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 In the present paper we fill an essential gap in the Convertible Bonds pricing world by 

deriving a Binary Tree based model for valuation subject to credit risk. This model belongs to the 

framework known as Equity to Credit Risk. We show that this model converges in continuous 

time to the model developed by Ayache, Forsyth and Vetzal [2003]. To this end, both forms of 

credit risk modeling, the so-called reduced (constant intensity of default model for the 

underlying) and the so-called synthesis (variable intensity of default model for the underlying) are 

considered. We highlight and quantify certain issues that arise, as transition probability analysis 

and threshold values of model inputs (tree step, underlying stock price, etc.). This study may be 

considered as an alternative way to develop the price dynamics model of Ayache et al. [2003] for 

convertible bonds in credit risk environment. 

 

 

 

1  Introduction 

 

In the present paper we fill an essential gap in the Convertible Bonds pricing world by 

deriving a Binary Tree based model for valuation subject to credit risk. 

The literature that presents the valuation framework of convertible bonds in terms of 

security contingent on the underlying stock and subject to credit risk modeling begins with a 

quantitative strategies research note of Goldman Sachs of 1994, [6] and ends with the recent 

white papers of Bloomberg of 2012, [2], [3]. This framework based on the geometric Brownian 

motion as a stochastic equity model, has been further developed by Ho and Pfeffer [1996], [9], 

and by Tsiveriotis and Fernandes [1998], [15]. At the end of the same decade, Davis and Lischka 

[1999], [5], initiated the modern valuation framework incorporating the credit risk. The 

straightforward inclusion of the intensity rate in the drift of the equity, zero equity price in the 

event of default, and the inclusion of a recovery rate makes their models (surveyed by Grimwood 

and Hodges [2002], [7]) more consistent than each of the preceding. 

 Lateron, Ayache, Forsyth and Vetzal [2003], [1], elaborated further the assumptions of 

Davis and Lischka [5], and provided a single-factor framework for valuing risky convertible 

bonds. Namely, they considered precisely what happens on default with respect to both debt 

value and equity value, assuming optimal action by the holder of the convertible. Also, they 

developed a Black-Scholes type partial differential equation that represents pure price dynamics
1
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"Pure" price does not obey the execution of embedded options as callability, puttability etc., but intrinsically obeys 

the event of default. 



of convertible bond. 

 Regarding the pricing algorithm, Ayache et al. [2003], [1], developed a numerical 

technique that is based on finite-difference schemes (FDS). By contrast, Davis and Lischka 

[1999], [5], suggested to use trinomial trees, although they did not implement the model in their 

paper. 

Let us remind that for many peope and software vendors trained in finance, the binary tree 

is the most preferable and acceptable numerical technique, mainly due to its transparency and 

speed. In this context, we fill a gap with respect to implementation of the modern framework 

within tree methods. The most recent publications based on tree models are the 8-th edition of 

book of Hull [2011], [11], and the monograph of Spiegeleer and Schoutens, [13].  

 These presentations miss several important issues on credit default modeling, as 

derivation of the convertible bond pricing algorithm, and convergence of the numerical 

algorithms. The above references do not present important details about these modeling aspects, 

and they have considered only the case of total stock default where the underlying stock drops to 

zero. 

 Our main contributions are as follows: 

•  We develop binary tree pricing algorithm, presenting consistently and in detail all 

modeling aspects in a more general framework compared with the recent publications. 

•  In the case of the popular synthesis credit risk modeling (see e.g. Muromachi [1999] 

[12], Takahashi et al. [2001], [14], and Ayache et al. [2003], [1], and related publications), we 

highlight and quantify a lower threshold bound of stock price below which a given binary tree 

can not determine in a consistent way the convertible bond value. 

•  We show that when the step of the binary tree tends to zero, the pure convertible bond 

value on the proposed binary tree converges to the price model of Ayache et al. [2003]. 

•  We compare our results with some previous publications, in particular, we show that 

the recently available convertible bond model in [11] is irrelevant. 

 For simplicity of exposition, we avoid considering various contractual complications 

such as call notice periods, soft call provisions, trigger prices, etc. Also, we assume that risk-free 

interest rate term structure is flat and that the underlying stock does not pay dividends. The 

extension of the model to handle both stocks that pay out dividend and an interest rate as a known 

function of time can be made in the same way as in the classical binary tree approach. 

