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A Generalization for Directed Scale-Free Graphs∗

Yan Yunzhi1 Wang Hanxing1†

Abstract We study a dynamically evolving directed random graph which
randomly adds vertices and directed edges using preferential attachment and prove
that its vertice degree obey power law and has elaborate power law exponents.
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1 Introduction

In the past few years, there has been much interest in understanding the properties

of real-world large-scale networks such as the structure of the Internet and the World

Wide Web. It has been observed that many such networks have a so-called power law

degree distribution: the proportion of nodes of degree k is approximately 1
kγ , where

γ > 1 is a fixed real number. Such graphs are sometimes called scale-free in the

literature. A graph is called a power law graph if the fraction of vertices with degree

k is proportional to 1
kγ for some constant γ > 0. The standard models of random

graphs introduced by Erdős and Rényi[12] and Gilbert[13] are not appropriate for<�86� 2008 4 3 V 28 8�
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studying these networks, since they generate graphs which, with high probability,

have binomial degree distributions. A large number of power law random graph

models [1-2,5,9-10,15] have been proposed now. Many models have been suggested

to explain this and other features of the graphs studied. One of the basic ideas

is the combination of growth with ‘preferential attachment’; the graph grows one

vertex at a time, and edges are added, perhaps only from the new vertex to old

vertices, or perhaps also between old vertices, where the old vertices involved are

chosen with probabilities proportional to their degrees. One of the simplest and

earliest models is that outlined by Barabási and Albert in [5], made precise in [9].

The degree sequence of this model was analyzed heuristically in [5, 6], and rigorously

in [9]. Many generalizations have been suggested and studied heuristically, see [3]; a

few have been analyzed precisely, see [16]. In [10] Cooper and Frieze have analyzed

rigorously a very general version of the model allowing for (finite) distributions of

out-degrees and mixtures of uniform and preferential attachment.

The models mentioned above essentially describe undirected graphs. The only

exception is [10], where the authors treat either in-degrees or out-degrees, but not

both simultaneously; a full treatment of directed graphs was announced there, but

has not yet appeared. Bollobás et al. in [8] and Wang in [17] introduce a directed

scale-free graph model that grow with preferential attachment depending on the in-

and out-degrees. However, in their model when a new vertex is added it can’t be

viewed as both origin and destination simultaneously since only a single directed

edge is added to it. In [9] Bollobás and Riordan introduce a model that multi-

edge is added when a new vertex is added, but they don’t differentiate between

the in-degree and out-degree while the graphs grow with preferential attachment

depending on degrees of the vertices. In the model mentioned in this paper, the

number of edges added at every time step is a random number, which generalize the

models and some result in [8].

2 The model

We consider a directed graph which grows by adding single edges at discrete time

steps. At each such step a vertex may or may not be added. For simplicity we allow

multiple edges and loops. More precisely, let α, δin and δout be non-negative real

numbers. Let G(0) be any fixed initial directed graph, for example a single vertex
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without edges. At time t the graph G(t) has random et edges and nt vertices. In

what follows, to choose a vertex v of G(t) according to dout + δout means to choose

v so that Pr(v = vi) is proportional to dout(vi) + δout, i.e., so that

Pr(v = vi) = (dout(vi) + δout)/(et + δoutnt);

to choose a vertex v according to din + δin means to choose v so that Pr(v = vi) is

proportional to din(vi) + δin, i.e., so that

Pr(v = vi) = (din(vi) + δin)/(et + δinnt).

Here dout(vi) and din(vi) are the out-degree and in-degree of vi, measured in the

graph G(t).

For t > 0 we form G(t + 1) from G(t) according to the following rules:

(A) With probability α, add a new vertex v together with random number ξt+1

edges (v,w) from v to ξt+1 vertices w’s of G(t) and random number ηt+1 edges (w, v)

from ηt+1 vertices w’s of G(t) to v, where the former ξt+1 w’s is chosen according to

din + δin and the later ηt+1 w’s according to dout + δout, and the ξt+1 + ηt+1 w’s is

chosen independently.

(B) With probability β, add random number ζt+1 edges (v,w) from ζt+1 existing

vertex v’s to ζt+1 existing vertex w’s, where each v’s is chosen according to dout+δout

and each w’s according to din + δin, and the v’s and w’s are chosen independently.

Let ξ has probability distribution (ai : i > 0), η has distribution (bi : i > 0)

and ζ has distribution (ci : i > 0), where the probability that ξ be i is ai, etc. We

write ξ̄ = Eξ, η̄ = Eη, ζ̄ = Eζ. In (A) and (B), {ξt, t > 0}, {ηt, t > 0}, {ζt; t > 0} are

three sequences of independent random variable which respectively have the same

probability distributions with ξ, η, ζ for every t.

