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Abstract— An elementary arbitrage principle and the
existence of trends in financial time series, which is based
on a theorem published in 1995 by P. Cartier and Y. Perrin,
lead to a new understanding of option pricing and dynamic
hedging. Intricate problems related to violent behaviors of the
underlying, like the existence of jumps, become then quite
straightforward by incorporating them into the trends. Several
convincing computer experiments are reported.
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I. I NTRODUCTION

Option pricing intends like many other financial techniques
to tame as much as possible market risks. The Black-Scholes-
Merton (BSM) approach ([7], [39]), which is forty years old,
is still by far the most popular setting, although some of its
drawbacks and pitfalls were known shortly after its publica-
tion. It had an enormous impact1 on the huge development
of modern quantitative finance. Its heavy use of advanced
mathematical tools, like stochastic differential equations and
partial differential equations, explains to a large part the
features of today’s mathematical finance, which is enjoying
a great popularity not only among academics but also among
practitioners. Many textbooks (see,e.g., [12], [13], [16], [26],
[30], [34], [42], [50]) provide an excellent overview of this
lively and fascinating field.

Let us add in the context of this conference that a growing
number of references exploits the connections of the BSM
setting with methods stemming from various engineering
fields. We mention here:

• learning techniques (see,e.g., [27], [31]),
• control theory (see,e.g., [2], [4], [10], [14], [37], [41],

[43], [49]).

In 1997, Scholes and Merton won the Nobel Prize in
economics – Black died in 1995 – not for the discovery
of the pricing formulas which were already known ([8],
[44], [45], [48]), but for the methods they introduced for
deriving them.2 The most elegant concepts ofreplication and

1Theperformativeaspect of the BSM approach might also be stressed (see,
e.g., [35]).

2See,e.g., the historical comments in [47], [38], [28] and [29].

dynamic delta hedging, which are now central both in theory
and practice, have nevertheless been the subject of severe
criticisms for their lack of realism (see,e.g., [15]). Dynamic
delta hedging moreover cannot be extended to more general
stochastic processes exhibiting jumps for instance ([40]).

Pricing formulas are derived here via an elementary ar-
bitrage principle which employs the expected return of the
underlying and goes back at least to [1] and [9].3 Combined
with the utilization oftrends([19]) it permits to

1) alleviate one of the most annoying paradoxes in modern
approaches that concerns the uselessness of the expected
return of the underlying (see,e.g., [6]),

2) deal quite simply with more subtle behaviors of the
underlying, which may exhibit jumps, by incorporating
those behaviors in the trends,

3) define a new more realistic dynamic hedging.
Our paper is organized as follows. Section II summarizes

and sometimes improves some facts already presented earlier
(see [22] and the references therein). Section III recalls how
pricing formulas may be derived via an elementary arbitrage
principle,i.e., without replication. Section IV slightly modifies
those formulas by taking trends into account. A new dynamic
hedging, which employs both the pricing formulas and the
trend of the underlying, is proposed in Section V. Due to an
obvious lack of space, the convincing computer illustrations,
which are displayed in Section VI, are limited to a quite violent
behavior of the underlying. Section VII further analyzes the
change of paradigm which might arise from this new setting.

II. T HE CARTIER-PERRIN THEOREM AND SOME OF ITS

CONSEQUENCES: A SHORT REVIEW

A. Trend

The theorem due to Cartier and Perrin [11] is expressed in
the language ofnonstandard analysis. It depends on a time
samplingTS where the differencetν+1 − tν is infinitesimal,
i.e., “very small”. Then, under a mild integrability condition,
the priceS(t) of the financial quantity may be decomposed
([19]) in the following way

S(t) = STS,trend(t) + STS,fluct(t)

where

3See the comments by [46] and [51].
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• STS,trend is thetrend, or themean, or theaverage, of S;
• STS,fluct is a quickly fluctuatingfunction around0, i.e.,
∫ τ1
τ0

STS,fluct(τ)dτ is infinitesimal for any finite interval
[τ0, τ1],

• STS,trend and STS,fluct are unique up to an additive
infinitesimal quantity.

Remark 2.1:STS,trend(t), which is “smoother” thanS(t),
provides a mathematical justification ([19]) of thetrends in
technical analysis(see,e.g., [3], [32]).

Remark 2.2:Note thatSTS,fluct(t) is analogous to “noises”
in engineering according to the analysis of [17].4 See [25]
and [36] for the estimation ofStrend(t) and of its derivatives.
See [22], and the references therein, for convincing numerical
experiments including forecasting results which are deduced
from the trends.

B. Return

If STS,trend is differentiable att, then its logarithmic
derivative

rTS,trend(t) =
ṠTS,trend(t)

STS,trend(t)
(1)

is called thetrend-returnof S at t.
Remark 2.3:See [21], [22] for other definitions of returns.