 

2  The Binary Tree Model Derivation 

 

We develop a model based on a sole state variable tS  describing the price of the 

underlying stock. We model the default of a company by means of a drop of its equity price, 

eventually to zero. This framework corresponds to empirical observarions. In particular, Clark 

and Weinstein [1983], [4], claim that in the considered period the common stock value dropped 

on default in the average about 30% . To this end, we will assume that the return of the 

underlying stock follows a process that is a combination of diffusion process and a Poisson 

(jump) process. Namely, in the risk neutral world for the underlying stock which does not pay 

dividend we adopt that its price follows the stochastic process
2
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Equation (1) with 0=η  is the main contribution of Davis and Lischka [1999]. . 



 where tdS , tdW  and tdq  are the increments for infinitesimal time period of the stock price, 

Wiener process and homogeneous Poisson process with intensity λ , respectively
3
. In addition, 

we assume that there is no correlation between the Wiener process and the Poisson process. Also, 

r  stands for risk free interest rate, and η  stands for percentage of the stock fall immediately after 

default. The latter is valid due to the following statement. 

 

Proposition 1 Across the moment of exactly one arrival of the Poission process the value 

of the process (1) drops with exactly η  percent.  

 

 Let the arrival time for the Poisson process be τ  and let us put εττ ++ =  where ε  

satisfies ,0 1εε ≤≤  where 0>1ε  is such that no other arrival has happened in the interval 

[ ]., 1εττ +  Then we know that ( )dttdqt τδ −=  in the interval [ ],, 1εττ +  where ( )tδ  is the Dirac 

delta function. Hence, from extended Itô's lemma it follows  
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where +τ
S  is the value of the process in just one arrival ( 1=dq ), and c

S +τ
 is the value of the 

process in absence of arrival ( 0=dq ). Since,  
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we arrive at the relation  
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For example, the sudden 70%  fall in the asset price through the default is modeled by 

putting 0.7.=η  

 

2.1  Random Walk Model of Defaultable Stock 

 

In order to model binomial random walk with possibility of default let us consider 

equation (1) in time discretization with step tδ . In this discretization we obtain  

 ,)(= tt

t

t qWtr
S

S
ηδσδδλη

δ
−++  (2) 

 and for the stock returns we have the approximations  
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This means that the increment of this kind of Poisson process over a given time interval with length tδ  obeys the 

Poisson distribution with parameter tλδ . 
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 where E  and D  denote the expectation and the variance, respectively.
4
 Now, let us focus on the 

random variable 
t

tt

S
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and after substitution with equations (4) we obtain  
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 Now, we are ready to model the random walk of a defaultable stock in binomial tree 

approximating the dynamics given by equation (2), respectively equation (1). First of all, let us 

note that for the given time step tδ  the Poisson increment tqδ  may count more than one arrivals 

if the length of the step is long enough. To this end, we model the event of default in the period 

tδ  as the event 0}.>{ tqδ  The probability of this event is equal to ( ).0}={1 tqδP−  Thus, the 

probability of default, 0p , throughout each time step of the binary tree is equal to t
e

λδ−−1 , i.e.  

 .1=0

t
ep

λδ−−  (5) 

 Another major point in the construction of random walks is the post-default behavior of the stock 

that we adopt. Namely, we assume that once the stock triggers its value in the event of default by 

means of η -percent fall, it never moves further. The latter means that we interrupt the stochastic 

movement after the state of default. Hence, the kernel of binary tree structure 
5
 should be 

extended with an imaginary free node which represents the default value of the stock. The 

scheme of the extended binary kernel is represented in Figure 1. Here we would like to mention 

that there is no condition on the stock value at the imaginary node. For example, the situation in 

which ( )η−1=d  is completely possible, althought this is not the case on the plotted scheme in 

Figure 1.  
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Recall the assumption that we made about the independence between tWδ  and tqδ . 

5
After all, we are free to choose dimension of the tree structure. To keep the purpose of this paper we will choose 

binomial structure. 



