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The Number of Arcs of Strongly Connected Oriented

Graphs with Two Noncritical Vertices∗
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Abstract It is proved that a strongly connected oriented graph D with n > 4 vertices

and at least
(

n−1

2

)

+ 3 arcs has two distinct vertices u∗, v∗ such that both D − u∗ and

D − v∗ are strongly connected. The examples show that the above lower bound on the

number of arcs is sharp.
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1 Terminology and introduction

For graph-theoretical terminology and notation not defined here we follow [1]. We

only consider finite (di)graphs without loops and multiple edges (arcs). A digraph H is a

subdigraph of a digraph D (written H ⊆ D) if V (H) ⊆ V (D), A(H) ⊆ A(D) and every arc

in A(H) has both end-vertices in V (H). When H ⊆ D but H 6= D, we call H a proper

subdigraph of D. A spanning subdigraph of D is a subdigraph H with V (H) = V (D).

Suppose that U is a nonempty subset of V = V (D). The subdigraph of D whose vertex

set is U and whose arc set is the set of those arcs of D that have both end-vertices in U is

called the subdigraph of D induced by U and is denoted by D[U ]; we say that D[U ] is an

induced subdigraph of D. The induced subdigraph G[V \ U ] is denoted by D − U ; it is the*�&$� 2011 " 8 � 13 &�
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subdigraph obtained from D by deleting the vertices in U together with their incident arcs.

If U = {v} we write D − v for D − {v}.

A digraph D is strongly connected (or, just, strong) if every vertex of D is reachable

from every other vertex of D. We define a digraph with one vertex to be strong. A vertex

v in a strong digraph D is said to be noncritical if the digraph D− v is also strong. Similar

notions can be introduced for an undirected graph G. It is well known that a connected

undirected graph G with at least two vertices contains a spanning tree T , whence at least

two noncritical vertices (in particular, any leaf in T is noncritical both for T and G). So we

have the following statement.

Observation 1.1 Every connected undirected graph on at least 2 vertices has at least

two noncritical vertices.

An oriented graph is a digraph with no cycle of length two. An out-arborescence rooted

at s is an oriented tree T such that s ∈ V (T ) and the in-degree of every vertex x ∈ V (T )\{s}

is 1. A tournament is an oriented graph where every pair of distinct vertices are adjacent.

We have a similar result to Observation 1.1 for tournaments.

Theorem 1.1[1] Every strong tournament on at least 4 vertices contains at least two

noncritical vertices.

Consider the directed cycle Cn with n > 3 vertices. It is easy to see that Cn is strong,

but contains no noncritical vertex. So Observation 1.1 can not be extended to general

digraphs. In 1999, Schwarz[2] conjectured that every strong digraph with n > 3 vertices and

m >
(

n
2

)

+1 arcs contains at least one noncritical vertex. In the same year, London[3] proved

this conjecture. Later, Aharoni and Berger[4] showed that the lower bound on the number

of arcs can be sharpened from
(

n
2

)

+ 1 to
(

n−1
2

)

+ 4.

Theorem 1.2[4] If a strong digraph D with n > 4 vertices has at least
(

n−1
2

)

+4 arcs,

it has at least one noncritical vertex.

For oriented graphs, the above bound on the number of arcs can be improved to
(

n−2
2

)

+

5.

Theorem 1.3[5] If a strong oriented graph D with n > 4 vertices has at least
(

n−2
2

)

+5

arcs, it has at least one noncritical vertex.

In this paper, we will show that
(

n−1
2

)

+ 3 arcs in a strong oriented graph with n > 4

vertices can guarantee the existence of two noncritical vertices. Clearly, Theorem 1.1 is an

immediate consequence of this result.

2 Main result

We start with the notion of maximal strong proper subdigraphs and a characterization

of such subdigraphs. A strong proper subdigraph H of a strong digraph D is maximal if

any strong subdigraph in D containing H coincides either with H or with D.

Lemma 2.1[6] Let H be a strong proper subdigraph of a strong digraph D, and let

H ′ = D−V (H). Then H is a maximal strong proper subdigraph in D iff the following three

conditions are satisfied:

(1) there is a vertex win in H ′ such that any arc going from V (H) to V (H ′) enters win;
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(2) there is a vertex wout in H ′ such that any arc going from V (H ′) to V (H) leaves

from wout;

(3) the distance between win and wout is one less than the order of H ′.

The main result of this paper is the following.

Theorem 2.1 If a strong oriented graph D with n > 4 vertices has at least
(

n−1
2

)

+ 3

arcs, it has at least two noncritical vertices.

Proof By induction on n. The statement is clearly true for n = 4. Suppose, then,

that n > 5. By Theorem 1.3, D has a vertex v∗ such that D − v∗ is strong. We will show

that D has a vertex u∗ 6= v∗ such that D − u∗ is also strong. Let H be a maximal strong

proper subdigraph of D, which contains the vertex v∗, and let H ′ = D − V (H). Since the

subdigraph induced by {v∗} is strong, such a subdigraph H exists. By Lemma 2.1, H ′ has

a Hamilton path x1x2 . . . xk such that any arc going from V (H) to V (H ′) enters x1, any

arc going from V (H ′) to V (H) leaves from xk, and there is no arc of the form xixj , where

i 6 j − 2.

