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Abstract In this paper, we define a new filter and propose a filter QP-free in-
feasible method with some piecewise linear relational NCP function for constrained
nonlinear optimization problems. This iterative method is based on the solution
of nonsmooth equations which are obtained by the multipliers and the NCP func-
tion for the KKT first-order optimality conditions. Locally, each iteration of this
method can be viewed as a perturbation of a mixed Newton-quasi Newton iteration
on both the primal and dual variables for the solution of the KKT optimality con-
ditions. We also use the filter on line searches. This method is implementable and
globally convergent. We also prove that the method has superlinear convergence
rate under some mild conditions.
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1 Introduction

We shall study the constrained nonlinear optimization problem (NLP):

min f(x),

s.t. x ∈ D = {x ∈ Rn|G(x) 6 0}, (1.1)

where x ∈ Rn and G = (g1, g2, · · · , gm)T : Rn → Rm is the inequality constraint.

A Karush-Kuhn-Tucker (KKT) point (x̄, µ̄) ∈ Rn×Rm is a point that satisfies

the necessary optimality conditions for problem (NLP):

∇xL(x̄, µ̄) = 0, G(x̄) 6 0, µ̄ > 0, µ̄igi(x̄) = 0 1 6 i 6 m, (1.2)

where L(x, µ) = f(x) + µTG(x) is the Lagrangian function, µ = (µ1, µ2, · · · , µm)T

is the multiplier vector. For simplicity, we use (x, µ) to denote the column vector

(xT, µT)T.

Problem (??) is a mixed nonlinear complementarity problem (NCP). NCP has

attracted much attention due to its various applications. One method to solve the

nonlinear complementarity problem (??) is to construct a Newton method for solving

a system of nonlinear equations:

Φ(x, µ) = 0,

which is a reformulation of (??).

Recently Pu, Li ad Xue[5] proposed a new QP-free infeasible method for mini-

mizing a smooth function subject to smooth inequality constraints. This iterative

method is based on the solution of nonsmooth equations which are obtained by the

multipliers and the Fischer-Burmeister NCP function for the KKT first-order opti-

mality conditions. They proved that the method has superlinear convergence rate

under some mild conditions. For other QP-free methods, see [6,8-10].

On the other hand, we define the constraint violation by

p(G(x)) =
m
∑

j=1

max{0, gj(x)}.

A nonlinear programming algorithm must deal with two conflicting criteria, f and p,

which must be simultaneously minimized, with preference given to the infeasibility

measure p, which must be driven to zero. Fletcher and Leyffer have proposed to solve

problem (NLP) using filter method as an alternative to traditional merit functions

approach. The underlying concept is fairly simple. Trial points generated from

solving a sequence of trust region quadratic programming (QP) subproblems are
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accepted if there is a sufficient decrease in the objective function or the constraint

violation. In addition the computational results reported in Fletcher and Leyffer are

also very encouraging (see [2-3,7,12]).

Definition 1.1 A pair (p(G(xk), f(xk))), is said to dominate another pair (p(G(xl),

f(xl))) if and only if p(G(xk)) 6 p(G(xl)) and f(xk) 6 f(xl).

Definition 1.2 A filter F is a list of pairs {(p(G(xk), f(xk)))} such that no pair

dominates any other. A pair (p(G(xk)), f(xk)) is said to be accepted for inclusion

in the filter if it is not dominated by another pair in the filter.

Call F = {l : (p(G(xl), f(xl)) ∈ F} is the index set accompanied with F .

For k-th iteration, We use F k to denote the current filter and Fk to be the set

of iteration indices j (j 6 k) such that (p(G(xl)), f(xl)) ∈ F k.

In this paper, we define a piecewise linear relational NCP function and propose

a filter QP-free infeasible method with this NCP function for constrained nonlinear

optimization problems. This iterative method is based on the solution of nons-

mooth equations which are obtained by the multipliers and the NCP function for

the KKT first-order optimality conditions. Locally, each iteration of this method

can be viewed as a perturbation of a mixed Newton-quasi Newton iteration on both

the primal and dual variables for the solution of the KKT optimality conditions.

We also use the filter on line searches. This method is implementable and globally

convergent. We also prove that the method has superlinear convergence rate under

some mild conditions. Some preliminary numerical results indicate that this new

QP-free infeasible method is quite promising.