C. Volatility

Take two integrable time seriesS1(t), S2(t), such that their
squares and the squares ofS1,trend(t) andS2,trend(t) are also
integrable. It leads us to the following definitions, which are
borrowed from [21], [22]:

1) The covarianceof two time seriesS1(t) and S2(t) is
the time series

cov(S1S2)(t) = Tr ((S1 − Tr(S1))(S2 − Tr(S2))) (t)

≃ Tr(S1S2)(t)−Tr(S1)(t)× Tr(S2)(t)

whereTr(•) denotes the trend with respect to the time
samplingTS.

2) Thevarianceof the time seriesS1(t) is

var(S1)(t) = Tr
(

(S1 − Tr(S1))
2
)

(t)

≃ Tr(S2
1)(t)− (Tr(S1)(t))

2

3) The volatility of S1(t) is the corresponding standard
deviation

vol(S1)(t) =
√

var(S1)(t) (2)

III. PRICING WITHOUT TRENDS

We limit ourselves for simplicity’s sake toEuropean call
options, which are options for the right to buy a stock or an
index at a certain price at a certain maturity date.

4The notion of “noise” has sometimes a quite different meaning in quanti-
tative finance ([5]).

A. Arbitrage

Let r(t) be the risk-free rate. The expected price at maturity
T should be equal to

S(0) exp

(

∫ T

0

r(τ)dτ

)

(3)

A heuristic justification goes like this: Assume, for simplicity’s
sake and like in today’s academic literature, that

• r(t) is a constantr,
• S(t) follows a geometric Brownian motion

S(t) = S(0) exp

[(

µ−
σ2

2

)

t+ σW (t)

]

(4)

where

– W (t) is a standard Brownian motion,
– µ andσ are constant.

Providing a theoretical estimation ofµ andσ from historical
data is classic and straightforward. We thus know the mean
S(0)eµt of S(t). If µ > r (resp. µ < r), it might be
profitable for the arbitrageur to borrow money (resp. selling
the underlying) for buying the underlyingS (resp. for investing
the corresponding amount of money) at time0, and selling it
(resp. buying the underlying) later, at timeT for instance.

B. Formulas

Assume that

• the underlying follows the geometric Brownian motion
(4),

• the expected final price satisfies the condition (3),i.e., is
equal to

S(0)erT

Krouglov [33] shows, by exploiting properties of log-normal
distributions, that the usual BSM formulas may be recovered.
Write down here the value of a European call option:

C(S, t) = S(t)N(d1)−KN(d2)e
−r(T−t) (5)

where

• N is the standard normal cumulative distribution func-
tion, i.e.,

N(x) =
1

√
2π

∫ x

−∞

exp

(

−
z2

2

)

dz

• K is the strike price,

• d1 =
lg( S

K )+
(

r+σ
2

2

)

(T−t)

σ
√
T−t

,

• d2 = d1 − σ
√
T − t.

IV. PRICING WITH TRENDS

A. Arbitrage

Assume again that the risk-free rater(t) is a constantr. A
natural extension of Section III states that the expected final
price at maturityT of the underlying is

STS,trend(0)e
rT



It means the following:

• STS,trend(0) replacesS(0) in order to avoid the quick
fluctuations.

• The trendSTS,trend(t) is “close” around maturityT to
STS,trend(0)e

rt.
• The trendSTS,trend(t) is differentiable aroundT and the

corresponding trend-returnrTS,trend(t) of Equation (1)
is “close” to r.

B. Formulas

Assume that the quick fluctuations around the trend may be
described at a timet aroundT by a lognormal distribution
of meanSTS,trend(t) and varianceσ. It yields, as in Section
III, the BSM-like formulas where the value of a European call
option is given by

C(S, t) = STS,trend(t)N(d1)−KN(d2)e
−r(T−t) (6)

When compared to Equation (5), notice thatS(t) is replaced
by STS,trend(t).

Remark 4.1:If we suppose that the quick fluctuations may
be properly described by a normal distribution, we would
arrive at pricing formulas quite analogous to those of [1] and
[9].5 If we assume that we only forecast the volatility (2), then
the choice of the corresponding normal distribution might be
quite appropriate.

V. DYNAMIC HEDGING

A. General principles6

Let Π be the value of an elementary portfolio of one long
option positionV and one short position in quantity∆ of
some underlyingS:

Π(t) = V (t)−∆S(t) (7)

Note that∆ is the control variable: the underlying is sold or
bought. The portfolio isrisklessif its value obeys the equation
dΠ = rΠdt, wherer is the constant risk-free rate. It yields

Π(t) = Π(0)ert (8)

Replace

• Equation (7) by

ΠTS,trend(t) = V (t)−∆STS,trend(t) (9)

whereV is computed at timet via Section IV-B.
• Equation (8) by

ΠTS,trend(t) = ΠTS,trend(0)e
rt (10)

Combining Equations (9) and (10) leads to the tracking control
strategy

∆ =
V (t)−ΠTS,trend(0)e

rt

STS,trend(t)
(11)

5Mimicking the computations with the other probability distributions, which
were considered by [9], would be straightforward.

