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Abstract. A new procedure is firstly proposed to construct soliton equations
with self-consistent sources(SESCSs) in bilinear forms, starting from the Gram-type
determinant solution or Gram-type pfaffian solution of soliton equations without
sources, then soliton solutions of SESCSs can be given. This procedure is applied
to the 2D Toda lattice equation, the discrete KP equation and the BKP equation.

1. Introduction

While integrable systems have been under active investigation since the discovery of

solitons, only a relatively small portion of the literature was devoted to the subject of

multi-dimensional integrable systems. However, increasing attention has been paid to

the study of (2+1)-dimensional integrable systems in recent years [1, 2, 3]. An important

area of this research is to search for new (2+1)-dimensional soliton equations. Several

celebrated examples of multi-dimensional integrable systems have been found in fields

ranging from fluid dynamics, nonlinear optics, particle physics and general relativity

to differential and algebraic geometry, topology, and etc. The special significance of

integrable systems is that they combine tractability with nonlinearity. Hence these

systems enable one to explore nonlinear phenomena in multi-dimensions while working

with explicit solutions. In the literature, there exist several approaches to search

for new candidates of (2+1)-dimensional integrable systems. One of effective ways

to do so is to find integrable extensions of the known (2+1)-dimensional integrable

systems. For example, for the well-known KP equation, two coupled KP equations have

been found along two different lines of research. One is the so-called KP equation

with self-consistent sources [4] while the other is generated through the procedure

of what we now call pfaffianization [5, 6]. Following pioneering work by Melnikov

[4, 7, 8, 9, 10, 11, 12], a number of interesting contributions have been made to the study

of soliton equations with self-consistent sources (SESCSs) via Inverse Scattering Method,

Darboux transformations and Hirota bilinear method etc. [13]-[38]. Unfortunately, most

results in this direction have been achieved just in continuous case. Less work has been
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done on semi-discrete soliton equations with a source and self-consistent sources. In [39],

a differential-difference version to the KdV equation with a source was investigated. In

[40], Toda lattice hierarchy with self-consistent sources are constructed and studied by

means of the Darboux transformation. In [41], the authors presented 2D Toda lattice

equation with self-consistent sources and showed its integrability. As for the study of

SESCSs in the fully discrete case, the situation is even worse than differential-difference

case as it still remains as an open problem how to find SESCSs in fully discrete case. One

obvious cause for this is that a unified algebraic method to construct both continuous

and discrete SESCSs is still missing. On the other hand, it is noted that pfaffianization

method has been successfully applied to the fully discrete case: the Hirota-Miwa discrete

KP equation [43]. Based on this observation, it is natural to expect that an algebraic

method similar to pfaffianization method, would be found, which enable one to produce

both continuous and discrete SESCSs in a systematic way.

The purpose of this paper is to give such a new algebraic method which provides

a unified way to generate SESCSs both in continuous and discrete cases. We call it

”source generalization” method. As an application of ”source generalization” method,

the discrete KP equation with self-consistent sources are found. Besides, as a bonus,

this method also enables one to produce B-type KP equation with self-consistent sources

which has not been known yet before.

The paper is organized as follows. In section 2, we will present so-called source

generalization method to produce SESCSs by taking 2D Toda Lattice equation as an

illustrative example. Then as an application of source generalization method, the

discrete KP equation with self-consistent sources and the BKP equation with self-

consistent sources are found in section 3 and section 4 respectively. It turns out

that resulting SESCSs possess bilinear Backlund transformations and soliton solutions.

Finally, conclusion and discussions are given in section 5.

2. 2D Toda Lattice equation with self-consistent sources

In this section, we will present a new procedure of producing SESCSs which is similar to

the procedure of Pfaffianization. In order to do so, let us first remind you the procedure

of Pfaffianization. The key points behind Pfaffianization method are to first express

N-soliton solutions of an ’un-Pfaffianized’ equation in the form of Wronskian, Casorati

or Grammian type determinant, then to construct a pfaffian with elements satisfying

the Pfaffianized form of the dispersion relation given in the determinant solutions of the

’un-Pfaffianized’ equation and finally to seek coupled bilinear equations whose solutions

are these pfaffians.

We now briefly describe our procedure of producing SESCSs. There are three steps

involved in the procedure:

1. to express N-soliton solutions of a soliton equation without sources in the form

of determinant or pfaffian with some arbitrary constants, say ci,j.

2. to generalize the determinant or pfaffian in step 1 by replacing arbitrary constants
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with arbitrary functions of one variable, e.g. ci,j(t).

3. to seek coupled bilinear equations whose solutions are these generalized

determinants or pfaffians.

Compared with Pfaffianization method, the above procedure for producing SESCSs

can be applicable to more types of soliton equations as in step 1 there is no restriction

that N-soliton solutions should be in determinant form. As for step 2 in our procedure,

the idea involved is quite natural. We recall that historically, one often applies a

similar technique to solve inhomogeneous differential equations by using solutions to the

corresponding homogeneous differential equations. In the following, we will illustrate

our procedure for producing SESCSs in more detail by considering a concrete example.

The 2D Toda lattice equation is written as [6]

∂2Qn

∂t∂x
= Vn+1 + Vn−1 − 2Vn, (1)

Qn = ln(1 + Vn). (2)

Through the dependent variable transformation

Vn =
∂2

∂t∂x
ln τn,

equations (1)-(2) can be transformed into the bilinear form

(DxDt − 2eDn + 2)τn · τn = 0, (3)

where D is the Hirota bilinear operator [6]

Dm
x Dn

t f(x, t) · g(x, t) =
∂m

∂ym

∂n

∂sn
f(x + y, t + s)g(x− y, t− s)|s=0,y=0, m, n = 0, 1, 2, · · ·

exp(Dn)fn · gn = fn+1gn−1.