2 Preliminaries

Definition 2.1 (NCP pair and NCP function) We call a pair (a, b) ∈ R2 to be an

NCP pair if a > 0, b > 0 and ab = 0; a function ψ : R2 → R is called an NCP

function if ψ(a, b) = 0 if and only if (a, b) is an NCP pair.

Two most famous NCP functions are the min function and the Fischer-Burmeister

NCP function. In this paper we define a 4-l piecewise linear relational NCP function

ψ with a parameter k > 0 as follows.

ψ(a, b) =























k2a if b > k|a|,

2kb− b2/a if a > |b|/k,

2k2a+ 2kb+ b2/a if a < −|b|/k,

k2a+ 4kb if b 6 −k|a| < 0.

(2.1)
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We know that ψ is continuously differentiable everywhere except at the origin,

but it is strongly semismooth at the origin. i.e., if a 6= 0 or b 6= 0, then ψ is

continuously differentiable at (a, b) ∈ R2, and

∇ψ(a, b) =































































(

k2

0

)

if b > k|a|,

(

b2/a2

2k − 2b/a

)

if a > |b|/k,

(

2k2 − b2/a2

2k + 2b/a

)

if a < −|b|/k,

(

k2

4k

)

if b 6 −k|a| < 0,

(2.2)

and

Aψ = ∂ψ(0, 0) =

{(

k2t2

2k(1 − t)

)

⋃

(

2k2(1 − t2)

2k(1 − t)

)

∣

∣

∣

∣

|t| 6 1

}

. (2.3)

Let

φi(x, µ) = ψ(−gi(x), µi), 1 6 i 6 m.

We denote Φ(x, µ) = ((∇xL(x, µ))T, (Φ1(x, µ))T)T, where Φ1(x, µ) = (φ1(x, µ), · · ·

φm(x, µ))T. Clearly, the KKT optimality conditions (??) can be equivalently refor-

mulated as the nonsmooth equations Φ(x, µ) = 0.

If (gi(x), µi) 6= (0, 0), then φi is continuously differentiable at (x, µ) ∈ Rn+m. In

this case, we have

∇φi(x, µ) =































































(

−k2∇gi(x)

0

)

if µi > k|gi(x)|,

(

−µ2
i∇gi(x)/gi(x)

2

(2k − 2µi/gi(x))ei

)

if − gi(x) > |µi|/k,

(

(−2k + µ2
i /gi(x)

2)∇gi(x)

(2k − 2µi/gi(x))ei

)

if − gi(x) < −|µi|/k,

(

−k2∇gi(x)

4kei

)

if µi 6 −k|gi(x)| < 0.

(2.4)

If gi(x) = 0 and µi = 0, 1 6 i 6 m, then φi(x, µ) is strongly semismooth and
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directionally differentiable at (x, µ). We have

∂φi(x, µ) =

{(

−k2t2∇gi(x)

2k(1 − t)ei

)

⋃

(

−2k2(1 − t2)∇gi(x)

(2k − 2t)ei

)

∣

∣

∣

∣

|t| 6 1

}

, (2.5)

where ei = (0, · · · , 0, 1, 0 · · · , 0)T ∈ Rm is the ith column of the unit matrix, its ith

element is 1, and other elements are 0. In this paper we take k = 1

Another piecewise linear relational NCP function was proposed in [?]. For other

properties of the NCP functions, see [1,8,10].

If f and gi are Lipschitz continuously differentiable, then ψ(0, 0) = 0 implies

that ψ2(a, b) is continuously differentiable at (0, 0) and ‖Φ(x, µ)‖2 is continuously

differentiable. The Newton direction of Φ(x, µ) = 0 or (Φ(x, µ))TΦ(x, µ) = 0 is a

descent direction of ‖Φ‖ or ‖Φ‖2, respectively.

In this paper, we replace the constraint violation p(G(x)) in the filter F of

Fletcher and Leyffer method by p(G(x), µ) = ‖Φ(x, µ)‖.

3 Algorithm

If (−gj(x
k), µk) = (0, 0), let

ξkj = −2, ηkj = 2,

otherwise, let

(−ξkj , η
k
j ) = ∇ψ(a, b)|a=−gj (xk),b=µk

j
.

We obtain

(ξkj∇gj(x
k), ηkj ej) = ∇φj(x

k, µk).