 

p
0

p
d

p
u

S

Su

Sd

S(1−η)

  
  

Figure  1: The kernel 

 

 Now let us turn to the random variable .
t

tt

S

S δ+  All possible values of 
t

tt

S

S δ+  along the 

binary tree with time step, tδ  are u , d , and )(1 η−  with corresponding probabilities up , dp  and 

0p , such that 1=0ppp du ++ . Hence,  
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Now, using equation (4) we will obtain a system of two equations containing tree parameters, up , 

u  and d . 

 Regarding 







+

t

tt

S

S δE , we have the equations:  

 ( ) ( ) trt

u

t

u eedpeup
δλδλδ η =1)(1 −− −−+−+  

 



 ( )tttr

u edeedup
λδλδδ η −− −−−−− 1)(1=)(  (7) 

 

 

 
( )

du

edee
p

tttr

u
−

−−−− −− λδλδδ η 1)(1
=  (8) 

 Regarding 







+

t

tt

S

S δD , we have the equation:  

 ( ) .1)(1)(=)( 2222222 trtt

u eededupt
δλδλδ ηδλησ −−−++−+ −−  (9) 

 After replacing with (7) we express all exponentials as series, ignoring terms which contain 

powers of tδ  bigger than two. Hence,  
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Due to the fact that we want to build a recombined part of tree, which represents a diffusion, we 

will look for u  and d  satisfying 1=ud . In addition, let us write u  in the form .= tA
eu

δ  In this 

way we are able to proceed with the equation of the variance, ignoring all terms containing 

powers of tδ  bigger than two. 

 Following the approximation  
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the equation of the variance becomes  
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 that is,  

 2= σA  

Finally, the parameters of the binomial random model of a defaultable stock, which follows the 

process (1) are provided in Table 1.  

 



Table  1: Parameters of binomial random walk of a defaultable stock 

  

 Parameter   Definition 

 Multiplier 

for moving 

up  

 t
eu

δσ=  

Multiplier 

for moving 

down  

 t
ed

δσ−=  

Probability 

for moving 

up  
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for moving 

down  
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tttr

d
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−− λδλδδ η 1)(1
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Probability 

of default  
 t

ep
λδ−−1=0  

Length of 

tree step  

 tδ  

    

 

  

 

 

Proposition 2  For each market state represented by parameters 0>r , 0>σ , 0≥λ , 

10 ≤≤η  and for arbitrary adopted tree step 0>tδ , the corresponding parameter up  that 

denotes the probability for an up movements of defaultable stock (1) on binary tree satisfies  

 0.>up  

 

 

 By Table 1, since 0,>du −  inequality 0>up  is equivalent to  

 )).(1(>)(1 ηη λδδ −−−− − dee ttr  

Since the parameters that determine the stock price dynamics satisfy 0>r , 0>σ , 0≥λ , 

1,0 ≤≤η  and the size of the tree step satisfies 0,>tδ  we see that 0.>)(1 ηδ −−tre  Hence, the 

above inequality implies equivalence of inequality 0>up  to the following one:  
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Let us prove the last inequality: Since 1≤d  (see Table 1) we obtain .< tr
ed

δ  This implies  
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This ends the proof.  

 

Corollary 1  For each market state that gives parameters 0>r , 0>σ , 0≥λ , 1,0 ≤≤η  

and for arbitrary adopted tree step size 0>tδ , parameter dp  which denotes the probability for a 

down movement of defaultable stock (1) on binary tree satisfies  

 1.<dp  

 

 

 Let us note that the equality 1=0ppp du ++  implies 1,= ≤+ − t

du epp
λδ  hence, 

.1 du pp −≤  Now, if we assume 1≥dp  this will come in contradiction to Proposition 2.  

 

Proposition 3 Condition  

 0≥dp  

is necessary and sufficient for the parameters du pp ,  and 0p  to belong to the interval [ ].0,1    

 

 Since the necessity of the statement is trivial we will proceed now with the sufficiency. 