The model we study here require α > 0. Depending on the parameters, we may

have to assume e0 > 1, a0 = Pr(ξ = 0) = 0, b0 = Pr(η = 0) = 0 or c0 = Pr(ζ = 0) =

0 for our process to make sense. Additionally, it is convenient to assume a finiteness

condition for the distribution of ξ, η, ζ. This means that there exist a constant m

such that ai = bi = ci = 0, i > m.

Now define the sequences (p−1, p0, p1, ..., pk, ...); (q−1, q0, q1, ..., qk, ...) by p−1 =

q−1 = 0, and for i > 0

pi =
(αξ̄ + (1 − α)ζ̄)(i − 1 + δin)pi−1

α(ξ̄ + η̄) + (1 − α)ζ̄ + αδin
− (αξ̄ + (1 − α)ζ̄)(i + δin)pi

α(ξ̄ + η̄) + (1 − α)ζ̄ + αδin
+ αbi (1)
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qi =

(αη̄ + (1 − α)ζ̄)(i − 1 + δout)qi−1

α(ξ̄ + η̄) + (1 − α)ζ̄ + αδout
− (αη̄ + (1 − α)ζ̄)(i + δout)qi

α(ξ̄ + η̄) + (1 − α)ζ̄ + αδout
+ αai

For simplicity we set

γin = 2 +
α(η̄ + δin)

αξ̄ + (1 − α)ζ̄
and γout = 2 +

α(ξ̄ + δout)

αη̄ + (1 − α)ζ̄
.

(The definitions above we may have to assume αξ̄+(1−α)ζ̄ > 0 or αη̄+(1−α)ζ̄ > 0

to make sense.) And we write xi(t) for the number of vertices of Gt with in-degree

i, and yi(t) for the number of vertices of Gt with out-degree i.

3 Main results

The main results of this paper are

Theorem 1 There exists a constant M > 0 such that almost surely for t, k > 0,

|Exk(t) − tpk| 6 Mt1/2 log t; |Eyk(t) − tqk| 6 Mt1/2 log t.

Theorem 2 For k = O(log t), there exists some sufficiently large constant M ,

Pr(|xk(t) − E(xk(t))| > Mt2/3 log t) 6 t−Ω(log t);

Pr(|yk(t) − E(yk(t))| > Mt2/3 log t) 6 t−Ω(log t).

The next theorem show that pi and qi asymptotically have the form of pow law

functions.

Theorem 3 (i) If αξ̄ + (1 − α)ζ̄ > 0, then as i → ∞ we have pi ∼ Cini−γin , where

Cin is a positive constant.

(ii) If αη̄ + (1− α)ζ̄ > 0, then as i → ∞ we have qi ∼ Couti
−γout , where Cout is

a positive constant.

In the statements above, g(t) = O(f(t)) means there exist constants T and

M > 0 such that for all t > T , |g(t)/f(t)| 6 M ; g(t) = Ω(f(t)) means there exist

constants T and M2 > M1 > 0 such that for all t > T , M1 6 g(t)/f(t) 6 M2;

g(i) ∼ f(i) means g(i)/f(i) → 1 as i → ∞.

4 Proof of theorems

We prove all three theorems just considering the state of in-degrees, for out-degrees

proofs is exactly the same after interchanging the roles of ξt and ηt and of δin and

δout. We have mainly used the methods of that used in [10] and [8] for our proof.
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By (1), the probability that there’s at least a vertex of in-degree j in Gt which

gets l, l > 2 in-incidences and becomes a vertex of in-degree j + l at time step t + 1

is at most

m!xj(t)

(
j + δin

et + δinnt

)l

6 m!xj(t)

(
j + δin

et + δinnt

)2

= O

(
j

et + δinnt

)
, (2)

since rj(t) := xj(t)(j + δin)/(et + δinnt) 6 1. With this effect, we have

xi(t + 1) =





xi(t) + Bt+1(1, α)B(ξt+1, ri−1(t)) + (1 − Bt+1(1, α))B(ζt+1, ri−1(t))

−(Bt+1(1, α)B(ξt+1, ri(t)) + (1 − Bt+1(1, α))B(ζt+1, ri(t)))

+1{Bt+1(1,α)=1,ηt+1=i} w.p. 1 − O( i
et+δinnt

);

xi(t) + u, |u| 6 m w.p. O( i
et+δinnt

).

