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Abstract

For any exponential Lévy model whose diffusion component is nonzero, we provide an exact series

representation for the implied volatility of a European call option. Numerical examples are provided.

Keywords: Implied Volatility, Exponential Lévy.

1 Introduction

Various approaches have been taken to studying the implied volatility surface induced by a given class of

equity models. Most of these approaches explore asymptotic regimes of strikes and maturities (long ex-

piries, short expiries, large strikes, small strikes, etc.) or a specific feature of the implied volatility surface,

such as the at-the-money skew. An exhaustive review of the implied volatility literature would be pro-

hibitive. But, we mention a few papers that deal with exponential Lévy processes in particular. The short

maturity volatility smile is studied in Figueroa-López and Forde (2012), and the long maturity smile in

Figueroa-López, Forde, and Jacquier (2011). The model-free results of Lee (2004); Gao and Lee (2011) take

a particularly simple form for exponential Lévy models and, as such, are useful for studying extreme strike

behavior (large and small) of implied volatility. For a review of results on asymptotics for implied volatilities

in exponential Lévy models we refer the reader to Tankov (2011); Andersen and Lipton (2012).

Our approach to studying implied volatility is quite different from the above-mentioned works. Rather

than exploit a particular maturity and/or strike regime, we exploit the simple structure of exponential Lévy

models. In doing so, we obtain an exact formula (written as an infinite series) for the implied volatility of a

given call option. As far as we are aware, this is the first time a formula for the exact implied volatility has

been given in any framework – exponential Lévy or otherwise. We also mention that our formula is extremely
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simple to derive. While previous authors have used advanced mathematical techniques (e.g., saddle-point

methods, moment analysis, large-deviation principle, etc.) to derive asymptotic implied volatility results,

our exact result requires only basic calculus.

The rest of this paper proceeds as follows. In section 2 we introduce the class of exponential Lévy

models. In section 3, we review how European options may be valued in an exponential Lévy setting using

generalized Fourier transforms. Finally, in section 4 we define implied volatility and – for a given call option

and exponential Lévy model – derive a formula for the corresponding implied volatility. The main result of

our work is summarized in Theorem 7. Numerical examples are provided at the conclusion of this paper.

2 Exponential Lévy Models

In this section we review the class of exponential Lévy models. A detailed development can be found in

Cont and Tankov (2004); Øksendal and Sulem (2005). We assume a frictionless market, no arbitrage and

take an equivalent martingale measure P chosen by the market on a complete filtered probability space

(Ω,F, {Ft, t ≥ 0},P). All processes defined below live on this space. Let S represent the price process of a

risky asset. The main assumptions of this paper is that S can be modeled as an exponential Lévy process

St = eXt , dXt = γ dt+ σ dWt +

∫

|z|<R

z dÑt(dz) +

∫

|z|≥R

z dNt(dz), X0 = x.

Here, R ∈ [0,∞], the volatility satisfies σ > 0, W is a Brownian motion and N is a Poisson random measure

characterized by Lévy measure ν

ENt(dz) = ν(dz) dt, dÑt(dz) = dNt(dz)− ν(dz) dt.

We require that ν satisfy

∫

R

min(1, z2)ν(dz) <∞,

∫

|z|≥R

ezν(dz) <∞. (1)

The first condition must be satisfied by all Lévy measures. The second condition guarantees that ESt <∞

for all t ∈ R+. Valid choices for R depend on the Lévy measure ν. We can always choose R = 1. If
∫
|z|≥1

|z|ν(dz) < ∞ then we may choose R = ∞. For simplicity, we assume S pays no dividends and the

risk-free rate of interest is zero. Thus, S must be a martingale. The martingale condition is satisfied if and

only if

γ = −1

2
σ2 −

∫

R

ν(dz)
(
ez − 1− z I{|z|<R}

)
. (2)
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3 European Option Pricing

We consider a European option expiring at time t > 0 with payoff h(Xt). Using risk-neutral pricing, the

time-zero value of such an option is the P-expectation of the option payoff

u(t, x) = Ex h(Xt).

Lewis (2001); Lipton (2002) independently show that u(t, x) can be computed using generalized Fourier

transforms. We review their method below. For brevity, we do not include any proofs. Let φ(λ) denote the

characteristic exponent of X

φ(λ) := logE eiλX1 , φ(λ) = iγλ− σ2

2
λ2 +

∫

R

ν(dz)
(
eiλz − 1− iλz I{|z|<R}

)
.