Namely, let us assume that 0.≥dp  We will show that parameters du pp ,  and 0p  belong to the 

interval [ ].0,1  Indeed, from Corollary 1 we obtain that dp  belongs to the interval [ ).0,1
6
 Further, 

by analogy with Corollary 1 we have .10 ud pp −≤≤  Hence, we deduce that 1.≤up  Combining 

the latter with Proposition 2 we easily obtain that up  belongs to the interval ( ].0,1  Finally, from 

the definition for 0p  we deduce that 0p  belongs to the interval [ ].0,1   

Finally, we are ready to present the main result by which we can tune the binary tree 

framework for practical use. Namely, we will show the threshold for the length of the binary tree 

step for which the derived so far methodology will be consistent with respect to a given market 

state. 

 

Theorem 1  For each market state that gives parameters 0>r , 0>σ , 0≥λ , 10 ≤≤η , 

condition  
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 In order to prove this theorem we will merely show equivalence of this condition with the 

one of Proposition 3. Indeed, due to 0>du −  and 0,>)(1 η−−u  the following equivalences are 

valid  
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This denotes the right-open interval not containing 1. 
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This ends the proof.  

Below, in Table 2 we have provided the parameters of binomial random walks of a 

defaultable stock
7
. We have to mention that it is easy to see that in the case of stock that pays 

continuous dividend yield D  we merely need to replace r  with .Dr −   

 

Table  2: Tree Parameters of a defaultable stock that drops to zero 

  

 Parameter   Definition 

 Multiplier 

for moving 

up  

 t
eu

δσ=  

Multiplier 

for moving 

down  

 t
ed

δσ−=  

Probability 

for moving 

up  

 
du

dee
p

ttr

u
−

− −λδδ

=  

Probability 

for moving 

down  

 

du

uee
p

ttr

d
−

−
−

−λδδ

=  

Probability 

of default  
 t

ep
λδ−−1=0  

Length of 

tree step  

 tδ  

    

 

  

2.2  Convertible Bond Pricing Algorithm 

 

The main aim of this section is to present the valuing of convertible bonds within the 

binomial model for the underlying stock derived so far. Let us proceed with construction of a 

portfolio at time t  that consists of one convertible bond and a short position in a quantity ∆  of 

the underlying. At time t  this portfolio has value  

 ,= SV ∆−Π  

where V  stays for the convertible bond value. In time tδ  the convertible bond takes one of three 

                                                 
7
This is the event when the default stock price drops 100% , i.e 1=η . 



values +
V , −

V  or ))(1,(max= SkRNX η− , depending on whether the underlying stock rises to a 

value Su , falls to a value Sd  or drops to the value S)(1 η− . Here R  stays for the recovery rate, 

N  stays for convertible bond face value
8
, and k  stays for the conversion ratio valid at the 

moment tt δ+  
9
. 

 Here we follow Ayache et al. [2003] to incorporate the option of the holder to convert the 

bond after announcement of the bankruptcy. Thus, at the moment tt δ+ , the possible portfolio 

values are  
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What we want now is to eliminate the risk of diffusion in portfolio value. That is, we will express 

the hedge quantity ∆  from the equation  
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Further, the assumption that the risk of default is diversifiable implies:  
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where r  is the continuously compounded interest rate. "Diversifiable" means that through the 

time step tδ  the return of the portfolio is based on risk free interest rate no matter whether default 

will arrive or not
10

. In this context  
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This is the most practical case of recovering, refer to the monograph Spiegeleer and Schoutens [2011]. 
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It is possible that the conversion ratio vary in time. 

10
We have adopted risk neutral world. 



 Proceeding with grouping in the above equation we obtain  

 
( ) ( )

( )t

trtttrtt

tr

eX

V
du

eede
V

du

eeue
Ve

λδ

δλδλδδλδλδ

δ

ηη

−

+
−−

−
−−

−+
−

−−−+
−

−

−−−+

1

1)(11)(1
=

=

 

and more precisely  
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 which shows that the way of valuation of the convertibles within the tree (derived so far) is just 

the same as the well known manner used in the classical binary tree framework. 

 

2.3  Including Coupon Cash-Flow 

 

Let us denote with c

it  the moment at which the bond paid out a coupon amount ic , also let 

the moment happens inside the tree step tδ . Then, the risk-neutral assumption implies that the 
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 must be added to the bond price at the end of the time step in absence of 

default, i.e.  

