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Abstract

We propose a differential difference equation in R' x Z? and study it by Hirota’s bilinear
method. This equation has a singular continuum limit into a system which admits the reduction
to the Davey-Stewartson equation. The solutions of this discrete DS system are characterized by
Casorati and Grammian determinants. Based on the bilinear form of this discrete DS system,

we construct the bilinear Backlund transformation which enables us to obtain its Lax pair.
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1 Introduction

The nonlinear Schrodinger equation (NLS)

82
ZZ 8l<: akﬁ 0200 5

g+ (V)g —iwi|ql*qg =0 (1.1)

is the simplest universal model for the slow evolution of the envelope ¢(r,t) of an almost monochro-
matic wavetrain exp(ikor — iw(ko)t) in a weakly nonlinear medium of nonlinear dispersion relation

w(k) = wo(k) + wi(k)|g]* +--- (1.2)

In a d 4+ 1 dimensional space this equation has d + 1 canonical forms. For d = 1 they are the
7self-focusing NLS”

at +1(qzz + |q)%q) = 0, if wiwy >0 (1.3)
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and the ”self-defocusing NLS”
¢t + i(qex — |q>q) = 0, if wjw <O0. (1.4)

In the literature, one can find many results on egs. (1.3, 1.4) and their discrete versions (see, e.g.
[1, 12] and references therein).

There are several important generalizations of the NLS’s (1.3, 1.4). The best known example
is the Davey-Stewartson (DS) equation [2, 4], a partial differential equation in R? given by:

iq + 02 (qua + 02qyy) = —alq’q + g0, (1.5)
Dra — 0'2¢yy = 20‘(|Q|2)x:r:a

where a? = 1,02 = 1. In the hyperbolic case 02 = 1, the system (1.5, 1.6) is called DSI while
DSII corresponds to the elliptic case 02 = —1. In the following we will focus on the DSI equation.
The DSI equation (1.5, 1.6) is a reduction of the system

iqe + (Qoa + Qyy) = —0q°r + q0,
*Z'Tt + (sz + Tyy) = *OZ(ITQ + r¢a .
bex - Qbyy - QQ(QT)xx’ (1.9)

obtained by requiring that r = ¢*. By the variable transformation 0, = -1 (dx + Oy),0y =

V2
%(8)( —dy), ¢ = agqr + arp, the system (1.7-1.9) may be transformed into

igt + (gxx +qvy) = aqy, (1.10)
—iry + (rxx +ryy) = ary, (1.11)
Yxy = %(é@( + 02 )(qr). (1.12)

Integrable discrete versions for the DS equations have not been much studied yet although much
work has been done on the discrete NLS equation [1]. A few partial results have been presented by
Nijhoff and Konopelchenko in [10, 11, 15]. The purpose of this paper is to propose a new discrete
integrable system of equations which can be considered as a discrete version for the DSI system
(1.10-1.12).

Let us consider the following system

v + aleun—1+un+1—2uvn_1 + aQeuk_1+uk+1—2uvk+l - (041 + Ozg)U _ 0, (1'13)
—jwy + aleunf1+u7z+1—2uwn+1 + 062€uk_1+uk+1_2u'l,Uk_]_ o (061 + OQ)'LU _ O, (1'14)
2 — ZleUn+1,k+1+u—uk+1—un+1 + 29U 1 Wil = 0’ (1.15)

where aq, @, 21 and 2 are constants. In eqs. (1.13-1.15) and in the following we always use a
simplified notation for f(n,k,t). We write explicitly a discrete independent variable only when it
is shifted from its position. For example,

f=fnkt), for1=f(n+1,kt), fep1=f(nk+11t), forip—1=f(n+1,k—1,1).

Let us now show that egs. (1.13-1.15) may be thought of as a discrete version of the DSI system
(1.10-1.12). Let us set

2 1
a1:6—2, ay = —, 21=—, 22:—104, en=X, dk=Y,



and expand the dependent fields in power series around 0 = 0 and € = 0,

2

0
Vi1 = v(n, k) = q(ne, (k+ 1)) = ¢(X,Y +0) = q+ dgy + vyt
2

Wpt1 =wn+ 1L, k)=r((n+1)e, k) =r(X +¢Y) :r—|—67‘X—}—%rXX+---
2

€
Un+1=u+eux+§uxx+---

2 2
€ )
Upt1k+1 = U+ €ux + duy + EUXX + eduxy + EUYY + -

Then the continuous limit of eqs. (1.13-1.15) gives

igr + (gxx + qvy) = —2¢(0% + 0% )u, (1.16)

—irp + (rxx +ryy) = —2r(0% + 0% )u, (1.17)
1

uxy =~ aqr, (1.18)

where 107 = 10} — %6)( + %ay. Under the transformation ¢ = —2a(9% + 9% )u, T — t, the system
(1.16-1.18) reduces to the DSI system (1.10-1.12) .