We assume that φ is analytic in an infinite strip Λφ of the complex plane

Λφ := {λ ∈ C : Im(λ) ∈ (λφ−, λ
φ
+)},

λφ− = inf

{
λ < 0 :

∫ −1

−∞

ν(dz)eλz <∞
}
, λφ+ = sup

{
λ > 1 :

∫ ∞

1

ν(dz)eλz <∞
}
.

Let ĥ(λ) denote the generalized Fourier transform of h(x)

ĥ(λ) :=
1√
2π

∫

R

dx e−iλxh(x).

We assume ĥ(λ) is analytic on an infinite strip of the complex plane of the form Λh := {λ ∈ Λφ : Im(λ) ∈

(λh−, λ
h
+)}. Let λ = λr + iλi where λr, λi ∈ R and fix the imaginary component: λi ∈ (λh−, λ

h
+). Then the

value of the option u(t, x) is given by

u(t, x) =

∫

R

dλr e
tφ(λ)ĥ(λ)ψλ(x), ψλ(x) =

1√
2π
eiλx.

4 Implied Volatility

In this section we fix (t, x) and a call option payoff h(x) = (ex − ek)+. Note that

ĥ(λ) =
−ek−ikλ

√
2π (iλ+ λ2)

, Im(λ) < −1.

We also fix σ > 0 and a Lévy measure ν = ε µ where ε ≥ 0 and µ is any Lévy measure that satisfies (1). By

(2), the parameter γ is fixed by σ and ν. To keep track of their dependence on ε we write the characteristic
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exponent as φ(λ) and the option price u(t, x) as φε(λ) and uε(t, x) respectively. We have

φε(λ) = φ0(λ) + ε φ1(λ),

φ0(λ) =
1

2
σ2(−λ2 − iλ),

φ1(λ) = −iλ
∫

R

µ(dz)
(
ez − 1− z I{|z|<R}

)
+

∫

R

µ(dz)
(
eiλz − 1− iλz I{|z|<R}

)
,

and

uε =

∫

R

dλ etφ
ε(λ)ĥ(λ)ψλ. (3)

To ease notation, we have dropped the subscript r from dλr . The following definitions will be useful:

Definition 1. The Black-Scholes Price uBS : R+ → R+ is defined as

uBS(ρ) :=

∫
dλ etφ

BS(λ;ρ)ĥ(λ)ψλ, φBS(λ; ρ) =
1

2
ρ2(−λ2 − iλ).

Definition 2. The Implied Volatility is defined implicitly as the unique number σε ∈ R+ such that

uBS(σε) = uε, (4)

where uε is given by (3).

Remark 3. For 0 < t < ∞ the existence and uniqueness of the implied volatility σε can be deduced by

using the general arbitrage bounds for call prices and the monotonicity of uBS.

Remark 4. Note that uBS is an invertible analytic function that satisfies ∂ρu
BS(ρ) > 0 for all ρ > 0. By

the Lagrange inversion theorem, the inverse [uBS ]−1 of such a function is also analytic.

Our goal is to find an explicit formula for the implied volatility σε. To this end, we note that

etφ
ε(λ) = et(φ0(λ)+εφ1(λ)) = etφ0(λ)

∞∑

n=0

1

n!
(t ε φ1(λ))

n
. (5)

Inserting (5) into (3) we obtain the following series representation 1 for uε

uε =

∞∑

n=0

εnun, un =
tn

n!

∫

R

dλ etφ0(λ) (φ1(λ))
n ĥ(λ)ψλ. (6)

Note in particular that u0 = uBS(σ).

From (6), it is clear that uε is an analytic function of ε. It is a useful fact that the composition of

two analytic functions is also analytic (see Brown and Churchill (1996), section 24, p. 74). Thus, in light

1By Fubini’s Theorem, exchanging the order of summation and integration is allowed since
∫
R
dλ |etφ

ε(λ)ĥ(λ)ψλ| < ∞.
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of Remark 4, we deduce that σε = [uBS ]−1(uε) is an analytic function and therefore has a power series

expansion in ε. We write this expansion as follows

σε = σ0 + δε, δε =

∞∑

k=1

εkσk. (7)

Taylor expanding uBS about the point σ0 we have

uBS(σε) = uBS(σ0 + δε)

=

∞∑

n=0

1

n!
(δε∂σ)

nuBS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!

(
∞∑

k=1

εkσk

)n

∂nσu
BS(σ0)

= uBS(σ0) +

∞∑

n=1

1

n!




∞∑

k=1


 ∑

j1+···+jn=k

n∏

i=1

σji


 εk


 ∂nσuBS(σ0)

= uBS(σ0) +

∞∑

k=1

εk




∞∑

n=1

1

n!


 ∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσ


uBS(σ0)

= uBS(σ0) +

∞∑

k=1

εk


σk∂σ +

∞∑

n=2

1

n!


 ∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσ


 uBS(σ0). (8)

Now, we insert expansions (6) and (8) into (4) and collect terms of like order in ε

O(1) : u0 = uBS(σ0),

O(εk) : uk = σk∂σu
BS(σ0) +

∞∑

n=2

1

n!


 ∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσu

BS(σ0), k ≥ 1.

Solving the above equations for {σk}∞k=0 we find

O(1) : σ0 = σ,

O(εk) : σk =
1

∂σuBS(σ)


uk −

∞∑

n=2

1

n!


 ∑

j1+···+jn=k

n∏

i=1

σji


 ∂nσu

BS(σ)


 , k ≥ 1. (9)

Remark 5. The right hand side of (9) involves only σj for j ≤ k − 1. Thus, the {σk}∞k=1 can be found

recursively.

Remark 6. Note that ∂nσu
BS(σ) is easily computed using

∂nσu
BS(σ) =

∫
dλ
(
∂nσe

tφ0(λ)
)
ĥ(λ)ψλ.
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Explicitly, up to O(ε4) we have

O(ε) : σ1 =
u1
∂σu0

,

O(ε2) : σ2 =
u2 − 1

2!σ
2
1∂

2
σu0

∂σu0
,

O(ε3) : σ3 =
u3 − (σ2σ1∂

2
σ + 1

3!σ
3
1∂

3
σ)u0

∂σu0
,

O(ε4) : σ4 =
u4 − (σ3σ1∂

2
σ + 1

2σ
2
2∂

2
σ + 1

2σ2σ
2
1∂

3
σ + 1

24σ
4
1∂

4
σ)u0

∂σu0
.

We summarize our main result in the following theorem:

Theorem 7. The implied volatility σε defined in (4) is given explicitly by (7) where σ0 = σ and {σk}∞k=1

are given by (9).

Remark 8. We emphasize: we have made no assumption about the size of ε. Theorem 7 is valid for any

ε ≥ 0. In particular, one can always choose ε = 1.

Remark 9. Everything we have done so far is exact. The accuracy of the implied volatility expansion (7)

is limited only by the number of terms one wishes to compute.

Define the O(εn) approximation of the implied volatility

σ(n) :=

n∑

k=0

εkσk.

At the end of this document, we provide numerical examples illustrating convergence of σ(n) to σε for three

well-known exponential Lévy models:

• the Jump-diffusion model of Merton (1976): figure 1,

• the Variance Gamma model of Madan, Carr, and Chang (1998): figure 2,

• the CGMY model of Carr, Geman, Madan, and Yor (2002): figure 3.

We plot implied volatility as a function of the log-moneyness to maturity ratio, LMMR := (k − x)/t. In all

three models, we see excellent convergence of σ(n) to σε. Convergence is fastest for values of k near x and

slows as k moves away from x.

Remark 10. Although our focus has been on exponential Lévy models, the exact implied volatility expansion

outlined above will work for any model whose European call price can be expanded analytically in ε as

uε = uBS +
∞∑

k=1

εkuk,

where ε is some model-specific parameter. See, for example, Lorig (2012b,a).
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Figure 1: Using the Merton model, we plot σ(n) (solid blue) and σε (dashed black) as a function of LMMR.

The following parameters are used throughout: s = 0.15, m = −0.15, σ = 0.35, ε = 0.75, t = 0.33.

Merton model : ν(dz) =
ε√
2πs2

exp

(−(z −m)2

2s2

)
dz.
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Figure 2: Using the Variance Gamma model, we plot σ(n) (solid blue) and σε (dashed black) as a function

of LMMR. The following parameters are used throughout: G = 1.0, M = 3.0, σ = 0.35, ε = 0.3, t = 0.15.

Variance Gamma model : ν(dz) = ε

(
eGz

−z I{z<0} +
e−Mz

z
I{z>0}

)
dz.
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Figure 3: Using the CGMY model, we plot σ(n) (solid blue) and σε (dashed black) as a function of LMMR.

The following parameters are used throughout: G = 2.0, M = 4.0, Y = −3.0, σ = 0.35, ε = 0.3, t = 0.5.

CGMY model : ν(dz) = ε

(
eGz

|z|1+Y
I{z<0} +

e−Mz

z1+Y
I{z>0}

)
dz.
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