Clearly ξkj 6 0 and ηkj > 0. Let

V k =

(

V k
11 V k

12

V k
21 V k

22

)

=

(

Hk ∇Gk

diag(ξk)(∇Gk)T diag(ηk + ck)

)

, (3.1)

where Hk is a symmetric positive definite matrix which may be modified by BFGS

update and ∇Gk = ∇G(xk). diag(ξk) or diag(ηk + ck) denotes the diagonal matrix

whose jth diagonal element is ξkj or ηkj + ckj , respectively, and

ckj = cmin{1, ‖Φk‖ν},

where Φk = Φk(xk, µk), c > 0 and ν > 1 are given parameters.
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Algorithm 3.1

Step 0. Initialization

Given an initial guess x0 ∈ Rn, τ ∈ (0, 1), µ̄ > µ0 > 0, 1 > θ1 > θ > 0 c > 0,

and ν > 1, a symmetric positive definite matrix H0. Let initial F 0 = {(f(x0), µ0)}

and F 0 = {0}.

Step 1. Computation of the search direction

If Φk 6= 0 then compute dk0 and λ̄k0 by solving the following linear system in

(d, λ):

V k

(

d

λ

)

=

(

−∇fk

0,

)

(3.2)

where ∇fk = ∇f(xk). If ηkj 6= 0 then let λk0j = ηkj λ̄
k0
j /(−η

k
j + ckj ), otherwise let

λk0j = λ̄k0j . Compute dk1 and λ̄k1 by solving the following linear system in (d, λ):

V k

(

d

λ

)

=

(

−∇Lk

−Φk
1

)

, (3.3)

where ∇Lk = ∇L(xk, µk) and Φk
1 = Φ1(x

k, µk). If ηkj 6= 0 then let λk1j = ηkj λ̄
k1
j /(−η

k
j+

ckj ), otherwise let λk1j = λ̄k1j .

Step 2. Line search with filter

2.1. If

‖Φ(xk + dk1, µk + λk1)‖ 6 θ1‖Φ
k‖ (3.4)

and (??) or (??), at least one, holds, then let xk+1 = xk + dk1 and µk+1 = µk + λk1.

Go to Step 3.

2.2. If Φk
1 = 0 then let bk = 1 and ρk = 0; otherwise, if dk0 = 0 then let bk = 0

and ρk = 1, else denote bk = (1 − ρk) and

ρk =







1 if (dk1)T∇fk 6 θ(dk0)T∇fk,

(1 − θ)
(dk0)T∇fk

(dk0 − dk1)T∇fk
otherwise;

(3.5)

and let
(

dk

λk

)

= bk

(

dk0

λk0

)

+ ρk

(

dk1

λk1

)

.

Check whether (xk+1, µk+1) is acceptable for the filter test: let xk+1 = xk + αkd
k

and µk+1 = µk + αkλ
k, where αk = τ j and j is the smallest non-negative integer

satisfying

either ‖Φ(xk+1, µk+1)‖ 6 θ‖Φl‖, (3.6)
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or f(xk+1) − f(xl) 6 −αkθ‖Φ

k+1‖ (3.7)

for all (f(xl), ‖Φl‖) ∈ F k. If there is no such (xk+1, µ(k+1)) or αk is too small, use

the restoration phase to find (xk+1, µ(k+1)) so that it is acceptable by the filter F k.

Go to Step 1.

Step 3. Update

If xk+1 is a KKT point then stop, otherwise if µk+1
i 6 µ̄ then µk+1

i = µk+1
i ;

otherwise let µk+1
i = µ̄, give Hk+1 by BFGS update, F k+1 = F k∪(f(xk+1), ‖Φk+1‖)

and delete all pairs (f(xl), ‖Φl‖) which are dominated by (f(xk+1),Φk+1) in F k+1.

Obtain F = {l : (f(xl),Φl) ∈ F k+1}, the index set corresponding filter F k+1. Let

k = k + 1 and go to Step 1.

4 Implementation

We suppose that the following assumptions A1-A3 hold.

A1 The level set {x|f(x) 6 f(x0)} is bounded, and for sufficiently large k,

‖µk + λk0 + λk1‖ < µ̄.

A2 f and gi are Lipschitz continuously differentiable, and for all y, z ∈ Rn+m,

‖∇L(y) −∇L(z)‖ 6 m0‖y − z‖, ‖Φ(y) − Φ(z)‖ 6 m0‖y − z‖,

where m0 > 0 is a Lipschitz constant.