In the following we will study egs. (1.13-1.15) using Hirota bilinear method. By the dependent
variable transformation

wu=InF, o= @tRiq/p = ¢lataltg/p (1.19)

eqs. (1.13-1.15) are transformed into the bilinear form

[iD; 4+ are™ P + apelP*|G - F =0, (1.20)
[iD; 4+ aje P + apel*|F - H =0, (1.21)
z1[e!/2Pn=Dr) _ 1/ 2ADnADR) | p Ly 20/ 2Pe=Dn) G H = 0, (1.22)

where, as usual, the bilinear operators D; and exp(dDy,)[9] are defined as:

)

mo_ (9 O\ /
Di'a-b= <8t 8t’> a(t)b(t") .
exp(dDy) a-b=a(n+ d§)b(n —9).

In section 2, we present the double-Casorati determinant solutions to the differential-difference
system (1.13-1.15). Its Grammian determinant solutions are presented in section 3, while in section
4, a bilinear Backlund transformation and Lax pair are derived. Section 5 is devoted to the
conclusions and a discussion of the result obtained.

2 Double-Casorati determinant solutions to the discrete DS sys-

tem

It is well-known that the continuous DS equation (1.7-1.9) has solutions expressed in terms of
double-Wronskians of the solutions of the Spectral Problem [3, 5, 16, 8, 6]. In this section, we
present the double-Casorati determinant solutions for the discrete DS system (1.20-1.22). An



example of double-Casorati determinant solution for eqs (1.13-1.15) is the one-soliton solution
given later in Fig. 1.
Let us introduce the following double-Casorati determinant:

0,1,---,m—1; 0/;1',--- |2N —m —1)| =

pn) o pintm—Di(k) o Ga(k+2N —m—1)
| baln) o Gelntm—Liva(k) - (k42N —m—1) o)
pon(n) -+ gan(n+m —1);an(k) -+ Yon(k+2N —m —1)
where ¢,(n,t) and ¥, (k,t)(r =1,2,--- ,2N) satisfy the equations
.0
Z&@T(n) = —awr(” - 1)7 (2'2)
.0
zazpr(k) = agr(k —1). (2.3)
Taking into account eq. (2.1) we can state the following Proposition:
Proposition 1 The following double-Casorati determinants
F=0,1,--,m—1; 0,1, (2N —m — 1), (2.4)
G =x[0,1,--- ,m; 0,1, (2N —m —2)'], (2.5)
1
H=—0,1,---,m—2; 0,1, (2N —m)’|, (2.6)
<2
provide solutions to eqs. (1.20-1.22).
Proof: From eqs. (2.4-2.6) for any integer number i and j we have
Fotimej =112, ,m—1+14 0,1, 2N —m—1+j)], (2.7)
Gniipsj = 20,1, ;m+i; 1,2/, (2N —m =2+ j)'|,
1
Hpyigrj = —1,2,--- ,m—=2+14; 0,1,--- (2N —m +j)'|. (2.9)
22
From the equations (2.2, 2.3) we get
iFy=—ai|—1,1,--- ,m—1; 0/,1',--- ,(2N —m —1)']
+as|0,1,--- ,m—1; (=1),1',--- /(2N —m —1)'], (2.10)
iGy = z1(—aq| —1,1,-+- ,m; 0,1 -+ (2N —m — 2|
+as|0,1,-+ ,m; (=1), 1, -+ (2N —m —2)|), (2.11)
1
iHy = —(—ay|—1,1,--- ,m—2; 0,1',--- /(2N —m)/|
22
—|-042|0, 17 M — 2; (_1),7 1/7 T (2N - m)/|) (212)

Introducing egs. (2.7-2.12) into eq. (1.20) we get the determinant identity [9]:

1,2,---,m; 0,1, - ,(2N —m —1)]|0,1,--- ,m—1; 1',2,--- /(2N —m)’|
—1,2,--- ,m; 1,2/, (2N —m)'||0,1,--- ,m —1; 0/,1",--- ,(2N —m —1)'|
+|0,1,--,m; 1,2 S 2N —m —1)]]1,2,--- ,m—1; 0/,1",--- , (2N —m)’| = 0.
(2.13)



