_{y \in V\left(P_{d}\right)} \sum_{x \in V\left(T_{i}-v_{i}\right)} d_{G}(x, y) \\
& =\sum_{i=1}^{k} \sum_{y \in V\left(P_{d}\right)} \sum_{x \in V\left(T_{i}-v_{i}\right)}\left(d_{G}\left(x, v_{i}\right)+d_{G}\left(v_{i}, y\right)\right) \\
& =\sum_{i=1}^{k} \sum_{y \in V\left(P_{d}\right)}\left(l_{i} d_{G}\left(v_{i}, y\right)+w_{i}\right) \\
& =\sum_{i=1}^{k}\left(l_{i} D_{P_{d}}\left(v_{i}\right)+(d+1) w_{i}\right),
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W(G)= & W_{1}+W_{2}+W_{3}+W_{4} \\
= & \frac{(d+1)^{3}-(d+1)}{6}+\sum_{i=1}^{k} l_{i} D_{P_{d}}\left(v_{i}\right)+\sum_{i=1}^{k} W\left(T_{i}\right) \\
& +d \sum_{i=1}^{k} w_{i}+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left(l_{i} w_{j}+l_{j} w_{i}+l_{i} l_{j} d_{P_{d}}\left(v_{i}, v_{j}\right)\right)
\end{aligned}
$$

where $l_{i}=n\left(T_{i}\right)-1, w_{i}=D_{T_{i}}\left(v_{i}\right), i=1,2, \cdots, k$.
Lemma 1.5 ${ }^{[6]}$ Let T be a non-trivial connected graph and let $v \in V(T)$. Suppose that two paths $P=v v_{1} v_{2} \cdots v_{k}, Q=v u_{1} u_{2} \cdots u_{m}$ of lengths $k, m(k \geqslant m \geqslant 1)$ are attached to T by their ends vertices at v, respectively, to form $T_{k, m}^{*}$. Then

$$
W\left(T_{k, m}^{*}\right)<W\left(T_{k+1, m-1}^{*}\right)
$$

2 Main results

In this section, we will give the tree with the third-minimum Wiener index in the set $T_{n, d}(3 \leqslant d \leqslant n-6)$. Liu and $\operatorname{Pan}{ }^{[6]}$ obtained the tree with the minimum Wiener index is $T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}$ and the tree with the second-minimum Wiener index is $Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}$ in the set $T_{n, d}(3 \leqslant d \leqslant n-3)$. In fact, by Lemma 1.1, 1.3-1.5, we have in the set H_{1}, the Wiener index is minimized by the tree $T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}$ and in the set H_{2}, the Wiener index is minimized by the tree $Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}$.

Lemma 2.1 In the set H_{2} with $3 \leqslant d \leqslant n-6$,
(1) for d is even, the second-minimum Wiener index of tree is

$$
Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor} \quad \text { or } \quad A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}
$$

(2) for d is odd, the second-minimum Wiener index of tree is

$$
Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}
$$

Proof By lemmas in section 1, we get the tree with the second-minimum Wiener index in the set H_{2} maybe

$$
Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor} \text { or } A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1} \text { or } Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2} \quad \text { or } P_{d}^{v\left\lfloor\frac{d}{2}\right\rfloor}{ }^{v}\left\lfloor\frac{d}{2}\right\rfloor+1,\left(T_{n-d-4,1}^{1}, S_{2}\right) .
$$

By Lemma 1.3 and 1.4, it is easy to obtain that

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)=(n-d-2)\left(2 d-4\left\lfloor\frac{d}{2}\right\rfloor\right)+\left(2 d-4-4\left\lfloor\frac{d}{2}\right\rfloor\right),
$$

if d is even, the result is $-4<0$; if d is odd, the result is $2(n-d-3)>0$.

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)=(n-d)\left(d-2\left\lfloor\frac{d}{2}\right\rfloor\right)
$$

if d is even, the result is 0 ; if d is odd, the result is $n-d>0$.

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(P_{d}^{v\left\lfloor\frac{d}{2}\right\rfloor}{ }^{v}\left\lfloor\frac{d}{2}\right\rfloor+1 ~\left(T_{n-d-4,1}^{1}, S_{2}\right)\right)=(n-d-1)\left(d-2\left\lfloor\frac{d}{2}\right\rfloor\right)-d,
$$

if d is even, the result is $-d<0$.

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)-W\left(A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)=-(n-d-2)\left(d-2\left\lfloor\frac{d}{2}\right\rfloor\right)+4
$$

if d is odd, the result is $-(n-d-6) \leq 0$.

