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Abstract—  An elementary arbitrage principle and the dynamic delta hedgingvhich are now central both in theory
existence of trends in financial time series, which is based gnd practice, have nevertheless been the subject of severe
on a theorem published in 1995 by P. Cartier and Y. Perrin, criticisms for their lack of realism (see,g, [15]). Dynamic

lead to a new understanding of option pricing and dynamic delta hedai tb tended t |
hedging. Intricate problems related to violent behaviors 6 the €lta hedging moreover cannot be extended o more genera

underlying, like the existence of jumps, become then quite Stochastic processes exhibiting jumps for instancel ([40])
straightforward by incorporating them into the trends. Several Pricing formulas are derived here via an elementary ar-

convincing computer experiments are reported. bitrage principle which employs the expected return of the

- ) . - underlying and goes back at least [to [1] andﬁ@}ombined
Keywords— Quantitative finance, option pricing, European . e . .
option, dynamic hedging, replication, arbitrage, time with the utilization oftrends([19]) it permits to
series, trends, volatility, abrupt changes, model-free atrol, 1) alleviate one of the most annoying paradoxes in modern
nonstandard analysis. approaches that concerns the uselessness of the expected
return of the underlying (see.g, [6]),
2) deal quite simply with more subtle behaviors of the
Option pricing intends like many other financial techniques  underlying, which may exhibit jumps, by incorporating
to tame as much as possible market risks. The Black-Scholes- those behaviors in the trends,
Merton (BSM) approach[([7]/139]), which is forty years old, 3) define a new more realistic dynamic hedging.
is still by far the most popular setting, although some of its Our paper is organized as follows. Sectlgh || summarizes
drawbacks and pitfalls were known shortly after its publicaand sometimes improves some facts already presentedrearlie
tion. It had an enormous impHcon the huge development(see [22] and the references therein). Sedfion Il recadls h
of modern quantitative finance. Its heavy use of advancggcing formulas may be derived via an elementary arbitrage
mathematical tools, like stochastic differential equasi@nd principle,i.e., without replication. Section IV slightly modifies
partial differential equations, explains to a large pareé ththose formulas by taking trends into account. A new dynamic
features of today’s mathematical finance, which is enjoyir}ggdging, which employs both the pricing formulas and the
a great popularity not only among academics but also amomgnd of the underlying, is proposed in Sectioh V. Due to an
practitioners. Many textbooks (seeg, [12], [13], [1€], [26], obvious lack of space, the convincing computer illustragio
[30], [34], [42], [50]) provide an excellent overview of thi which are displayed in SectibnVI, are limited to a quite eiu
lively and fascinating field. behavior of the underlying. Sectian VII further analyzes th
Let us add in the context of this conference that a growinghange of paradigm which might arise from this new setting.
number of references exploits the connections of the BSM
setting with methods stemming from various engineeringI
fields. We mention here:

« learning techniques (see,g, [27], [31]), A. Trend

« control theory (seee.qg, [2], [4], [10], [14], [37], [41], The theorem due to Cartier and Pertinl[11] is expressed in
[43], [49)). the language ohonstandard analysisit depends on a time

In 1997, Scholes and Merton won the Nobel Prize if@MPIingTS where the difference, .., — ¢, is infinitesima)

economics — Black died in 1995 — not for the discoverye" “very small’. Then, under a mild integrability condition,
of the pricing formulas which were already knowr ([8]’he price S(t) of the financial quantity may be decomposed

[44], [45], [48]), but for the methods they introduced fok[19]) in the following way
deriving thent] The most elegant concepts m@plication and ‘ S(t) = Ste.trend(t) + Ste guct (t) ‘

I. INTRODUCTION

I. THE CARTIER-PERRIN THEOREM AND SOME OF ITS
CONSEQUENCESA SHORT REVIEW

1The performativeaspect of the BSM approach might also be stressed (saghere
e.g, [35)).
2See,e.qg, the historical comments if_[47]. [38]. [28] and [29]. 3See the comments bly [46] arid [51].
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e Sza trend IS thetrend, or themean or theaverage of S;  A. Arbitrage

* 556 fluct is & quickly fluctuatingfunction around), i.e,, Letr(t) be the risk-free rate. The expected price at maturity
[+ Sze fuet(7)dr is infinitesimal for any finite interval 7 snould be equal to
[T07 Tl],

o Sta trend @Nd Sze Auct @re unique up to an additive r
infinitesimal quantity. 5(0) exp o r(r)dr )

Remark 2.1:Sxe trend(t), Which is “smoother” tharf(¢),
provides a mathematical justification ([19]) of thendsin
technical analysigsee,e.g, [3], [32]).