Substituting eqgs. (2.7-2.11) into egs. (1.21, 1.22) we get the equations

ar(|=1,0,---,m—=2; 0,1, -+ ;2N —m —1)'[|1,2,--- ,m—1; 0',1',--- , (2N —m)|
—|-1,1,--- ,m—1; 0,1,--- (2N —m —1)'||0,1,--- ,m —2; 0/,1',--- , (2N —m)’|
+-1,1,--- ,m—2; 0,1, --- /(2N —m)'||[0,1,--- ,m —1; 0/,1",--- ,(2N —m —1)'|)
+az(|0,1,--- ,m—1; 1,2/ ,--- /(2N —m)||0,1,--- ,m —2; (=1),0,--- , (2N —m — 1)’
—0,1,--- ,m—2; (=1),1,--- ;(2N —m)'||0,1,--- ,m —1; 0/, 1',--- [ (2N —m — 1)’
+l0,1,--- ;m—1; (=1),1,--- ;2N —m —1)||0,1,--- ,m —2; 0/,1",--- (2N —m)'|) =0,

ar(|-1,0,--- ,m—1; 0/,1,--- ;2N —m —2)'|[1,2,--- ,m; 0,1, --- [(2N —m — 1|
—=11,--,m; 0,1, ;2N —m —2)']|0,1,--- ;m—1; 0/, 1",--- , (2N —m — 1)|
+-1,1,---,m—1; 0/, 1',--- ;2N —m —1)]|0,1,--- ,m; 0',1',--- , (2N —m —2)'|)
+as(0,1, -+ ,m; 1,2/, -+ [ (2N —m —1)]|0,1,--- ,m —1; (—=1)",0",--- (2N —m — 2)’|
—10,1,--- ,m—1; (=1),1,--- ;2N —m —1)']|0,1,--- ,m; 0/,1',--- (2N —m — 2’|
+l0,1,---,m; (=1),1,--- (2N —m —2)']|0,1,--- ,m —1; 0',1",--- , (2N —m — 1)']) = 0,
which are identically satisfied when we take into account the determinant identities (2.13). In this

way Proposition 1 is proved.
To construct the soliton solution, we choose a simple solution of egs. (2.2, 2.3)

2N 2N
Gr(n,t) = anp; e, Ur(k,t) = bpg; Pem i, r=12 2N (214)
=1 =1

where p;, gy, a,, b, are arbitrary constants. Than the one-dromion solution of the discrete DS system
is obtained by setting N=1 in eq. (2.1) and choosing ¢,(n), ¢, (k) (r = 1,2) given by eq. (2.14)
with, for example, a3 =4, g = —i, 21 = 20 = 1. In such a case we have

F = (a11bay — abyy)py gy Fe™ P1H 4 (a1obog — agobia)py Mgy e P22l

+(a11bay — agibio)py "qy FeT PRI L (a19boy — agobyy)py Mg Fem P2t (2.15)

G = (a11a22 — as1a12)p; "py "(py ' —py e PPt (2.16)
H = (buib — borbi2)g; Fap ¥ (gp* — g Hem (@)t (2.17)
In Fig. 1, we plot the 1-dromion solution |v| = %, lw| = ‘—g' in the nk—plane with a;1 = asy =
3, 012=0, a2 =1, by =32 bio=1, ba=—%, b=0,pr=¢ pp=e', 1 =¢* @=e? at

the time ¢ = 1.

3 Grammian determinant solutions to the discrete DS equation

The Grammian technique was first used by Nakamura for constructing the solutions expressed in
terms of the special functions for the two-dimensional Toda lattice equation and the KP equation
[13, 14]. In [7] we can find a Grammian determinant solution for the continuous DS system. In
this section, we present solutions of the discrete DS system written down in terms of Grammian
determinants. At the end we show that by a proper choice of parameters the double-Casorati
determinant solution and Grammian determinant solution give the same 1-soliton solution.