(3)

where {Bt+1(1, α); t > 0} is a sequence of independent random variables which have

the same distribution with 0,1 random variable B(1, α), where Pr(B(1, α) = 1) = α;

{B(ξt+1, ri−1(t));

t > 0} is a sequence of random variables which have binomial distribution B(l, p) on

condition that ξt+1 = l, rj(t) = p, and Bt+1(1, α) is independent with B(ξt+1, rj(t))

for every t > 0; 1D is the indicator function which is 1 if the event D holds and

0 otherwise; u is an error term that there’s some vertices have added more than 1

in-incidences to generate xi(t+1) in-degree i vertices at step t, which has probability

of O( i
et+δinnt

) by (2). We abbreviate ‘with probability’ by ‘w.p.’.

At first we establishes an upper bound on pk given in by (1). Denote

θ = E(Bi(1, α)(ξi + ηi) + (1 − Bi(1, α))ζi) = α(ξ̄ + η̄) + (1 − α)ζ̄ .

Lemma 1 For k > 1 the solution of (1) satisfies pk 6 C/k.

Proof We assume that k > m, and thus bk = 0. Smaller values of k can be dealt

with by adjusting C. We proceed by induction on k. By (1),

pk =
(αξ̄ + (1 − α)ζ̄)(k − 1 + δin)pk−1

(αξ̄ + (1 − α)ζ̄)(k + δin) + θ + δinα

Let pk−1 6 C
k−1 , then we just need to prove pk 6 C

k , which only need to prove

(αξ̄ + (1 − α)ζ̄)(k − 1 + δin)pk−1

(αξ̄ + (1 − α)ζ̄)(k + δin) + θ + δinα
6

(αξ̄ + (1 − α)ζ̄)(k − 1 + δin)C/(k − 1)

(αξ̄ + (1 − α)ζ̄)(k + δin) + θ + δinα
6

C

k

The right inequality of above is equivalent to

k(αξ̄ + (1 − α)ζ̄)(k − 1 + δin) 6 (k − 1)((αξ̄ + (1 − α)ζ̄)(k + δin) + θ + δinα)
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That is

(k − 1)(θ + δinα) > (αξ̄ + (1 − α)ζ̄)δin.

A large k guaranty above holds clearly. This completes the proof of Lemma 1.

Proof of Theorem 1 When k > t1/2 it is trivial by lemma 1 since et 6 2mt. Now

we prove when k 6 t1/2 the first part of Theorem 1 holds. Since

nt = n0 +
t∑

τ=1

Bτ (1, α),

et = e0 +
t∑

τ=1

(Bτ (1, α)(ξτ + ητ ) + (1 − Bτ (1, α))ζτ ),

the random variables nt, et are sharply concentrated provided t → ∞. Indeed by

Azuma-Hoeffding’s theorem([4,7,14]),

Pr(|nt − αt| > t
1

2 log t) 6 2e−(log t)2/(2m2); (4)

Pr(|et − θt| > t
1

2 log t) 6 2e−(log t)2/(2m2). (5)

Take the expectation of (3) we have

Exi(t + 1) = Exi(t)+ (αξ̄ + (1−α)ζ̄)(Eri−1(t)−Eri(t))+ αbi + O(
i

et + δinnt
). (6)

It follows from (4-6) that

Exk(t + 1) =Exk(t) +
(αξ̄ + (1 − α)ζ̄)

(θ + δinα)t
((k − 1 + δin)Exk−1(t) − (k + δin)Exk(t))

+ αbk + O(t−1/2 log t),

Let ∆k(t) = Exk(t) − tpk, by (1) and above

∆k(t + 1) =∆k(t) +
(αξ̄ + (1 − α)ζ̄)

(θ + δinα)t
((k − 1 + δin)∆k−1(t) − (k + δin)∆k(t))

+ O(t−1/2 log t) (7)

To prove the first part of theorem 1 we must show exactly |∆i(t)| 6 Mt1/2 log t for

all k 6 t1/2. We do this by induction on k; suppose that k > 0 and |∆k−1(t)| 6

Mt1/2 log t, noting that ∆−1(t) = 0 and we can adjust M to deal with small val-

ues of t for each k, so the induction starts. Let L denote the hidden constant
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in O(t−1/2 log t) of (7). Assume inductively that |∆κ(τ)| 6 Mτ1/2 log τ for all

κ 6 k, τ 6 t. It follows from (7) that

|∆k(t + 1)| 6 Mt1/2 log t +
αξ̄ + (1 − α)ζ̄

(θ + δinα)t
((k − 1 + δin)Mt1/2 log t

−(k + δin)Mt1/2 log t) + Lt−1/2 log t

= Mt1/2 log t − αξ̄ + (1 − α)ζ̄

θ + δinα
Mt−1/2 log t + Lt−1/2 log t

6 Mt1/2 log t + Lt−1/2 log t

6 M(t + 1)1/2 log(t + 1)

provided M > 2L. Above the first inequation holds because on the right side of (7)

the coefficient of the first ∆k(t) is larger than that of the second since k 6 t1/2 .