 













−∆−

+∆−

+∆−

Π
−+−

−++

+

).(1

=
)(

)(

η

δ

δ

δ

SX

ecSdV

ecSuV
c
i

tttr

i

c
i

tttr

i

tt  

Now, by analogy with the previous section we obtain  
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and the assumption that the risk of default is diversifiable implies  
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Hence,  
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which shows that the risk neutral present value of the coupon amount at the previous tree level (at 

the moment t ) has to be adjusted with the probability for non-default through the time step till 

the next tree level (at the moment tt δ+ ). 

 

3  Model Convergence 

 

In this section we will prove that the pure convertible bond price of the model derived so 

far, converges in continuous time to the one modeled by Ayache et al. [2003], [1]. 



We continue the link established in equation (11), and obtain  
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 where ),(= StVV  was defined as the convertible bond price by means of the binomial model. 

Now, let us assume that V  is three times differentiable with respect to S , where the first and the 

second derivatives are continuous with respect to S , also let us assume that V  is continuously 

differentiable with respect to t . Then we can express ),(= SuttVV δ++  and ),(= SdttVV δ+−  in 

Taylor series, respectively  
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Now let us recall that  
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 After all, in a similar way we have  
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Now, using condition 1=ud  we obtain 22 1)(=1)( −− uddu , indeed  
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Thus,  
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which is equivalent to  
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 Further, using equations (14) and (15), equation (13) becomes  
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In addition, let us expand the exponents in the above equation, and after dropping the higher 

order terms in tδ  we obtain the equations  
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which implies 
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Finally, we obtain that the pure price on the binary tree satisfies the following partial differential 

equation (PDE)  
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Since the last equation is the one derived by Ayache et al. [2003], [1], this accomplishes the proof 

of our statement that our binary tree model converges to the continuous model of [1]. 

In addition, let us remark that in the case of total stock default modeling, the pure 

convertible value of the binomial model (derived so far) will satisfy the following PDE  
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4  Model with Synthesis Form of Credit Risk Modeling 

 

In the modeling until now we have used a constant intensity rate. However, it is more 

realistic to model intensity rate to increase as the stock price declines. In this way the exogenous 



nature of default modeling becomes the so-called synthesis form due to information incorporated 

about behavior of the firm's equity price. In the current study we adopt and implement intensity 

rate model that was considered by Muromachi [1999], [12], Takahashi et al. [2001], [14], 

Ayache, et al. [2003], [1], namely 
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 where 0>0λ  is the estimated intensity rate at 0= SS , and 0<α . As an applicable guess for 0λ  

one takes often the observable (desirable) credit spread. 

 However, in practice this model may involve control of the tree step especially for small 

stock values, where intensity increases. It is easy to see that this will require increasing number of 

the tree steps, corresponding to Theorem 1. Obviously this is related to extra computation time. 

Hence, very often in practice we predefine the number of tree steps, respectively we adopt to use 

a tree with predefined length of step. If this is the case, we will show that the use of a synthesis 

form of default modeling will impose existence of a lower threshold bound å
S , below which, the 

given binary tree cannot determine in a consistent way the convertible bond value. 

 

Proposition 4 For a given tree structure with time step 0,>tδ  condition  
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is necessary and sufficient for the values of the parameters du pp ,  and 0p  to belong to the 

interval [0,1].   

 

 Applying Theorem 1 we obtain the following inequality:  
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Hence, from monotonicity of the power function, it follows:  
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This ends the proof. 

Hence, it is easy to see that for a given tree step tδ  the desired lower bound is  
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 where ,<0< 0λα  r<0 , σ<0  and 1.0 ≤≤η  

To handle a situation with ∗
SS <  we suggest to make an extension (say, linear, 

polynomial or spline) of the bond price model taking into account that for the stock S  below å
S  

the behavior of the convertible bond price is very simple (almost linear convergence to the 

recovery amount). 

 

 

 



5  Comparison with Previous Work 

 

In 2011 there appeared two binary tree based models for convertible bond valuation 

subject to default, the one proposed by Spiegeleer and Schoutens [2011], [13], and the one 

proposed by Hull [2011], [11]. 