Figure 1: The 1-dromion solution: (a) |v| — field , (b) |w| — field

Proposition 2 The functions

F=|C+9Q|=|F, (3.1)

F P(n+1)
V(-k+1)T 0

F U(k+1)
®'(—n+1)7T 0

Z1 1

2202

where Fis a (M 4+ N) x (M + N) matriz, C = (cu) is a (M + N) x (M + N) constant matriz,
is a (M + N) x (M + N) block diagonal matrix

0 (ffoo or(n)@)(—n)dt

i s (k) (—k)at ) ’

and ®, 9", W,V are M + N column vectors

®(n) = (p1(n), -+, om(n); 0,---,0)7,
o' (—n) = (¢y(=n), -, Ph(=n); 0,---,0)",
(k)= (0,--,0; Pr(k), - ,hn(k))",
U'(—k) = (0, ,0; i (=k),-- ,n(—k)",

with o (n,t), ©5(n, 1), ¥s(k,t), Y(k, 1), 5 € {1,--- , M}, s,1 € {1,--- , N}, satisfying the following

equations:

0¢’(—
i&’o{;in) = —a1¢or(n—1), z%;tn) =opi(—n—1), (3.3)
2B k-1, 2D k), (3.4

solve the equations (1.20-1.22).

Proof: Using eqs. (3.3, 3.4), we are able to express, after some calculations, the functions
appearing in eqs. (1.20-1.22) in terms of the Grammian determinants

il F  ®n+l) il F W41

Fop1=F — 071 (I)/(—n)T 0 ’ Fepn=F - 072 \I’/(—k)T 0 ’

(3.5)



B i F (k) _ i F ®(n)
Ba=F+ -l g ppnr o |0 =Pt eyt o |00 G0
P e b F Uk+1)| i F ®d(n+1)
n+1,k+1 — o \If,(—ki)T 0 a1 @/(_n)T 0
) F d(n+1) U(k+1)
— '(—n)T 0 0 , (3.7)
N (kT 0 0
21 F o(n+1) F U(k+1)
Gk—i—l OT \If’(—k)T 0 ) Hypi1 = Zo0ro (I)/(_n)T 0 ) (3-8)
1 F (k) oz F ®(n)
Hi—1 = zoag | ®'(—n+1T 0 |’ Gin—1 = o | V(=k+1DT 0 | (3:9)
_ F (k) F ®(n)
Ft - ’ \I,/(_k_)T 0 ‘ - ’ (p/(_n)T 0 ’ (310)
F d(n+1) d(n
iGr= {0 w’(F—k»T @(no+ K ‘ o \11’(—£+ )7 @gm ’ i R DT | O | E) |
aq (I)/(—n)T 0 0
F d(n+1) U(k)
+i| W(=k+1)T 0 0 |}, (3.11)
U (k)T 0 0
F U(k+1) U(k)
, 1 F U(k+1) vk | T
iHy = {a1| o, T ‘+a2 " T +i| ®'(—n+1) 0 0
Lo ®'(—n) 0 '(—n+1) 0 W (k)T 0 0
F U(k+1) ®(n)
—i| ®(—n+ 1T 0 0 |} (3.12)
/' (—n)T 0 0

We can thus prove that the functions F,G and H given by eqs. (3.1, 3.2) effectively satisfy
the discrete DS system as, by substituting egs. (3.5-3.6) into eqs. (1.20-1.22) we get the following
three Jacobi identities for the determinants

F d(n+1) Y(k+1)
F d(n+1) F U(k+1) ,
| P e L A
F d(n+1) F Uk+1) |
- ' \I/I(—k)T 0 ‘ ‘ @/(_n)T 0 - O, (3'13)



F ®(n) F Uk +1) o
{’ O'(—n + 1)T 0 ‘ ‘ q)/(_n)T 0 ‘ + ‘ F ‘ @é/(_:)%) 8 8
F o0 F U(k+1)
‘ '(-n)" 0 H ' (—n+1)T 0 ’}
F o wk+1) w(k)
F Uk F Wk+1) | o
+ {’ \Iﬂ<_k)T 0 ‘ ‘ O (—n + 1)T 0 ’ ‘ F ‘ @éﬂ(z}p 8 8
F U(k+1) F (k) |,
’ (k)" 0 H (—n+1DT 0 '} = (3.14)
F d(n+1) (k)
F P(n+1) F U (k) . .,
{’ '(—k)" 0 H V(-k+1T 0 'ﬂ F | ‘I’é/(k_—];%) 8 8
F O(n+1) F (k)
! ‘ V(k+DT 0 ‘ ' vt o |}
F d(n+1) P(n)
F d(n+1) F O(n) | . .
+ {' \I//(_k‘ + 1)T 0 ‘ ’ ‘I’/(—n)T 0 ‘ ‘ F ‘ \I/é)/(lijl-)p 8 8
F d(n+1) F d(n)
‘ ' (—n)T 0 ‘ ‘ V(—k+1T 0 ‘} =0. (3.15)