A3 Hk is positive definite and there exist positive numbers m1 and m2 such

that

m1‖d‖
2

6 dTHkd 6 m2‖d‖
2

for all d ∈ Rn and all k.

Lemma 4.1 If Φk 6= 0 then V k is nonsingular.

Proof Assume Φk 6= 0. If V k(u, v) = 0 for some (u, v) ∈ Rn+m, where u =

(u1 · · · , un)
T, v = (v1 · · · , vm)T and (u, v) denotes (uT, vT)T. Then

Hku+ ∇Gkv = 0 (4.1)

and

diag(ξk)(∇Gk)Tu+ diag(ηk + ck)v = 0. (4.2)

From the definitions of ξkj and ηkj , we know that ξkj 6 0 and ηkj + ck > 0 for all j.

So, diag(ηk + ckj ) is nonsingular. We have
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v = −(diag(ηk + ckj ))
−1diag(ξk)(∇Gk)Tu. (4.3)

Putting (??) into (??), we have

uT(Hku+ ∇Gkv) = uTHku− uT∇Gkdiag(ξk)(diag(ηk + ck))−1(∇Gk)Tu = 0.

The fact that Hk is positive definite and −∇Gkdiag(ξk)(diag(ηk + ck))−1(∇Gk)T is

positive semidefinite implies u = 0, and then v = 0 by (??). V k is nonsingular. This

lemma holds.

Clearly The following lemma holds (see [?, ?]).

Lemma 4.2 If dk0 6= 0, then

(dk0)THkdk0 6 −(dk0)T∇fk.

If (dk1)T∇fk > θ(dk0)T∇fk, then (??) implies

(dk)T∇fk = (1 − ρk)(dk0)T∇fk + ρk(dk1)T∇fk

= (dk0)T∇fk
[

1 − (1 − θ)
(dk0)T∇fk

(dk0 − dk1)T∇fk
− (1 − θ)

(dk1)T∇fk

(dk0 − dk1)T∇fk

]

= θ(dk1)T∇fk

6 −θ(dk0)THkdk0. (4.4)

Lemma 4.3 There exists an m3 > 0 such that, for any 0 < t 6 1,

‖Φ1(x
k + tdk0, µk + tλk0)‖2 − ‖Φ1‖

2
6 m3t

2.

Proof If Φk
1 = 0 then let m4 = m2

0. Then for any 0 < t 6 1, we have

‖Φ1(x
k + tdk0, µk + tλk0)‖2 = ‖Φ1(x

k + tdk0, µk + tλk0) − Φk
1‖

2

6 t2m2
0‖(d

k0, λk0)‖2

= t2m4‖(d
k0, λk0)‖2,

The lemma holds for Φk
1 = 0.

We define that if (gki , µ
k
i ) 6= (0, 0) then (ξ̄k0i , η̄

k0
i ) = (ξki , η

k
i ), otherwise

ξ̄k0i (∇gki )
Tdk0 + η̄k0i λ

k0
i = φ′i((x

k, µk), (dk0, λk0)),

where φ′i((x
k, µk), (dk0, λk0)) is the direction derivative of φi(x, µ) at (xk, µk) in the

direction (dk0, λk0). Let diag(ξ̄k0) or diag(η̄k0) denote the diagonal matrix whose

jth diagonal element is ξ̄k0j or η̄k0j , respectively. Then φi(0, 0) = 0 implies

(Φk
1)

T(diag(ξ̄k0)(∇Gk)T, diag(η̄k0)) = (Φk
1)

T(diag(ξk)(∇Gk)T, diag(ηk)),
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and

‖Φk
1 + t(diag(ξ̄k0)(∇Gk)Tdk0 + diag(η̄k0)λk0)‖2

= ‖Φk
1‖

2 + t2‖diag(ξ̄k0)(∇Gk)Tdk0 + diag(η̄k0)λk0‖2. (4.5)

It is clear that

‖Φ1(x
k + tdk0, µk + tλk0)‖2 = ‖Φk

1‖
2 +O(t2).

This lemma holds.

Lemma 4.4 If Φk
1 6= 0 then given any ε > 0 there is a t̄ > 0 such that, for any

0 < t 6 t̄,

‖Φk
1‖

2 − ‖Φ1(x
k + tdk1, µk + tλk1)‖2 > (2 − ε)t‖Φk

1‖
2.