This completes the proof by induction.

Let us choose at each step which of operation (A) or (B) to perform and the

number of edges added. Let A be an event corresponding to one (infinite) sequence

of such choices and set Ã is composed by all such events A. Given A define αA =

αA(τ) = 1E(Bτ |A) = 1} to be the indicator for an new vertex to generate at time

τ , define ξA = ξA(τ) =
m∑

i=1
i1{E(Bτ |A)=i}, similarly we define ηA, ζA. Denote

ǫA(t) =

t∑

τ=1

(αA(τ)ξA(τ) + (1 − αA(τ))ζA(τ))

which counts the number of in-incidence vertices that until time t the added edges

will choose randomly to join to condition on A.

The following lemma help us to prove Theorem 2.

Lemma 2 For any u > 0,

Pr(|xk(t) − E(xk(t)|A)| > u|A) 6 exp
{
− u2

4ǫA(t)

}
.

Proof Given A, let Y1, Y2, ..., YǫA(t) be the sequence of single choices of edges created.

We let

Zi = E(xk(t)|Y1, Y2, ..., Yi,A) − E(xk(t)|Y1, Y2, ..., Yi−1,A)

and prove that |Zi| 6 2. The Azuma-Hoeffding martingale inequality then implies

that lemma 2 holds.

For each sequence of edges choice Y = Y1, Y2, ..., YǫA(t) denote Yi = xi~vi, Ŷi =

xi~̂vi, then the choice of Yi can be viewed as such a program to perform: Either choose
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an edge and take its endvertice as Yi’s one, or choose Yi’s endvertice otherwise. Now

we define Ŷ = Ŷ1, Ŷ2, ..., Ŷi−1, Ŷi, ..., ŶǫA(t) := Y1, Y2, ..., Yi−1, Ŷi, ..., ŶǫA(t) where Ŷi’s

endvertice v̂i is a vertex randomly chosen according to din + δin, for j > i, Ŷj is

obtained from Yj = xj~vj as follows: At step j, if the choice of Yj ’s endvertice is

decided by choosing Yj′ = xj′~vj′ , j
′ < j and takeing its endvertice vj′ as vj , then Ŷj

choose Ŷj′ and take Ŷj′ ’s endvertice v̂j′ as endvertice v̂j . Otherwise Ŷj = Yj.

The map Y → Ŷ is measure preserving and in going from Y to Ŷ only the

degree of vertex vi and v̂i change and so the number of vertices of degree k changes

by at most 2 and lemma 2 holds.

Proof of Theorem 2 Going back to (3) we can write

x̄A
k (t + 1) =x̄A

k (t) + (αA,t+1ξA,t+1 + (1 − αA,t+1)ζA,t+1)(r̄
A
k−1(t) − r̄Ak (t))

+ αA,t+11{ηA,t+1=k} + O
( k

eAt + δinnA
t

)

where

x̄A
k (t) = E(xk(t)|A), r̄Ak−1(t) − r̄Ak (t) =

(k − 1 + δin)x̄A
k−1 − (k + δin)x̄A

k

eAt + δinnA
t

.

Again we let ∆A
k (t) = x̄A

k (t) − tpk then

∆A
k (t + 1) =∆A

k (t) + (αAξA + (1 − αA)ζA)(r̄Ak−1(t) − r̄Ak (t)) + αA1{ηA=k}

+ O
( k

eAt + δinnA
t

)
− pk (8)

Let s = t2/3, then by Azuma-Hoeffding’s theorem,

Pr

(∣∣∣
t∑

τ=t−s

Bτητ − (s + 1)αη̄
∣∣∣ > s

1

2 log s

)
6 2e−(log s)2/(2m2) = t−Ω(log t) (9)

Let

A1 = {A ∈ Ã : |nt − αt| 6 t
1

2 log t}; A2 = {A ∈ Ã : |et − θt| 6 t
1

2 log t};

A3 =

{
A ∈ Ã :

∣∣∣
t∑

τ=t−s

Bτητ − (s + 1)αη̄
∣∣∣ 6 s

1

2 log s

}
; Â = A1A2A3.