We have the Gram-type determinant solution of the bilinear 2D Toda lattice equation

(3):

τn = det(cij + (−1)n

∫ x

−∞
ϕ

(n)
i ϕ̄

(−n)
j dx)16i,j6N , cij = constant (4)

where each ϕ
(n)
i , ϕ̄

(−n)
j satisfy the linear differential equations:

∂ϕ
(n)
i

∂x
= ϕ

(n+1)
i − ϕ

(n)
i ,

∂ϕ̄
(−n)
j

∂x
= ϕ̄

(−n+1)
j + ϕ̄

(−n)
j , (5)

∂ϕ
(n)
i

∂t
= −ϕ

(n−1)
i ,

∂ϕ̄
(−n)
j

∂t
= −ϕ̄

(−n−1)
j . (6)

and here we assume that ϕ
(n)
i , ϕ̄

(−n)
j and their derivatives tend to zero when x → −∞.

Let us express τn by a special kind of pfaffian:

τn = pf(1, 2, · · · , N, N∗, · · · , 2∗, 1∗)n, (7)
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where the pfaffian elements are defined as follows:

pf(i, j∗)n = cij + (−1)n

∫ x

−∞
ϕ

(n)
i ϕ̄

(−n)
j dx,

pf(i, j)n = pf(i∗, j∗)n = 0, i, j = 1, 2, · · · , N
and other new pfaffian elements are given by

pf(d∗m, i)n = ϕ
(m)
i , pf(d−m, j∗)n = (−1)mϕ̄

(−m)
j ,

pf(d−m, d∗k)n = pf(d−m, dk)n = pf(d∗−m, d∗k)n = 0.

Then the equation (3) can be reduced to an identity of determinants[6]:

pf(d−n−1, d
∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)npf(d∗n−1, d−n, 1, 2, · · · , N, N∗, · · · , 1∗)n

+pf(d−n−1, d
∗
n−1, 1, 2, · · · , N, N∗, · · · , 1∗)npf(d−n, d

∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)n

−pf(d−n−1, d
∗
n−1, d−n, d

∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)npf(1, 2, · · · , N, N∗, · · · , 1∗)n = 0.

In the following, we will construct the Toda lattice equation with self-consistent

sources (TodaESCS). We set the function fn in the following form:

fn = det(γij(t) + (−1)n
∫ x

−∞ ϕ
(n)
i ϕ̄

(−n)
j dx)16i,j6N

= (1, 2, · · · , N, N∗, · · · , 2∗, 1∗)n,

(8)

where

γij(t) ≡
{

γi(t), i = j and 1 6 i 6 K 6 N,

cij, i 6= j and 1 6 i, j 6 N.

with γi(t) being an arbitrary function of t and K being a positive integer, and ϕ
(n)
i , ϕ̄

(−n)
j

still satisfy relations (5)-(6) and the boundary condition. Here the pfaffian elements are

defined by

(i, j∗)n = γij(t) + (−1)n

∫ x

−∞
ϕ

(n)
i ϕ̄

(−n)
j dx,

(i, j)n = (i∗, j∗)n = 0, i, j = 1, 2, · · · , N.

Through the property of determinants [6]:

det(ai,j − xiyj)16i,j6N = det(ai,j)16i,j6N −
N∑

i,j=1

xiyj∆i,j, (9)

where ∆i,j denotes the algebraic cofactor of det(ai,j)16i,j6N , we can calculate fn+1, fn−1,

fn,x and fn,t as follows:

fn,x = (d−n, d
∗
n, 1, · · · , N, N∗, · · · , 1∗)n, (10)

fn,t =
K∑

j=1

γ̇j(t)(1, 2, · · · , ĵ, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n

+(d−n−1, d
∗
n, 1, · · · , N, N∗, · · · , 1∗)n, (11)
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fn+1 = fn + (d−n−1, d
∗
n, 1, · · · , N, N∗, · · · , 1∗)n,

fn−1 = fn − (d−n, d
∗
n−1, 1, · · · , N, N∗, · · · , 1∗)n, (12)

where ˆ indicates deletion of the letter under it. Then the function fn will not satisfy

the equation (3) again and it just satisfies the following new equation:

(DxDt − 2eDn + 2)fn · fn = −
K∑

j=1

eDngj,n · hj,n, (13)

and here gj,n and hj,n are given by the following forms:

gj,n+1 =
√

2γ̇j(t)(d
∗
n, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n, (14)

hj,n−1 =
√

2γ̇j(t)(d−n, 1, · · · , ĵ, · · · , N, N∗, · · · , 1∗)n, (15)

where j = 1, 2, · · · , K, and the dot denotes the derivative of γj(t) with respect to t. We

can show that fn, gj,n and hj,n also satisfy the following bilinear equations:

(Dx + e−Dn − 1)fn · gj,n = 0, j = 1, 2, · · · , K (16)

(Dx + e−Dn − 1)hj,n · fn = 0, j = 1, 2, · · · , K. (17)

In fact, substitution of (10)-(12) and (14)-(15) into (13) leads to the sum of (N + 1)

pfaffian identities[6]:

(d−n−1, d
∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)n(d∗n−1, d−n, 1, 2, · · · , N, N∗, · · · , 1∗)n

+(d−n−1, d
∗
n−1, 1, 2, · · · , N, N∗, · · · , 1∗)n(d−n, d

∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)n

−(d−n−1, d
∗
n−1, d−n, d

∗
n, 1, 2, · · · , N, N∗, · · · , 1∗)n(1, 2, · · · , N, N∗, · · · , 1∗)n

+
K∑

j=1

γ̇j(t)[(d−n, d
∗
n, 1, · · · , ĵ, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n(1, · · · , N, N∗, · · · , 1∗)n

−(1, · · · , ĵ, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n(d−n, d
∗
n, 1, · · · , N, N∗, · · · , 1∗)n

+(d∗n, 1, · · · , N, N∗, · · · , 1∗)n(d−n, 1, · · · , N, N∗, · · · , 1∗)n] = 0.