 These presentations are lacking important details about credit default modeling, 

derivation of the convertible bond pricing algorithm as well as the convergence. Also, the above 

authors, present only the case of total stock default where the underlying stock drops to zero. 

The monograph Spiegeleer and Shoutens [2011] contains notions that are slightly 

misleading. For instance, they define a number p  and call it "probability for up movement" on 

the tree via the expression (6.77, p.110 respectively table 6.2, p.111). However, this does not 

define a risk-neutral probability p , for up movement of the underlying stock, but by our 

exposition above we have seen that the right expression in the terms of [13] is given by pe tλδ− . 

On the other hand, in [11], (pp. 608-610) there is no sufficient details for producing the 

binomial tree parameters. As we can see from Table 2, the binary tree model in [11] is distinct 

from our model only with respect to multipliers for up and down movement of defaultable stock. 

Quoting word for word [11], the adopted process followed by the underlying stock satisfies the 

following: "It is assumed that the stock follows geometric Brownian motion except that there is a 

probability t∆λ  that there will be a default in each short period of time .t∆  In the event of a 

default the stock price falls to zero and there is a recovery on the bond. The variable λ  is the 

risk-neutral default intensity..." 

The author has obviously tried to model a GBM+Poisson process reflected by the word 

"except". However the conclusion of the correct formulas for the parameters of the Binomial Tree 

under such process have been obtained by us in Section 2.1 above. For completeness sake, let us 

provide a possible way to obtain the parameters of the Binomial Tree available in [11], under the 

assumptions made there: By analogy with the techniques applied for obtaining equation (9), 

following the assumptions in [11], for the variance of the variable 
t

tt

S

S δ+  we obtain the following 

equation  

 .)(= 22222 trt

u ededupt
δλδδσ −+− −  

Hence, proceeding in the same manner as in formula (10), we arrive at  

 ,)(=2 tAt δλδσ +  

that is,  

 .= 2 λσ −A  

The latter determines the parameter for up-move on the tree as  

 ,=
)

2
( t

eu
δλσ −

 (18) 

 which is just the same as the one proposed in [11]. 

Another inconsistency of the model in [11], arises from the factor λσ −2  in the formula 

(18) for u , since in practice 2σ  and λ  are very close or even identical. In such situation, the 

binary tree process will have a very low volatility and will be different from the process adopted 

in [11]. The effect of this inconsistency is exhibited in the next section. 

 

 



6  An example 

 

We provide an example of a convertible bond which is used in Ayache et al. [2003] [1], 

that is with terms and conditions that are given in the Table below.  

 

Table  3: Convertible Bond Terms and Conditions 

  

 Issue Date   6-Jan-2009 

Maturity 

Date  

 6-Jan-2014 

Conversion   6-Jan-2009 

to 6-Jan-

2014 into 1 

share 

Call 

provision  

 6-Jan-2011 

to 6-Jan-

2014 at 110 

Put 

provision  

 on 6-Jan-

2012 at 105 

Nominal   100 

Coupon Rate 

(annual)  

 8%, paid out 

semi-

annually 

Day Count 

Convention  

 Act/365 

Business 

Day 

Convention  

 Unadjusted 

 Risk-Free 

Interest Rate  

 5% 

(continuously 

compounded) 

Credit 

Spread  

 2% 

(continuously 

compounded) 

Stock 

Volatility  

 20% 

    

 

  

Here we design a test which shows misestimation of the embedded options by the [11] 

model, where 2σ  is close to λ . Now let us assume 0.25=σ , 0.062=λ  and recovery rate 

40%=R . In Figure 2 we show the price profile of the bond (from Table 3) that is given by the 

model in [11], and the profiles of the following two variants of the model proposed in the present 

study: the case of constant intensity rate 0.062=λ  and the case of synthesis intensity rate model 

data 0.062,=0λ  0.5= −α  and 50.=0S  We see that the model of [11] shows underestimation of 



the price of the embedded option. Another important feature of the synthesis model is that it is 

the only one which shows adequate behavior in the credit risk environment. 
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Figure  2: Mis-estimation of Hull-2011 model in comparison with two typical variants of 

current work. 

 

Further experiments will be published in a forthcoming paper. 
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