It follows easily from (4)(5) and (9) that

Pr(A /∈ Â) = t−Ω(log t). (10)
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Assuming that A ∈ Â and set

ΣA
k (t) =

1

s + 1

s∑

l=0

∆A
k (t − l).

We can deduce from (1) and (8) that

ΣA
k (t + 1) = ΣA

k (t) +
(αξ̄ + (1 − α)ζ̄)

(θ + δinα)t
((k − 1 + δin)ΣA

k−1(t) − (k + δin)ΣA
k (t))

+ O
( ks

(θ + δinα)t + O(t2/3)

)
+ O(s−1/2 log s)

= ΣA
k (t) +

(αξ̄ + (1 − α)ζ̄)

(θ + δinα)t
((k − 1 + δin)ΣA

k−1(t) − (k + δin)ΣA
k (t))

+ O(t−1/3 log t) (11)

since k = O(log t), s = t2/3. (We leave out the straightforward but somewhat tech-

nical details.) We inductively prove the following inequalities for κ 6 Ω(log t) and

some sufficiently large M :

|ΣA
κ (t)| 6 Mt2/3 log t. (12)

Let x̄A
−1(τ) = 0 for every τ, then ΣA

−1(τ) = 0. Again for small t this holds trivially

so the induction starts. Let L denote the hidden constant of the term O(t−1/3 log t)

in (11). Let k 6 Ω(log t) and some sufficiently large M, for any κ 6 k,

|ΣA
κ (t)| 6 Mt2/3 log t,

then by the last part of (11)

|ΣA
k (t + 1)| 6 Mt2/3 log t + Lt−1/3 log t 6 M(t + 1)2/3 log(t + 1),

provided M > 3L/2. This completes the induction. Noting that

|∆A
k (t) − ΣA

k (t)| 6 s = t2/3,

this together with (12) we get ∆A
k (t) = O(t2/3 log t), that is

x̄A
k (t) = tpk + O(t2/3 log t),A ∈ Â. (13)

In lemma 2, if A ∈ Â then ǫA(t) = Ω(t). Take u = t2/3 we get

Pr(|xk(t) − x̄A
k (t)|A)| > t2/3|A) 6 exp{−Ω(t1/3)}.
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Associate (10)(13) with above, with probability

(1 − exp{−Ω(t1/3)})P (Â) = (1 − exp{−Ω(t1/3)})(1 − t−Ω(log t))

= 1 − t−Ω(log t)

we have xk(t) = tpk + O(t2/3 log t)

Now we turn to the more substantial part of the result, determining the behavior

of the quantities pi defined by (1).

Proof of Theorem 3 For i > m, by finiteness condition bi = 0, we have

pi =
(αξ̄ + (1 − α)ζ̄)(i − 1 + δin)pi−1

θ + δinα + (αξ̄ + (1 − α)ζ̄)(i + δin)

=
(i − 1 + δin)pi−1

θ+δinα
αξ̄+(1−α)ζ̄

+ i + δin

=
(i − 1 + δin)i−m

( θ+δinα
αξ̄+(1−α)ζ̄

+ i + δin)i−m

pm

=
Γ(i + δin)

Γ( θ+δinα
αξ̄+(1−α)ζ̄

+ i + δin + 1)

Γ( θ+δinα
αξ̄+(1−α)ζ̄

+ m + δin + 1)

Γ(m + δin)!
pm.

We skip some detail in the derivations, as equations such as (1) clearly have unique

solutions, and it is straightforward to check that the formulae we obtain do indeed

give solutions. One can check that, as expected,
∞∑
i=1

pi = α; there are (α + o(1))t

vertices at large times t. Now using the fact that Γ(x) =
√

2πe−xxx−1/2(1+O(x−1))

we see that as i → ∞ we have pi ∼ Cini−γin with

γin = 2 +
α(η̄ + δin)

αξ̄ + (1 − α)ζ̄
,

where Cin is a constant.

5 Remark

In this paper, based on the result of [8,10] we introduce a general model for directed

scale-free graphs that grow with preferential attachment depending on the in- and

out-degrees, we show that the resulting in- and out-degree distributions are power

laws with exponent 2 + α1, 2 + α2, respectively. Noticing that substitute α + γ for

α, β for 1 − α and µ1, µ2, µ3 for α
α+γ , γ

α+γ , 1, respectively, γin, γout is just the form

of the power law exponent in [8], it is easy to see that our result is a generalization

of Theorem 1 that in [8].
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