The simplest soliton solution for the discrete DS system (1.13-1.15) is obtained by taking the
simplest possible choice for the functions ¢, 90;-, s, 1] satisfying egs. (3.3, 3.4), i.e. an exponential

. _ _ L1
pr(n) = kel gl (—n) = ke ik
(k) = wheTioma (k) =y Ree

where k;, Ej, ws,w; are arbitrary constants.
When N =1, if we take

c <0 _all> k 2, k (1+')‘1 2 (1+')‘1
= 1 y FM1=w1=24 rfm={(;T? , wWi=\gT1?!
L o0 2 2
we have the following 1-soliton solution for equations (1.13)-(1.15):
1
u = In( [(1 4 20)"(1 4 2i)kelea=a2)t _q)), (3.16)
109
on+l(l 4 k=1 it[— a1 +(i—3)as]
V= Q221 (2+ Z) e - : 5 (317)
(14 20)"(1 + 2i)kelaa—a2)t 1
o 2]@—&-1(%_i_i)n—leit[(%—i)oq-i-%o&] (3 18)

29 (14 2i)7(1 + 2i)keler—a2)t 1"

8



This same solution is obtained by considering the double-Casorati determinant solution (2.4-2.6)
with N =1 and

<Z>1(n,t) = (% + Z‘)*?’Le(%+i)’ia1t7 ¢2(n7t) — (%)7ne%ia1t

1 ; 1 iy
()R (k) = (5 + i) e e,

¢1 (kvt) 2

4 Bilinear Backlund transformation and Lax pair

In this section we construct a bilinear Backlund transformation for the bilinear equations (1.20—
1.22), and then we derive from it a Lax pair for the discrete DS system (1.13-1.15).
To do so, let us redefine the functions F';, G and H in term of one function f depending on an
additional discrete variable m

F(n,kit) = f(m,n,k;t),  G(nkit) = f(m+1,n,kt),  H(n kit) = f(m—1,n,k;t),
Then egs. (1.20-1.22) can be written as:

[iDge!/2Pm 4 g ePn=1/2Pm 4 pePrt1/20m) p . f — ), (4.1)
[211/2(Pn=Dk) 4 50 e1/2Dk=Dn)+Dm 4 0 1/2ADn+Di)| £ . ¢ = (),

We can now state the following proposition:

Proposition 3 The bilinear system (4.1, 4.2) has the Bécklund transformation

[,8161/2Dn _ 6_1/2Dn _ 'LLleDm_l/QDn]f cg = 0, (43)

[/8261/2(Dm+Dk) _ 6—1/2(D7n+Dk) _ /LQGI/Q(D"L_Dk)]f -g = O’ (44

[iD; — oy PLeDm—Dn _ m&e—Dk]f g =0, (4.5)
B B2

where (1, P2, W1, pe are arbitrary constants, with uy, po satisfying the constraint

w121 + poze = 0. (4.6)

Proof: Let f be a solution of equations (4.1, 4.2). Using eqs. (4.3-4.6), we can by straightfor-



ward calculations show that eqs. (4.1, 4.2) are satisfied for g(m,n, k; t)
[P f L f[iDye} 2P P 1/2Dm g Dit1/2Dm) g g
= {[iDtel/QDm + aleDn—l/QDm + a2eDk+1/2Dm]f . f}[el/QDmg . g]
— {[iDie!2Pm 1 g ePrY2Pm 4 o Dt /20m] g L (N2 ]
= 2sinh(1/2D,,)(iDsf - g) - fg+ 20y sinh(1/2(D,, — Dp,))(eY/2Pm f . g) - (e71/2Pm g . g)
+ 209 sinh(1/2Dy ) (e 2Pt Dm) £ gy . (e71/2PktDm) ¢ g

= 2sinh(1/2D,,)(iDif - g) - fg + 2c sinh(1/2(D,, — Dm))(%eDmflmD"f g) - (eil/QDmf - g)