Proof If Φk
1 6= 0, then (??) implies

diag(ξk)(∇Gk)Tdk1 + diag(ηk + ck)λk1 = −Φk
1. (4.6)

We define that if (gki , µ
k
i ) 6= (0, 0), then (ξ̄k1i , η̄

k1
i ) = (ξki , η

k
i ), otherwise

ξ̄k1i (∇gki )
Tdk1 + η̄k1i λ

k1 = φ′i((x
k, µk), (dk1, λk1)),

where φ′i((x
k, µk), (dk1, λk1)) is the direction derivative of φi(x, µ) at (xk, µk) in the

direction (dk1, λk1). Let diag(ξ̄k1) or diag(η̄k1) denote the diagonal matrix whose

ith diagonal element is ξ̄k1i or η̄k1i , respectively.

Clearly, for all i,

φi(x
k + tdk1, µk + tλk1) − φki − t(ξ̄k1i (∇gki )

Tdk1 + (η̄k1i )λk1) = o(t). (4.7)

Since cki 6= 0, it follows by the definition of cki , η
k
i and (??) that

‖Φk
1 + t(diag(ξ̄k1)(∇Gk)Tdk1 + diag(η̄k1)λk1)‖2

= (1 − 2t)‖Φk
1‖

2 + t2‖diag(ξ̄k1)(∇Gk)Tdk1 + diag(η̄k1)λk1‖2. (4.8)

It follows from (??) and (??) that, given any ε > 0, there is a t̄ > 0 such that, for

any 0 < t 6 t̄,

‖Φk
1‖

2 − ‖Φ1(x
k + t2dk1, µk + tλk1)‖2

> (2 − ε)t‖Φk
1‖

2.

Hence, this lemma holds.

From Lemmas 4.2-4.4 and (??), we know that if Φk
1 6= 0, then (dk, λk) is a

descent direction of ‖Φk‖; if dk0 6= 0, then dk is a descent direction of fk. If Φk
1 = 0

and dk0 = 0,then (xk, µk) is a KKT point.
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5 Convergence

In this section, we discuss the global and superlinear convergence of the method.

A4 For all k and some αmin > 0, αk > αmin > 0.

Suppose that the assumptions A1-A4 hold in this section.

Lemma 5.1 Consider sequences of {‖Φ(xk)‖2} and {fk} such that {fk} is mono-

tonically decreasing and bounded below. Let a positive constant θ satisfy, for all k

and l ∈ F k, that

either ‖Φ(xk+1, µk+1)‖ 6 θ‖Φ(xl, µl)‖, (5.1)

or f(xk+1) − f(xl) 6 −αkθ‖Φ(xk+1, µk+1)‖, (5.2)

where αk > αmin > 0 is the step length. Then Φ(xk, µk) → 0.

Proof Suppose the theorem is not true. Then there exist an ε > 0 and an infinitely

index set K such that ‖Φ(xk, µk)‖ > ε > 0 and ‖Φ(xk+1, µk+1)‖ > θ‖Φ(xk, µk)‖ for

any k ∈ K. We have

f(xk) − f(xk+1) > αkθ‖Φ(xk, µk)‖ > αminθε. (5.3)

Because {fk} is monotonically decreasing, (??) implies f(xk) → −∞ as k → +∞

which contradict to the assumption. this lemma holds.

Lemma 5.2 The assumptions in Lemma 5.1 hold. Consider an infinite sequence of

iterations on which {fk, ‖Φ(xk, µk)‖} entered into the filter, where ‖Φ(xk, µk)‖ > 0

and {fk} is bounded below. Then Φ(xk, µk) → 0.

Proof Suppose the theorem is not true. Then there exist an ε > 0 and an infinite

index set K such that either

‖Φ(xk, µk)‖ > ε > 0 and ‖Φ(xk, µk)‖ 6 θ‖Φ(xl, µl)‖

for any k ∈ K. and l < k ∈ K then we obtain that

{‖Φ(xk, µk)‖}k∈K → 0,

or {fk} is monotonically decreasing, then lemma 5.1 implies ‖Φ(xk, µk)‖ → 0. So,

this lemma holds.

The following Lemmas 5.3-5.4 hold (see [?]).