Therefore equation (13) holds. On the other hand, we have

gj,n =
√

2γ̇j(t)(d
∗
n−1, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n,

gj,nx =
√

2γ̇j(t)[(d
∗
n, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n − gj,n

+(d∗n−1, d−n, d
∗
n, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n]. (18)

Substituting (10), (12) and (18) into equation (16), (16) is reduced to the following

pfaffian identity [6]:

(d−n, d
∗
n, 1, · · · , N, N∗, · · · , 1∗)n(d∗n−1, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n

−(1, · · · , N, N∗, · · · , 1∗)n(d∗n−1, d−n, d
∗
n, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n

−(d−n, d
∗
n−1, 1, · · · , N, N∗, · · · , 1∗)n(d∗n, 1, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)n = 0.

Then equation (16) holds. Much in the same way, we can prove that fn and hj,n

satisfy equation (17). So equations (13), (16) and (17) construct the 2-dimensional
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Toda equation with K pairs of self-consistent sources (TodaESCS), and fn, gj,n, hj,n in

(8), (14) and (15) are the N-order (N > K) determinant solutions of the TodaESCS. In

[41], we have also given the Casorati-type determinant solutions of the TodaESCS, its

bilinear Bäcklund transformation and Lax pair, which indicate the integrability of the

coupled system (13), (16) and (17).

3. The discrete KP equation with self-consistent sources(dKPESCS)

In this section we will apply source generalization method to a discrete KP equation or

Hirota-Miwa equation. The discrete KP equation or Hirota-Miwa equation[42, 43] has

the form:

α1(α2 − α3)τ(k1 + α1, k2, k3)τ(k1, k2 + α2, k3 + α3)

+α2(α3 − α1)τ(k1, k2 + α2, k3)τ(k1 + α1, k2, k3 + α3)

+α3(α1 − α2)τ(k1, k2, k3 + α3)τ(k1 + α1, k2 + α2, k3) = 0,

(19)

where α1, α2, α3 are constants and k1, k2, k3 are discrete variables. It is known that the

discrete KP equation has the following discrete Gram-type determinant solution [42]:

τ(k1, k2, k3) = det(dij + mij)16i,j6N , (20)

where dij is a constant and the matrix element mij is a function of k1, k2, k3 satisfying

the difference equation:

∆+kνmij = ϕi(kν + αν ; 0)ϕ̄j(0), i, j = 1, 2, · · · , N, ν = 1, 2, 3, (21)

where unshifted independent variables are suppressed and ϕi, ϕ̄j are arbitrary functions

of k1, k2, k3 and an integer s, satisfying the dispersion relations:

∆−kνϕi(k1, k2, k3, s) = ϕi(k1, k2, k3, s + 1), (22)

∆+kν ϕ̄i(k1, k2, k3, s) = ϕ̄i(k1, k2, k3, s + 1), (23)

where ∆−kν , ∆+kν are defined by

∆−kνF (kν) =
F (kν)− F (kν − αν)

αν

, (24)

∆+kνF (kν) =
F (kν + αν)− F (kν)

αν

, ν = 0, 1, 2, 3. (25)

It was proved in [42] that the determinant τ = det(mij)16i,j6N has the following

difference formula:

τ = |M |, (26)

τ(kν + αν) = αν

∣∣∣∣∣
M φ(0ν)

−φ̄(0)T α−1
ν

∣∣∣∣∣ , µ, ν = 1, 2, 3 (27)

τ(kν + αν , kµ + αµ) =
(αναµ)2

αν − αµ

∣∣∣∣∣∣∣

M φ(0ν) φ(0µ)

−φ̄(1)T −α−2
ν −α−2

µ

−φ̄(0)T α−1
ν α−1

µ

∣∣∣∣∣∣∣
, (28)
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where T denotes the transpose of the matrix, and M, φ(sν), φ̄(sν) are N ×N , N × 1,

N × 1 matrices defined by

M =




m11 · · · m1N

...
...

mN1 · · · mNN


 , (29)

φ(sν) =




ϕ1(kν + αν ; s)

ϕ2(kν + αν ; s)
...

ϕN(kν + αν ; s)


 , ν = 1, 2, 3, (30)

φ̄(s)T =
(

ϕ̄1(s) ϕ̄2(s) · · · ϕ̄N(s)
)

. (31)

Now we change the solution τ(k1, k2, k3) into the following form:

f(k1, k2, k3) = det(cij(k2) + mij)16i,j6N , (32)

where mij still satisfies relations (21)-(23), and cij(k2) satisfies

cij(k2) ≡
{

ci(k2), 1 6 i 6 K 6 N and j = 1, 2, · · · , K, K ∈ Z+,

dij, otherwise.

Then we have the following difference formula:

f(kν + αν) = αν

∣∣∣∣∣∣∣

M C(k2) φ(0ν)

αT 1 0

−φ̄(0)T 0 α−1
ν

∣∣∣∣∣∣∣
, ν = 1, 3, (33)

f(k2 + α2) = α2

∣∣∣∣∣∣∣

M C(k2 + α2) φ(02)

αT 1 0

−φ̄(0)T 0 α−1
2

∣∣∣∣∣∣∣
, (34)

f(k1 + α1, k3 + α3) =
(α1α3)

2

α1 − α3

∣∣∣∣∣∣∣∣∣

M C(k2) φ(01) φ(03)

αT 1 0 0

−φ̄(1)T 0 −α−2
1 −α−2

3

−φ̄(0)T 0 α−1
1 α−1

3

∣∣∣∣∣∣∣∣∣
, (35)

f(k2 + α2, kν + αν) =
(α2αν)

2

α2 − αν

∣∣∣∣∣∣∣∣∣

M C(k2 + α2) φ(02) φ(0ν)

αT 1 0 0

−φ̄(1)T 0 −α−2
2 −α−2

ν

−φ̄(0)T 0 α−1
2 α−1

ν

∣∣∣∣∣∣∣∣∣
, ν = 1, 3 (36)

where αT is an 1×N matrix expressed in

αT = (−1, · · · ,−1, 0, · · · , 0), number of− 1 = K
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and C(k2) is an N × 1 matrix defined by

C(k2) =




c1(k2)
...

cK(k2)

0
...