6See [20] for a related attempt.

We might again calldelta hedgingthis strategy, although it
is only an approximate dynamic hedging via the utilization of
trends and of the corresponding time samplingTS.

In order to implement correctly Equation (11), the initial
value∆(0) of ∆ has to be known. IfSTS,trend and V are
differentiable, this is achieved by equating the logarithmic
derivatives att = 0 of the right handsides of Equations (9)
and (10):

∆(0) =
V̇ (0)− rV (0)

ṠTS,trend(0)− rSTS,trend(0)
(12)

Remark 5.1:Our approach to dynamic hedging may be
connected tomodel-free control([18], [24]) which already
found many concrete applications.7 Remember that one of the
main difficulty related to dynamic replication is the necessity
to have a “good” probabilistic model of the behavior of the
underlying.

VI. SOME COMPUTER ILLUSTRATIONS

The underlying is the S&P 500, which is one of the most
commonly followed equity indices.

A. Preliminary calculations

The preliminary calculations below are necessary for our
dynamic hedging in Section VI-B.

1) Data and trends:Figure 1 displays the daily S&P 500,
from 3 January 2000 until 2 December 2012. A turbulent
200 days period from 9 May 2008 until 24 February 2009
is extracted in Figure 2. The excellent quality of our trend
estimation (see Remark 2.2) is highlighted by those two Fig-
ures, especially when compared to a classic moving average
techniques using the same number of points, here 30. Let
us emphasize moreover that the unavoidable delay associated
to any estimation technique is quite reduced thanks to our
theoretical viewpoint.

2) Volatility: Figure 3 and 4 display the corresponding
logarithmic return

R(t) = ln

(

S(t)

S(t− 1)

)

whereS(t) denotes the daily value of the S&P 500 andt > 1.
The corresponding annualized volatility is

σ(t) = STD(R(t))×
√
255

where, for determining the standard deviation STD,

• a 10 days sliding window is used,
• the mean may be deduced from Equation (1).

This type of calculations is much too sensitive to the return
fluctuations. Figure 6 exhibits this annoying feature as well as
the results obtained via the two following procedures which
are utilized in order to bypass this difficulty:

1) A classic low-pass filter permits to alleviate those fluc-
tuations.

7See the references in [24].



2) The results for the on-line detection methods in [23] of
change-points8 are depicted in Figure 5. The sensitivity
of the algorithm, which may be easily modified, is
adapted here to quite violent abrupt changes. If such a
change is detected its effect is reduced via an averaging
where the size of the sliding window is augmented. It
corresponds to thetime-scaled volatilityin Figures 6, 7
and 8.

The second method, which provides a most efficient
smoothing when a change point is detected, seems to work
better.

3) Option pricing: Introduce now the European call option
during the hectic period of 200 days shown in Figure 2. Write
T = 200 the maturity time. Setr = 1% for the risk-free rate.
The strike priceK is given by

K = STS,trend(0)(k/100 + 1)(T/255)

wherek = 10%. At any time t, 0 < t < T , computing the
numerical value of the call, as shown in Figure 7, uses

• Formula (6),9

• the estimated volatilities in Section VI-A2.

B. Dynamic hedging

Thanks to the numerical results of Section VI-A, Formula
(11) yields dynamic hedging performances which are reported
in Figure 8. Note that a proper choice of the volatility
calculation ensures in the same time and in spite of an only
rough replication

• small oscillations of the control variable∆,
• a good hedging.

VII. C ONCLUSION

If further studies confirm our viewpoint on option pricing
and dynamic hedging, it will open radically different roads
which should bypass some of the most important difficulties
encountered with today’s approaches. Let us emphasize as
above and once again ([19], [22]) that a consequence of
our setting might the obsolescence of the need of complex
stochastic processes for modeling the underlying’s behavior.
Taking into account

• the trends, which carry the information about jumps and
other “violent” behaviors,

• their forecasting,
• not only the variance around the trend but also the

skewness and the kurtosis,

should lead to new option pricing formulas, where the (geo-
metric) Brownian motion will loose its preeminence.

Americanand otherexoticoptions will be considered else-
where.

8This terminology, which is borrowed from the literature on signal pro-
cessing (see [23] and the references therein), seems more appropriate than
the word jumpswhich is familiar in quantitative finance.

9Only lack of space makes us follow here a Black-Scholes type formula.
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Figure 1: S&P 500 value (blue, –), its moving average (red, -
-) and the proposed trend (black, .-)
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Figure 2: Zoom of Figure 1
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Springer, 2007. English translation:Continuous-time Stochastic Control
and Optimization with Financial Applications, Springer, 2009.

[42] R. Portet, P. Poncet,Finance de marché(3e éd.), Dalloz, 2012.
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