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)-W\left(P_{d}\left\lfloor\frac{d}{2}\right\rfloor{ }^{v}\left\lfloor\frac{d}{2}\right\rfloor+1 ~\left(T_{n-d-4,1}^{1}, S_{2}\right)\right)=(n-d-1)\left(2\left\lfloor\frac{d}{2}\right\rfloor-d\right)-d+4,
$$

if d is odd, the result is $5-n<0$.
Thus the result holds.
Lemma 2.2 Let $G \in T_{n, d} \backslash\left(H_{1} \cup H_{2}\right), 3 \leqslant d \leqslant n-6$. Then

$$
W(G) \geqslant W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right),
$$

with equality if and only if $G \cong B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}$.
Proof Let $P_{d}=v_{0} v_{1} \cdots v_{d-1} v_{d}$ is a path of length d in G with $d\left(v_{0}\right)=d\left(v_{d}\right)=1$. Let $V_{d}=\left\{v_{i}: d\left(v_{i}\right) \geqslant 3,1 \leqslant i \leqslant d-1\right\}$. Since $n \geqslant d+3, V_{d} \neq \phi$. We discuss in two cases.

Case $1\left|V_{d}\right| \geqslant 3$. In this case, we first obtain a tree $T_{1} \cong G_{1}$, by Lemma 1.1, $W(G) \geqslant$ $W\left(T_{1}\right)$ and equality holds if and only if $G \cong T_{1}$. Since $G \notin\left(H_{1} \cup H_{2}\right)$, by Lemma 1.2 , we can obtain a tree $T_{2} \cong B_{n, d, i, j, m}$ such that

$$
W\left(T_{1}\right)>W\left(T_{2}\right)=W\left(B_{n, d, i, j, m}\right)
$$

Hence

$$
W(G) \geqslant W\left(T_{1}\right)>W\left(T_{2}\right)=W\left(B_{n, d, i, j, m}\right)
$$

Case $2\left|V_{d}\right|=3$ and $G \cong B_{n, d, i, j, m}$. In this case, by Lemma 1.4, we have

$$
\begin{aligned}
W\left(B_{n, d, i, j, m}\right)= & \frac{(d+1)^{3}-(d+1)}{6}+D_{P_{d}}\left(v_{i}\right)+D_{P_{d}}\left(v_{m}\right)+(n-d-3) D_{P_{d}}\left(v_{j}\right) \\
& +(n-d-3)(n-d+1)+d(n-d-1)+4+d_{P_{d}}\left(v_{i}, v_{m}\right) \\
& +(n-d-3) d_{P_{d}}\left(v_{i}, v_{j}\right)+(n-d-3) d_{P_{d}}\left(v_{m}, v_{j}\right)
\end{aligned}
$$

by Lemma 1.3 , it is easy to proof that when $v_{i}=v_{\left\lfloor\frac{d}{2}\right\rfloor-1}, v_{j}=v_{\left\lfloor\frac{d}{2}\right\rfloor}, v_{m}=v_{\left\lfloor\frac{d}{2}\right\rfloor+1}$, the Wiener index of $B_{n, d, i, j, m}$ achieve the minimum.

By case 1 and case 2, the proof of the Lemma is complete.
It is easy to proof that the second-minimum Wiener index among all the trees of order n is $T_{n-3,1}^{1}$ and $W\left(T_{n-3,1}^{1}\right)=(n-2)(n+1)$. Therefore, let $H \in P_{d}^{v}\left\lfloor\frac{d}{2}\right\rfloor\left(T_{\left\lfloor\frac{d}{2}\right\rfloor}\right)$, then

$$
W(H) \geqslant W\left(X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)>W\left(T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

By Lemma 1.3 and 1.4, we have the trees with the second and third-minimum Wiener indices in the set H_{1} maybe $T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1}, T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-2}$ or $X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}$.

Lemma 2.3 In the set $H_{1} \cup H_{2} \cup\left\{B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right\}(3 \leq d \leq n-6)$,
(1) for d is even, the third-minimum Wiener index is

$$
\begin{gathered}
Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor} \text { or } \quad A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor\left\lfloor\left\lfloor\frac{d}{2}\right\rfloor+1\right.}(n<2 d+1) ; \\
X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}(n>2 d+1)
\end{gathered}
$$

(2) for d is odd, the third-minimum Wiener index is $Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}$.

Proof Let

$$
T \in H_{1} \cup H_{2} \cup\left\{B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right\}
$$

is the tree with the third-minimum Wiener index. By Lemma 2.1 and 2.2, T maybe $T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1}$ or $X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}$ or $T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-2} \quad$ or $Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}$ or $Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}$ or $B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}$.

By Lemma 1.3 and 1.4, for d is even,

$$
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)=(n-d-2)\left(1+d-2\left\lfloor\frac{d}{2}\right\rfloor\right)+1-d=n-2 d-1
$$

if $n>2 d+1$, the result is >0; if $n<2 d+1$, the result is <0.

$$
\begin{gathered}
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-2}\right)=-2(n-d)<0, \\
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)-W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor\left\lfloor\left\lfloor\frac{d}{2}\right\rfloor+1\right.}\right)=-2<0,
\end{gathered}
$$

for d is odd,

$$
\begin{gathered}
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)-W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor\left\lfloor\left\lfloor\frac{d}{2}\right\rfloor+1\right.}\right)=-(n-d-2)<0, \\
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)-W\left(X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)=3-d<0 \\
W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)-W\left(T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1}\right)=-(n-d-2)<0 .
\end{gathered}
$$