If k = 1, we are done since H = D − x1 is strong and x1 6= v∗.

If k > 3, we construct the digraph D′ from D by removing the vertex x1 and adding

all the arcs wx2 where w is an in-neighbor of x1 in H , that is,

D′ = (D − x1) + {wx2 : wx1 ∈ A(D) and w ∈ V (H)}.

Clearly, D′ is strong and the arcs lost in constructing D′ are x1x2 and those from {x3, . . . , xk}

to x1. So D′ has at least

(

n − 1

2

)

+ 3 − (k − 1) >

(

n − 1

2

)

+ 3 − (n − 2) =

(

n − 2

2

)

+ 3

arcs. By the induction hypothesis, we may choose a vertex u ∈ V (D′)\{v∗} such that D′−u

is strong. Since D′ − x2 is not strong, we have u 6= x2. Moreover, there exists an arc wx2

with w ∈ V (H) and w 6= u. It is now clear that D − u is also strong.

Next, we suppose that k = 2. Then H = D − {x1, x2}. The arcs lost in removing the

vertices x1, x2 from D are those from V (H) to x1 and those from x2 to V (H) apart from

x1x2.

Let

I1 = {wx1 : w ∈ V (H) and wx1 /∈ A(D)}

and

I2 = {x2w : w ∈ V (H) and x2w /∈ A(D)}.

Suppose that |I1|+ |I2| > 2. If n = 5, then H is a strong oriented graph with 3 vertices

and so H is a directed cycle of length 3. It follows that

|A(D)| = |A(H ′)| + |A(H)| + 2(n − 2) − (|I1| + |I2|)

6 1 + 3 + 2 × 3 − 2

= 8 < 9

=

(

n − 1

2

)

+ 3,
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a contradiction. This implies that n > 6. So we have that

|V (H)| = n − 2 > 4

and

|A(H)| = |A(D)| − |A(H ′)| − (2(n − 2) − (|I1| + |I2|))

>

(

n − 1

2

)

+ 3 − 1 − (2(n − 2) − 2)

=

(

n − 3

2

)

+ 3.

Apply the induction hypothesis to H , we can find a vertex u of H such that u 6= v∗ and

H − u is strong. If D − u is strong, we are done. If D − u is not strong, then u is either the

sole in-neighbor of x1 in H or the sole out-neighbor of x2 in H , but not both. In fact, if u

is the sole in-neighbor of x1 in H and is the sole out-neighbor of x2 in H , then

|A(H)| = |A(D)| − 3 >

(

n − 1

2

)

>

(

n − 2

2

)

,

contradicting the fact that D is an oriented graph. So, by duality, we may assume that u

is the sole out-neighbor of x2, but not the sole in-neighbor of x1. Let A1 = {x2w : uw ∈

A(D) and w ∈ V (H)} and let D′ = (D − u) + A1. Clearly, D′ is strong and the possible

arcs lost in constructing D′ are ux1, x2u and those from V (H) to u. Since H is a strong

digraph, there exists at least one out-neighbor v of u in V (H). Combining this with the fact

that H is an oriented graph, we have vu /∈ A(D). So D′ has at least

(

n − 1

2

)

+ 3 − (2 + (n − 4)) =

(

n − 2

2

)

+ 3

arcs. By the induction hypothesis, we may choose a vertex u′ ∈ V (D′) \ {v∗} such that

D′ − u′ is strong. Clearly, u′ 6= x2. It follows that D − u′ is strong.

Suppose that |I1| + |I2| 6 1. Then, by duality, we may assume that x1 is dominated

by every vertex of H , and x2 dominates every vertex of H but at most one vertex. If x2

dominates v∗, let T be a spanning out-arborescence of H rooted at v∗ and let u be a leaf

of T . Then u 6= v∗ and the subdigraph D − u is strong. If x2 does not dominate v∗, then

x2 dominates every vertex of V (H) \ {v∗}. Choose an arc wv∗ ∈ A(H) and let u be an

arbitrary vertex in V (H) \ {w, v∗}. Then D − u is strong. The proof is complete.

Next we introduce a class of oriented graphs Dn that will show that the bound on the

number of arcs in Theorem 2.1 is sharp.

Example 2.1 For an integer n > 4, let Dn be the oriented graph obtained by starting

with a directed cycle x1x2 . . . xnx1 and adding a set of arcs {xjxi : 1 6 i 6 j − 2 6 n − 3}

to the cycle. The oriented graph D6 is shown in Figure 1. The oriented graph Dn has
(

n−1
2

)

+ 2 arcs, is strong, and xn is the unique vertex whose removal does not destroy

strongly connectivity.
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Figure 1. The oriented graph D6
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