0




.

According to the above results, f(k1, k2, k3) will not satisfy the dKP equation (19) again.

In fact it satisfies the following equation:

α1(α2 − α3)τ(k1 + α1, k2, k3)τ(k1, k2 + α2, k3 + α3)

+α2(α3 − α1)τ(k1, k2 + α2, k3)τ(k1 + α1, k2, k3 + α3)

+α3(α1 − α2)τ(k1, k2, k3 + α3)τ(k1 + α1, k2 + α2, k3)

=
K∑

i,j=1

hij(k1, k2 + α2, k3)gij(k1 + α1, k2, k3 + α3). (37)

In the above equation, hij and gij are functions of variables k1, k2, k3 and have the

following forms:

hij(k1, k2 + α2, k3) = α1α2α3

√
∆ci(k2)

∣∣∣∣∣∣∣

Eij φi(02) Nij

−φ̄j(1)T −α−2
2 −ϕ̄j(1)

−φ̄j(0)T α−1
2 −ϕ̄j(0)

∣∣∣∣∣∣∣
, (38)

gij(k1 + α1, k2, k3 + α3) = α1α2α3

√
∆ci(k2)

∣∣∣∣∣∣∣

Dij φi(01) φi(03)

−φ̄j(0)T α−1
1 α−1

3

MT
ij ϕi(01) ϕi(03)

∣∣∣∣∣∣∣
, (39)

where Dij, Eij are the (N − 1) − th order matrices obtained by eliminating the i-

th row and the j-th column from the matrices (cij(k2) + mij(k1, k2, k3))16i,j6N and

(cij(k2 + α2) + mij(k1, k2, k3))16i,j6N , respectively. In addition, φi(sν) is an (N − 1)× 1

matrix by eliminating the i-th row from φ(sν), and φ̄j(s)
T is an 1× (N − 1) matrix by

eliminating the j-th column from φ̄(s)T , and

∆ci(k2) = ci(k2 + α2)− ci(k2),

Nij =




c1(k2 + α2) + m1j

· · ·
ci−1(k2 + α2) + mi−1,j

ci+1(k2 + α2) + mi+1,j

· · ·
cK(k2 + α2) + mKj

dK+1,j + mK+1,j

· · ·
dN,j + mN,j




, (40)
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MT
ij = (ci(k2) + mi1, · · · , ci(k2) + mi,j−1, ci(k2) + mi,j+1, · · ·

· · · , ci(k2) + miK , di,K+1 + mi,K+1, · · · , di,N + mi,N). (41)

From the expressions (32), (38)-(39), we can also show that f , hij and gij satisfy the

following equations:

α3f(k1, k2, k3 + α3)hij(k1 + α1, k2, k3)− α1f(k1 + α1, k2, k3)hij(k1, k2, k3 + α3)

+(α1 − α3)f(k1 + α1, k2, k3 + α3)hij(k1, k2, k3) = 0, (42)

α3gij(k1, k2, k3 + α3)f(k1 + α1, k2, k3)− α1gij(k1 + α1, k2, k3)f(k1, k2, k3 + α3)

+(α1 − α3)gij(k1 + α1, k2, k3 + α3)f(k1, k2, k3) = 0. (43)

In fact equations (37), (42) and (43) can be verified through Laplace expansion theorem.

Firstly, we show that f , gij and hij defined by (32), (38) and (39) satisfy the equation

(37). Substitution of (32), (38) and (39) into (37) yields the following determinant

identity:
∣∣∣∣∣∣∣

M C(k2) φ(01)

−1 1 0

−φ̄(0)T 0 α−1
1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

M C(k2 + α2) φ(02) φ(03)

−1 1 0 0

−φ̄(1)T 0 −α−2
2 −α−2

3

−φ̄(0)T 0 α−1
2 α−1

3

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣

M C(k2 + α2) φ(02)

−1 1 0

−φ̄(0)T 0 α−1
2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

M C(k2) φ(01) φ(03)

−1 1 0 0

−φ̄(1)T 0 −α−2
1 −α−2

3

−φ̄(0)T 0 α−1
1 α−1

3

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣

M C(k2) φ(03)

−1 1 0

−φ̄(0)T 0 α−1
3

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

M C(k2 + α2) φ(02) φ(01)

−1 1 0 0

−φ̄(1)T 0 −α−2
2 −α−2

1

−φ̄(0)T 0 α−1
2 α−1

1

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

M φ(01) φ(03)

−1 0 0

−φ̄(0)T α−1
1 α−1

3

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

M C(k2 + α2) φ(02) C(k2)

−1 1 0 1

−φ̄(1)T 0 −α−2
2 0

−φ̄(0)T 0 α−1
2 0

∣∣∣∣∣∣∣∣∣
= 0.