+ 20 sinh(1 /sz)(%elﬂ(Dmek) Fog)- (e /2D6tDm) f g
= 2sinh(1/2D,,)(iDsf - g) - fg — 2041% sinh(1/2D,))(ePm~Pn f - g) - fg
~ 20 sinh(1/2Dp))(e P41 - g) - fg =0,
_ [M/2(DntDE) £ f][21e1/20Pn=Dk) | 1/2ADk=Da)+Dm g o 1/2ADntDi)] g g
= {[21€"/2Dn=Dk) 4 ) 1/2ADk=Da)tDm o 1/2ADtDR)] £ . 1[1/2(D0tDi)g . g]
— {[2161/2(Dn—Dk) + Z2€1/2(Dk—Dn)+Dm + Z3€1/2(Dn+Dk)]g . g}[el/Q(Dn—i—Dk)f 1]
=27 sinh(—l/QDk)(el/ZD"f -q) - (e_l/QD"f - 9)
+ 22 sinh(1/2(Dyy — Dy))(e!/ 2P PO f - g) - (712D H D) £ g)
= 2211 sinh(1/2Dy) (eY/2Pn f - g) - (ePm=1/2Pn f . g)
+ 2zop19 sinh(1/2(Dyy, — Dy) (e /2Pm AP £ g) - (l/2Pm=Di) . g)
= —2z1p01 sinh(1/2D)(e!/2Pn f - g) - (P /2Pn £ g)
— 22919 sinh(1/2Dk)(el/2D"f -g) - (eDm_1/2an g)=0
In this way, Proposition 3 is satisfied and eqs. (4.3-4.6) constitute a BT for (4.1, 4.2).

From the bilinear Backlund transformation (4.3-4.6), we can derive a Lax pair for the discrete
DS system (1.13-1.15).
Let us set

—In _ Jm+1 _ Jm—1 _ 9
U _1 f7 v f ) w f Y ¢ f (4'7)
4.

Under the dependent variable transformation (4.7), the bilinear BT (4.3-4.5) become the nonlinear
equations:

1o — Gny1 — vawn+1¢m—l,n+1 =0, (48)
Bowg - 1Pm—1,k—1 — Wk—1¢ — p2wdm—1 = 0, (4.9)
iy + oq%vn_lwnﬂe“nﬂw—l-2”¢m_1.n+1 + azgeuwﬂw—%kﬂ =0, (4.10)

where 31, (B2, p1, p12 are arbitrary constants satisfying the constraint (4.6). Eliminating ¢m,—1.n41, @m—1k—1, Pm—1
from eqs. (4.8-4.10), we obtain the following Lax pair for the differential-difference DS system
(1.13-1.15)

Brén—1k—1 — Pk—1 Brpn-1— ¢
Pal 7;617) 1,k—1 ) M(u?vill) ~fwi-1 =0, (4.11)
n—_L,k— n—
; a1 Un—1+un+1_2uﬂ1¢ — ¢n+1 a2 Up—1+Up1—2U _
i + 5, e — 3,/ Pr+1 = 0. (4.12)
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By imposing the compatibility of egs. (4.11, 4.12) we obtain the discrete Davey-Stewartson system
(1.13-1.15). In fact, from eq. (4.11), we can derive

Brén—1k-1= Pp—1+ &'Un—l,k—l[qbwkz—l + 12 (Brdn—1 — 9)], (4.13)
B2 H1Vp—1
Gnt1k—1 = Brop—1 — %vkq[wnﬂ,kq(ﬁnﬂ + 22 (810 — dny1)], (4.14)
2 H1v
B1on—1k+1 = Ort1 + &Unq,kﬂ[ b (B1On—1 — @) — Ppr1w], (4.15)
H2 H1Un—1

the expressions of ¢n,—1 k-1, Pnt1,k—1, Pn—1,k+1 in terms of ¢, dp_1, Pr—1, Pny1, Pr41. By differenti-
ating eq. (4.11) with respect to ¢ and substituting into it eqs. (4.13—4.15) we obtain an expression
in terms of just ¢, ¢p—1, Pr_1, Pn+1 and ¢rr1. Equating to zero the coefficients of ¢ , ¢p—1, Pr_1,
®n+1, and @41 we derive that the coefficient of ¢,—1 gives eq. (1.13), the coefficient of ¢ gives eq.
(1.14), both the coefficients of ¢, 41 and ¢ri1 give eq. (1.15) and the coefficient of ¢j_1 vanishes.

5 Conclusion.

A discrete version of the Davey-Stewartson (DSI) system is proposed and investigated using the
bilinear method. This DSI system exhibits N-soliton solutions expressed in terms of determinants of
two different types, double-Casorati and Grammians. Moreover, we have constructed the bilinear
Bécklund transformation and derived from it its Lax pair.

A few problems are still open. Among them the most significant is surely to find the proper
reduction which gives the Davey-Stewartson equation from the system. Moreover, since in the
continuous case we have two physically interesting cases, the DSI and DSII equations, it would also
be interesting to find the discrete version of the DSII equation.
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