Lemma 5.3 dk0 → 0.
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Lemma 5.4 dk0 = 0 if and only if ∇fk = 0, and dk0 = 0 implies λ̄k0 = 0 and

λk0 = 0. If (x∗, µ∗) is an accumulation point of {(xk, µk)} then d∗0 = 0, and d∗0, λ̄∗0

is the solution of the following equations

V ∗

(

d

λ

)

=

(

−∇f∗

0

)

, (5.4)

where ∇f∗ = ∇f(x∗) and ∇L(x∗, µ∗) = 0.

Lemmas 5.2-5.4 imply the following theorem.

Theorem 5.1 If (x∗, µ∗) is an accumulation point of {(xk, µk)} then x∗ is a KKT

point of problem (NLP).

Now we consider the superlinear convergence of the method. We need the fol-

lowing assumptions.

A5 {∇gi(x
∗)|i ∈ I(x∗)} are linearly independent, where I(x∗) = {i|gi(x

∗) = 0}

and x∗ is a accumulation point of {xk} and a KKT point of problem (NLP).

A6 The sequence of {Hk} satisfies

‖(Hk −∇2
xL(xk, µk))dk1‖

‖dk1‖
→ 0.

A7 The strict complementarity condition holds at each KKT point (x∗, µ∗).

It follows from that φk is differentiable at each KKT point (x∗, µ∗). Assumption

A7 implies that Φ is continuously differentiable at each KKT point (x∗, µ∗). Similar

to Lemma 4.1 we have (see [?, ?]):

Lemma 5.5 V (x∗, µ∗) is nonsingular.

Assumption A6 shows that (xk, µk) is a Newton direction of Φk with a high

order perturbation. We obtain the following Lemma 5.6 and Theorem 5.2 (see [?]).

Lemma 5.6 For sufficiently large k, xk+1 = xk + dk1 and µk+1 = µk + λk1.

Lemma 5.6 implies the following theorem.

Theorem 5.2 Assume A1-A7 hold. Let Algorithm 3.1 be implemented to generate

a sequence {(xk, µk)} and (x∗, µ∗) be an accumulation point of {(xk, µk)}. Then

(x∗, µ∗) is an KKT point of problem (NLP), and (xk, µk) converges to (x∗, µ∗) su-

perlinearly.

6 Numerical tests

We carry out some numerical experiments on the Algorithm 3.1 in the table 1. All

of test examples are the constrained optimization problems in [?]. The problem No.
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in the table 1 is the number of this problem in [?]. These preliminary numerical

results indicate that this new QP-free infeasible method may be promising.

In the implements, the termination criterion is ‖φ‖ 6 10−5. The parameters are

chosen as:

c = 0.1, ν = 2, τ = 0.7, θ1 = 0.8, θ = 0.6, µ̄ = 10000, µ0 = 1.

H0 = I is the unit matrix. The Hk is updated by BFGS method (see [?]).

In the “NIT, NF and NG” entries of the table below is as follows.

NIT=the number of iterations.

NF=the number of objective function and constraints are evaluations. The

number of NF increases one only if all functions are evaluated once.

NG=the number of Φ (or gradient) evaluations.

Table 1

problem Initial NIT NF NG Initial NIT NF NG

No. point points

227 0.5, 0.5 9 18 31 1, 1 13 23 31

227 10, 10 14 28 37 -10, -10 11 28 37

215 0.5, 0.5 7 16 25 1.5, 1.5 13 25 41

215 1, 1 7 17 28 2, 2 5 11 25

232 2, 0.5 5 7 9 4, 1 5 7 13

232 4,2 5 9 12 6, 2 8 10 13

250 10, 10, 10 9 15 29 -10, -10, -10 11 16 28

250 15, 15, 15 7 14 28 5, 5, 5 9 19 29

Because each iteration of Algorithm 3.1 can be viewed as a perturbation of a

mixed Newton-quasi Newton iteration locally. During numerical experiments, we

find that if ‖φ‖ 6 10−6 then iteration points converge very quickly. We may also

use the termination criterion ‖φ‖ 6 10−5.

On the other hand, we can not choose the parameter c too small. When the

strict complementarity conditions are not satisfied on some iteration point, small

c may influence the convergence rate. So, we may consider to make some small

modification in the algorithm when the strict complementarity conditions are not

satisfied near a solution. For example, instead of constant c, we may use the various

ck ∈ [0.001, 0.5], which may be depend on ‖Φk‖, strict complementarity and the

termination criterion.
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