(44)

Now we show that equation (44) holds. Let us introduce the following 2(N+3)×2(N+3)

determinant which is equal to zero:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M 0 0 0 0 C(k2) φ(01) φ(03)

−1 0 0 0 0 1 0 0

−φ̄(1)T 0 0 0 1 0 −α−2
1 −α−2

3

−φ̄(0)T 0 0 0 0 0 α−1
1 α−1

3

0 M C(k2 + α2) φ(02) 0 C(k2) φ(01) φ(03)

0 −1 1 0 0 1 0 0

0 −φ̄(1)T 0 −α−2
2 1 0 −α−2

1 −α−2
3

0 −φ̄(1)T 0 α−1
2 1 0 α−1

1 α−1
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (45)
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Applying the Laplace expansion in (N + 3) × (N + 3) minors to the left-hand side

of equation (45), we obtain the determinant identity (44). So the discrete Gram-type

determinants f , hij, gij are solutions of equation (37). In the same way, substituting f

and hij into equation (42) gives the determinant identity:
∣∣∣∣∣∣∣∣∣

Eij φi(02) φi(03) Nij

−φ̄j(1)T −α−2
2 −α−2

3 −ϕ̄j(1)

−φ̄j(0)T α−1
2 α−1

3 −ϕ̄j(0)

QT
ij ϕi(02) ϕi(03) mij + ci(k2 + α2)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

Eij φi(02) φi(01) Nij

−φ̄j(2)T α−3
2 α−3

1 −ϕ̄j(2)

−φ̄j(1)T −α−2
2 −α−2

1 −ϕ̄j(1)

−φ̄j(0)T α−1
2 α−1

1 −ϕ̄j(0)

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

Eij φi(01) φi(02) Nij

−φ̄j(1)T −α−2
1 −α−2

2 −ϕ̄j(1)

−φ̄j(0)T α−1
1 α−1

2 −ϕ̄j(0)

QT
ij ϕi(01) ϕi(02) mij + ci(k2 + α2)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

Eij φi(02) φi(03) Nij

−φ̄j(2)T α−3
2 α−3

3 −ϕ̄j(2)

−φ̄j(1)T −α−2
2 −α−2

3 −ϕ̄j(1)

−φ̄j(0)T α−1
2 α−1

3 −ϕ̄j(0)

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

Eij φi(02) Nij

−φ̄j(1)T −α−2
2 −ϕ̄j(1)

−φ̄j(0)T α−1
2 −ϕ̄j(0)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Eij φi(01) φi(02) φi(03) Nij

−φ̄j(2)T α−3
1 α−3

2 α−3
3 −ϕ̄j(2)

−φ̄j(1)T −α−2
1 −α−2

2 −α−2
3 −ϕ̄j(1)

−φ̄j(0)T α−1
1 α−1

2 α−1
3 −ϕ̄j(0)

QT
ij ϕi(01) ϕi(02) ϕi(03) mij + ci(k2 + α2)

∣∣∣∣∣∣∣∣∣∣∣

= 0.

The above determinant identity can be also proved through the Laplace expansion of

the 2(N + 3)× 2(N + 3) determinant which is equal to zero:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Eij φi(02) Nij 0 0 0 0 0 φi(01) φi(03)

−φ̄j(2)T α−3
2 −ϕ̄j(2) 0 0 0 0 1 α−3

1 α−3
3

−φ̄j(1)T −α−2
2 −ϕ̄j(1) 0 0 0 0 0 −α−2

1 −α−2
3

−φ̄j(0)T α−1
2 −ϕ̄j(0) 0 0 0 0 0 α−1

1 α−1
3

QT
ij ϕi(02) m̄ij 0 0 0 0 0 ϕi(01) ϕi(03)

0 0 0 Eij φi(02) Nij 0 0 φi(01) φi(03)

0 0 0 −φ̄j(2)T α−3
2 −ϕ̄j(2) 0 1 α−3

1 α−3
3

0 0 0 −φ̄j(1)T −α−2
2 −ϕ̄j(1) 0 0 −α−2

1 −α−2
3

0 0 0 −φ̄j(0)T α−1
2 −ϕ̄j(0) 0 0 α−1

1 α−1
3

0 0 0 QT
ij ϕi(02) m̄ij 1 0 ϕi(01) ϕi(03)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

where m̄ij = cij(k2 + α2) + mij and Qij denotes the following (N − 1)× 1 matrix:




ci(k2 + α2) + mi1

...

ci(k2 + α2) + mi,j−1

ci(k2 + α2) + mi,j+1

...

ci(k2 + α2) + miK

di,K+1 + mi,K+1

...

di,N + mi,N).




.
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Similarly, we can show that equation (43) holds for f , gij in (32) and (39). So the system

of equations (37), (42) and (43) constructs the discrete KP equation with K pairs of

self-consistent sources(dKPESCS), and f , hij, gij expressed by (32), (38) and (39) are

the N-order (N > K)determinant solutions of the system.

For the dKPESCS (37), (42) and (43), we can also give its bilinear Bäcklund

transformation. To this end, we express the system as the following bilinear forms:

[z1e
1
2
(−Dk1

+Dk2
+Dk3

) + z2e
1
2
(Dk1

−Dk2
+Dk3

) + z3e
1
2
(−Dk1

−Dk2
+Dk3

)]f · f

=
K∑

i,j=1

e
1
2
(Dk1

−Dk2
+Dk3

)gi,j · hi,j, (46)

[
α3e

1
2
(Dk3

−Dk1
) − α1e

1
2
(Dk1

−Dk3
) + (α1 − α3)e

1
2
(Dk1

+Dk3
)
]
f · hi,j = 0, (47)

[
α3e

1
2
(Dk3

−Dk1
) − α1e

1
2
(Dk1

−Dk3
) + (α1 − α3)e

1
2
(Dk1

+Dk3
)
]
gi,j · f = 0, (48)

where z1 = α1(α2 − α3), z2 = α2(α3 − α1) and z3 = α3(α1 − α2). If we set

D1 =
1

2
(−Dk1 + Dk2 + Dk3), D2 =

1

2
(Dk1 −Dk2 + Dk3), D3 =

1

2
(−Dk1 −Dk2 + Dk3),

Then the bilinear Bäcklund transformation for the system (46)-(48) are as follows:

Proposition 1. The system (46)-(48) has the bilinear Bäcklund transformation:
[
e

1
2
D1+ 1

2
D3 − β1e

− 1
2
D1− 1

2
D3 − λ1e

D2+ 1
2
D1− 1

2
D3

]
f · f ′ = 0, (49)

[
e

1
2
D1+ 1

2
D3 − β1e

− 1
2
D1− 1

2
D3 − λ1e

D2+ 1
2
D1− 1

2
D3

]
gi,j · g′i,j = 0, (50)