Thus the lemma is proved.
Theorem 2.4 Let

$$
G \in T_{n, d} \backslash\left\{T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}, T_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1} Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right\},
$$

$(3 \leqslant d \leqslant n-6)$. Then
(1) for d is even,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

or

$$
\begin{gathered}
W(G) \geqslant W\left(A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)(n<2 d+1) \\
W(G) \geqslant W\left(X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)(n>2 d+1)
\end{gathered}
$$

(2) for d is odd,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)
$$

Proof Let $P_{d}=v_{0} v_{1} \cdots v_{d-1} v_{d}$ is a path of length d in G with $d\left(v_{0}\right)=d\left(v_{d}\right)=1$. Let $V_{d}=\left\{v_{i}: d\left(v_{i}\right) \geqslant 3,1 \leqslant i \leqslant d-1\right\}$. Since $n \geqslant d+3, V_{d} \neq \phi$. We consider three cases.

Case $1\left|V_{d}\right| \geqslant 3$.

In this case, by Lemma 2.2 and 2.3, we have

$$
W(G) \geqslant W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right),
$$

and for d is even,

$$
W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)>W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

for d is odd,

$$
W\left(B_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)>W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right) .
$$

So, for d is even,

$$
W(G)>W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

and for d is odd,

$$
W(G)>W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)
$$

Case $2\left|V_{d}\right|=2$.
In this case, by Lemma 2.1, we have for d is even,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right) \quad \text { or } \quad W(G) \geqslant W\left(A_{n, d,\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor+1}\right)
$$

for d is odd,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)
$$

Case $3\left|V_{d}\right|=1$.
In this case, by Lemma 2.3, we have for d is even, when $n>2 d+1$,

$$
W(G) \geqslant W\left(X_{n, d,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

and when $n<2 d+1$,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor-1,\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

For d is odd,

$$
W(G) \geqslant W\left(Z_{n, d,\left\lfloor\frac{d}{2}\right\rfloor+1,\left\lfloor\frac{d}{2}\right\rfloor+2}\right)
$$

According to the above method, if we want to obtain the order of trees in the set $T_{n, d}(3 \leqslant d \leqslant n-6)$ on Wiener index, we should divide $T_{n, d}(3 \leqslant d \leqslant n-6)$ into some smaller sets $H_{k}(1 \leqslant k \leqslant d-1)$. And then, by Lemma 1.1, 1.3 and 1.4, we characterize the order of trees in the set $H_{k}(1 \leqslant k \leqslant d-1)$ respectively, at last we will obtain the order of trees in the set $T_{n, d}(3 \leqslant d \leqslant n-6)$ on wiener index.

References

[1] Wiener H. Structural determination of paraffin boiling point [J]. Amer Chem Soc, 1947, 69: 17-20.
[2] Dobrymin A A, Entringer R, Gutman I. Wiener index of trees: theory and application [J]. Acta Appl Math, 2001, 66: 211-249.
[3] Bondy J A, Murty U S R. Graph Theory with Applications [M]. London: Macmillan Press, 1976.
[4] Dobrymin A A, Gutman I, Klavzar S, et al. Wiener index of hexagonal systems [J]. Acta Appl Math, 2002, 72: 247-294.
[5] Gutman I, Potgieter J H. Wiener index and intermolecular forces [J]. Serb Chem Soc, 1997, 62: 185-192.
[6] Liu H Q, Pan X F. On the Wiener index of trees with fixed diameter [J]. MATCH Commun Math Comput Chem, 2008, 60(1): 85-94.
[7] Zhang H, Xu S, Yang Y. Wiener index of toroidal polyhexes [J]. MATCH Commun Math Comput Chem, 2006, 56: 153-168.
[8] Deng H Y, Xiao H. The maximum Wiener polarity index of trees with k pendants [J]. Applied Mathematics Letters, 2010, 23: 710-715.
[9] Chen Y H, Zhang X D. The Wiener Index of Unicyclic Graphs with Girth and the Matching Number [J]. Mathematics, 2011, (2): 1-15.
[10] Liu H Q, Lu M. A unified approach to extremal cacti for different indices [J]. MATCH Commun Math Comput Chem, 2007, 58(1): 183-194.
[11] Lin X X. On the extremal Wiener index of some graphs [J]. OR Transactions, 2010, 14(2): 55-60.
[12] Deng H Y. The trees on $n \geqslant 9$ vertices with the first to seventeenth greatest Wiener indices are chemical trees [J]. MATCH Commun Math Comput Chem, 2007, 57(2): 393-402.

[^0]: 收稿日期：2011年6月7日．
 ＊This work was supported by Natural Science Foundation of Department of Education of Anhui Province （KJ2011Z236）．

 1．School of Mathematics and Computational Science，Anqing Teachers College，Anqing 246133，China；安庆师范学院数学与计算科学学院，安庆 246133
 \dagger 通讯作者 Corresponding author