[
e

1
2
D1+ 1

2
D3 − β1e

− 1
2
D1− 1

2
D3 − λ1e

D2+ 1
2
D1− 1

2
D3

]
hi,j · h′i,j = 0, (51)

e
1
2
D1+ 1

2
D2gi,j · f ′ =

(
β2e

− 1
2
D1− 1

2
D2 + λ2e

1
2
D1+ 1

2
D2

)
f · g′i,j, (52)

e
1
2
D1+ 1

2
D2f · h′i,j =

(
β2e

− 1
2
D1− 1

2
D2 + λ2e

1
2
D1+ 1

2
D2

)
hi,j · f ′ , (53)

(
z2e

1
2
D1− 1

2
D2 + λ1z3e

1
2
D1+ 1

2
D2−D3 + γe

1
2
D2− 1

2
D1

)
f · f ′

= λ2

K∑
i,j=1

e
1
2
D1− 1

2
D2hi,j · g′i,j, (54)

where γ is an arbitrary constant and β1, β2, λ1, λ2 are constants satisfying λ1β2α1 =

λ2β1(α1 − α3).
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Proof. Let f , gi,j, hi,j be solutions of the system (46)-(48), what we need to prove is that

f
′
, g

′
i,j and h

′
i,j in (49)-(54) are also solutions of equations (46)-(48). In fact, according

to Appendix A and relations (49)-(54), we have

P = {(z1e
D1 + z2e

D2 + z3e
D3)f · f −

N∑
i,j=1

eD2gi,j · hi,j}(eD1f
′ · f ′)

−{(z1e
D1 + z2e

D2 + z3e
D3)f

′ · f ′ −
K∑

i,j=1

eD2g
′
i,j · h′i,j}(eD1f · f)

= 2z2 sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D1−D2)f · f ′)

+2z3 sinh D3−D1

2
(e

1
2
(D3+D1)f · f ′) · (e− 1

2
(D1+D3)f · f ′)

−
K∑

i,j=1

{e 1
2
(D2−D1)(e

1
2
(D2+D1)gi,j · f ′) · (e− 1

2
(D2+D1)hi,j · f ′)}

+
K∑

i,j=1

{e 1
2
(D1−D2)(e

1
2
(D2+D1)f · h′i,j) · (e−

1
2
(D2+D1)f · g′i,j)}

= 2z2 sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D1−D2)f · f ′)

+2z3λ1 sinh D3−D1

2
(e

1
2
(D1+2D2−D3)f · f ′) · (e− 1

2
(D1+D3)f · f ′)

−λ2

K∑
i,j=1

{e 1
2
(D2−D1)(e

1
2
(D2+D1)f · g′i,j) · (e−

1
2
(D2+D1)hi,j · f ′)}

+λ2

K∑
i,j=1

{e 1
2
(D1−D2)(e

1
2
(D2+D1)hi,j · f ′) · (e− 1

2
(D2+D1)f · g′i,j)}

= 2z2 sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D1−D2)f · f ′)

+2z3λ1 sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D1+D2−2D3)f · f ′)

−2λ2 sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D1−D2)hi,j · g′i,j)

= −2γ sinh D2+D1

2
(e

1
2
(D2−D1)f · f ′) · (e 1

2
(D2−D1)f · f ′)

≡ 0.

The above results indicate f
′
, h

′
i,j and g

′
i,j satisfy equation (46). Similarly, we can prove

f
′
, h

′
i,j and g

′
i,j satisfy (47)-(48). So f

′
, h

′
i,j and g

′
i,j are solutions of equations (46)-(48).

Then we have completed the proof of the proposition.

4. a BKP-type equation with self-consistent sources (BKPESCS)

The BKP hierarchy (KP hierarchy of the B-type) was introduced by Date, Jimbo,

Kashiwara and Miwa [44, 45]. Here take (2+1)-dimensional SK equation as an example.

The equation in bilinear form is:

(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)τ · τ = 0, (55)

where Di = Dxi
and x1 = x. In [46], N-soliton solution of the equation (55) was

expressed by the pfaffians

τ = (1, 2, · · · , 2N), (56)

where pfaffian entries (i, j) are defined by

(i, j) = Cij +

∫ x

−∞
Dxφi · φjdx. (57)
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In the above expression, each function φi ≡ φi(x, x3, x5) satisfies the linear equations:

∂

∂xm

φi =
∂m

∂xm
φi, m = 1, 3, 5, (58)

with the boundary condition φi = 0 and Cij = −Cji being constant. It was proved in

[46] that τ has the following differential formulas:

∂

∂x
τ = (d0, d1, 1, · · · , 2N),

∂

∂x3

τ = (d0, d3, 1, · · · , 2N)− 2(d1, d2, 1, · · · , 2N),

∂

∂x5

τ = (d0, d5, 1, · · · , 2N)− 2(d1, d4, 1, · · · , 2N) + 2(d2, d3, 1, · · · , 2N),

∂2

∂x∂x5

τ = −(d1, d5, 1, · · · , 2N) + (d0, d6, 1, · · · , 2N) + 2(d0, d1, d2, d3, 1, · · · , 2N),

where dm is defined by

(dm, j) =
∂m

∂xm
φj, m = 0, 1, · · · (59)

(dm, dn) = 0. n,m = 0, 1, · · · (60)

Now we change the solution τ into the following form:

f = (1, 2, · · · , 2N)1 = (•)1, (61)

whose pfaffian elements are defined as follows

(i, j)1 = Cij(x5) +

∫ x

−∞
Dxφi · φjdx, i, j = 1, 2, · · · , 2N

where Cij(x5) = −Cji(x5) satisfying

Cij(x5) =

{
Ck(x5), i = 2k − 1, j = 2k, k = 1, 2, · · · , K
Cij, otherwise.

Then we have the following differential formula:

∂

∂x5

f = (d0, d5, •)1 − 2(d1, d4, •)1 + 2(d2, d3, •)1

+
∑

16i<j62N

(−1)i+j−1Ċij(x5)(1, · · · , î, · · · , ĵ, · · · , 2N)1, (62)

∂2

∂x∂x5

f = −(d1, d5, •)1 + (d0, d6, •)1 + 2(d0, d1, d2, d3, •)1

+
∑

16i<j62N

(−1)i+j−1Ċij(x5)(d0, d1, 1, · · · , î, · · · , ĵ, · · · , 2N)1, (63)

where dm is defined as

(dm, j)1 =
∂m

∂xm
φj, (dm, dn)1 = 0, n, m = 0, 1, · · ·
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Then f in (61) satisfies the following new equation:

(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)f · f =

K∑

k=1

D1gk · hk, (64)

where gk and hk are defined by

gk = 3

√
2Ċk(x5)(d0, 1, · · · , ˆ2k − 1, · · · , 2N)1, (65)

hk = 3

√
2Ċk(x5)(d0, 1, · · · , 2̂k, · · · , 2N)1. (66)

From the expression (65)-(66), we can show that f , gk and hk satisfy the following

equations at the same time:

(D3 −D3
1)f · gk = 0, k = 1, 2, · · · , K (67)

(D3 −D3
1)f · hk = 0, k = 1, 2, · · · , K (68)

In fact, substitution of (61), (65)-(66) into equation (64) yields the following pfaffian

identities:
K∑

k=1

Ċk(x5)[(d0, d1, 1, · · · , ˆ2k − 1, 2̂k, · · · , 2N)1(•)1

−(1, · · · , ˆ2k − 1, 2̂k, · · · , 2N)1(d0, d1, •)1

−(d0, 1, · · · , 2̂k, · · · , 2N)1(d1, 1, · · · , ˆ2k − 1, · · · , 2N)1

+(d0, 1, · · · , ˆ2k − 1, · · · , 2N)1(d1, 1, · · · , 2̂k, · · · , 2N)1] = 0. (69)

Then the equation (64) holds for f , gk and hk in (61), (65)-(66). On the other hand, we

have
∂gk

∂x
= 3

√
2Ċk(x5)(d1, 1, · · · , ˆ2k − 1, · · · , 2N)1,

∂2gk

∂x2
= 3

√
2Ċk(x5)(d2, 1, · · · , ˆ2k − 1, · · · , 2N)1,

∂3gk

∂x3
= 3

√
2Ċk(x5)[(d3, 1, · · · , ˆ2k − 1, · · · , 2N)1 − (d0, d1, d2, 1, · · · , ˆ2k − 1, · · · , 2N)1],

∂gk

∂x3

= 3

√
2Ċk(x5)[(d3, 1, · · · , ˆ2k − 1, · · · , 2N)1 − 2(d0, d1, d2, 1, · · · , ˆ2k − 1, · · · , 2N)1].

Substituting above results into (67), we obtain the following identities:

(d1, d2, •)1(d0, ?)1 − (•)1(d0, d1, d2, ?)1

−(d0, d2, •)1(d1, ?)1 + (d0, d1, •)1(d2, ?)1 = 0,

where ? denotes {1, · · · , ˆ2k − 1, · · · , 2N}. That shows that f , gk satisfy the equation

(67). Equally, f , hk satisfy the equation (68). So equations (64), (67) and (68) constitute

a coupled system with K pairs of self-consistent sources which can be viewed as the

BKPESCS. And f , gk and hk defined by (61), (65) and (66) are pfaffian solutions of

the system. To explain the integrability of the system, we give a bilinear Bäcklund

transformation of the system (64), (67) and (68).
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Proposition 2. The bilinear system (64), (67)-(68) has the bilinear Bäcklund

transformation:

(D1 − µ)gk · f ′ = λ(D1 − µ)f · g′k, (70)

(D1 − µ)f · h′k = λ(D1 − µ)hk · f ′ , (71)

(D3 −D3
1 + 3µD2

1 − 3µ2D1 − γ)f · f ′ = 0, (72)

(D3 −D3
1 + 3µD2

1 − 3µ2D1 − γ)gk · g′k = 0, (73)

(D3 −D3
1 + 3µD2

1 − 3µ2D1 − γ)hk · h′k = 0, (74)

(−D5
1 + 5γD2

1 − 5D2
1D3 + 5µD4

1 − 5µ2D3
1 − 10µD3

−10γµD1 + 10µD1D3 + 6D5 + θ)f · f ′ + 1
3

K∑
i=1

(λg
′
ihi − λ−1gih

′
i) = 0,

(75)

where γ, µ, λ and θ are arbitrary constants and 1 6 k 6 K.

Proof. Let f , gk and hk be solutions of (64), (67)-(68). What we only need to prove is

that f
′
, g

′
k and h

′
k in (70)-(75) satisfy equations (64), (67) and (68). In fact, utilizing

relations (70)-(75) and bilinear operator identities in Appendix A , we have

P = {(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)f · f −

K∑
i=1

D1gi · hi}f ′f ′

−{(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)f

′ · f ′ −
K∑

k=1

D1g
′
i · h′i}f 2

= 3D1[ff
′ · (D5

1f · f ′) + 5(D3
1f · f ′) · (D2

1f · f ′)] + 5D3
1(D

3
1f · f ′) · ff

′

−10D3(D
3
1f · f ′) · ff

′ − 30D1(D1f · f ′) · (D1D3f · f ′)
−10D3(D3f · f ′) · ff

′
+ 18D1(D5f · f ′) · ff

′

−
K∑

i=1

[(D1gi · f ′)hif
′ − gif

′
(D1hi · f ′)− (D1f · h′i)fg

′
i + h

′
if(D1f · g′i)]

= 3D1[(−D5
1 + 6D5)f · f ′ ] · ff

′ − 5D1[(−D3 + 3µ2D1 + γ)f · f ′ ] · (D2
1f · f ′)

−5D3
1[(−D3 + 3µ2D1 − 3µD2

1)f · f ′ ] · ff
′

−10D3(D
3
1f · f ′) · ff

′ − 10D3(D3f · f ′) · ff
′

−30D1(D1f · f ′) · (D1D3f · f ′)−
K∑

k=1

λ[hif
′
(D1f · g′i)− fg

′
iD1hi · f ′ ]

−
K∑

k=1

λ−1[fh
′
i(D1gi · f ′)− f

′
giD1f · h′i]

= 3D1[(−D5
1 + 5γD2

1 − 5D2
1D3 + 5µD4

1 − 5µ2D3
1 − 10µD3 − 10γµD1

+10µD1D3 + 6D5)f · f ′ +
K∑

i=1

(1
3
λg

′
ihi − 1

3
λ−1gih

′
i)] · ff

′

= −3θD1ff
′ · ff

′ ≡ 0;
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Pk = {(D3 −D3
1)f · hk}f ′h′k − {(D3 −D3

1)f
′ · h′k}fhk

= (D3f · f ′)hkh
′
k − ff

′
(D3hk · h′k)− (D3

1f · f ′)hkh
′
k

+ff
′
(D3

1hkh
′
k) + 3D1(D1f · h′k) · (D1hk · f ′)

= [(D3 −D3
1)f · f ′ ]hkh

′
k − ff

′
[(D3 −D3

1)hk · h′k]
+3µD1fh

′
k · (D1hk · f ′)− λµD1hkf

′ · (D1hk · f ′)
= [(D3 −D3

1 + 3µD2
1)f · f ′ ]hkh

′
k − ff

′
[(D3 −D3

1 + 3µD2
1)hk · h′k]

−3µ2D1fh
′
k · hkf

′

= [(D3 −D3
1 + 3µD2

1 − 3µ2D1)f · f ′ ]hkh
′
k

−ff
′
[(D3 −D3

1 + 3µD2
1 − 3µ2D1)hk · h′k]− 3µ2D1fh

′
k · hkf

′

= γff
′
hkh

′
k − γff

′
hkh

′
k ≡ 0.

The above results indicate that f
′
, h

′
k satisfy equations (64) and (68). Similarly, it can

be shown that f
′
, g

′
k satisfy equation (67). So f

′
, h

′
k and g

′
k are solutions of the system

(64), (67)-(68). Then we complete the proof.

5. Conclusion and Discussions

In the paper, we have proposed a new method to construct soliton equations with self-

consistent sources. One of the advantages of this approach is that SESCSs and their

soliton solutions can be generated simultaneously from the procedure. This procedure

has been successfully applied to the 2D Toda equation, discrete KP equation and a

(2 + 1)-dimensional BKP equation. In addition, we have derived the bilinear Bäcklund

transformations for the dKPESCS and BKPESCS and thus showed the integrability of

dKPESCS and BKPESCS. If we let the arbitrary functions γj(t), cj(k2) and Cj(x5) in

solutions of these SESCSs be constants, respectively, these SESCSs come to the initial

equations without sources, and the solutions of SESCSs will be reduced to the original

solutions of equations without sources. So the SESCSs are a kind of generalization

of equations without sources, and solutions of SESCSs obtained in the procedure are

also generalization of Gram-type determinant or pfaffian solutions of original equations.

We know many soliton equations possess determinant or pfaffian solutions with some

arbitrary constants. For example, the semi-discrete Toda equation has such kind of

determinant solutions which can also be expressed by means of pfaffian. As for BKP

equations, we can only find pfafffian solutions. So we believe that this approach can be

applicable to a variety of soliton equations, both continuous and discrete, such as the

semi-discrete Toda equation, Leznov lattice equation, DKP-type equations and semi-

discrete BKP-type equations. The work in this direction is in progress.

Finally, we believe that it would be quite interesting to consider the reduction of

the soliton equations with self-consistent sources, say the discrete KP equation with

self-consistent sources. It is noted that in [47] a variety of (1+1)-dimensional famous

soliton equations have been derived from the reductions of the discrete KP equation.

Therefore it is natural for us to expect that many (1+1)-dimensional SESCSs may be

derived from the reductions of the discrete KP equation with self-consistent sources

obtained in this paper.
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Appendix A.. Hirota’s bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, c and d.

Dzab · cd = (Dza · d)cb− ad(Dzc · b); (A1)

(Dza · b)c2 = (Dza · c)bc− ac(Dzb · c); (A2)

(Dza · b)cd− ab(Dzc · d) = (Dza · c)bd− ac(Dzb · d); (A3)

(D3
za · b)cd− ab(D3

zc · d) = (D3
za · c)bd− ac(D3

zb · d)− 3Dz(Dza · d) · (Dzb · c); (A4)

(D2
za · b)cd− ab(D2

zc · d) = Dz[(Dza · d) · cb + ad(Dzc · b)]; (A5)

(eD1a · b)(eD2c · c) = e
D1+D2

2 (e
D1+D2

2 a · c) · (e−D1+D2
2 b · c); (A6)

2 sinh (
D1 −D2

2
)(e

D1+D2
2 a · b) · (e−D1+D2

2 a · b)
= (eD1a · a)(eD2b · b)− (eD2a · a)(eD1b · b); (A7)

(eD1a · a)(eD2b · b)− (eD2a · a)(eD1b · b)
= 2 sinh (

D1 + D2

2
)(e

D1−D2
2 a · b) · (eD2−D1

2 a · b); (A8)

(eD1a · a)(eD2b · b)− (eD2a · a)(eD1b · b)
= 2 sinh (

D1 −D2

2
)(e

D1+D2
2 a · b) · (e− (D1+D2)

2 a · b). (A9)

where z ia a variable and D1, D2 are linear combination of Dk1 , Dk2 and Dk3 .
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