Remark 2.2:Note thatSze auct(t) iS analogous to “noises”
in engineering according to the analysis bf [E7$ee [25]
and [36] for the estimation of..,.q(¢) and of its derivatives. o2
See[[22], and the references there(irz, for convincing nurakri 5(t) = 5(0) exp K“ - 7) t+ UW(t)] )
experiments including forecasting results which are deduc
from the trends.

A heuristic justification goes like this: Assume, for singitly's
sake and like in today’s academic literature, that

« r(t) is a constant:,

« S(t) follows a geometric Brownian motion

where
— W(t) is a standard Brownian motion,
— u ando are constant.
o _ ) ~ Providing a theoretical estimation @f and o from historical
If Ste trena is differentiable att, then its logarithmic gatq is classic and straightforward. We thus know the mean
derivative , S(0)ert of S(t). If u > r (resp.p < r), it might be
_ 556, trend (t) 1) profitable for the arbitrageur to borrow money (resp. sgllin
S56,trend(t) the underlying) for buying the underlyirs§(resp. for investing
the corresponding amount of money) at tifheand selling it
(resp. buying the underlying) later, at tirfiefor instance.

B. Return

I'sa, trend (t)

is called thetrend-returnof S at t.
Remark 2.3:See [21], [22] for other definitions of returns.

B. Formulas
C. Volatility Assume that
Take two integrable time serie% (t), Sy (t), such that their ~ + the underlying follows the geometric Brownian motion
squares and the squaresfifiyena(t) andS trend(t) are also @, _ _ o . o
integrable. It leads us to the following definitions, whictea * the expected final price satisfies the condition {®), is
borrowed from [211], [22]: equal to

rT
1) The covarianceof two time seriesS;(t) and Sa(t) is S5(0)e

the time series Krouglov [33] shows, by exploiting properties of log-norima

coV(S152)(t) = Tr((S1— Tr(S1))(S2 — Tr(S2))) (t) dis_tributions, that the usual BSM formulas may be_ recovered
~ Te(S182)(t) — Tr(S1)(t) x Tr(S2)(f) Write down here the value of a European call option:

t) = S(t)N(d1) — KN(dp)e "7~ 5
whereTr(e) denotes the trend with respect to the time ClS1) = SON(d) (dz)e ©®)
sampling®&. where

2) Thevarianceof the time seriesS: (¢) is « N is the standard normal cumulative distribution func-
5 tion, i.e,,
var(S1)(t) = Tr((S1 - Te(51))%) (1) Lo 2
~ 2 _ 2 — -z
~ Tr(S7)(t) — (Tr(S1)(t)) N(z) \/ﬁw/—oo exp( 5 ) dz
3) The volatility of S;(¢) is the corresponding standard . K is the strike price,
deviation J 1g(£)+(r+%)(T-1)
° 1= o _ ’
vol(S1)(t) = /var(S;)(t) ) . dy—d — a\/—vjif—tt,
[1l. PRICING WITHOUT TRENDS IV. PRICING WITH TRENDS

We limit ourselves for simplicity’s sake t&uropean call A. Arbitrage
options which are options for the right to buy a stock or an  Assume again that the risk-free raté) is a constant. A
index at a certain price at a certain maturity date. natural extension of Sectidnllll states that the expecteal fin

price at maturityl" of the underlying is
4The notion of “noise” has sometimes a quite different meguiinquanti-
tative finance [[b]). S‘ze,trend(o)e

rT



It means the following: We might again calldelta hedgingthis strategy, although it
o Ste,iena(0) replacess(0) in order to avoid the quick is only an approximate dynamic hedging via the utilizatidn o

fluctuations. trends and of the corresponding time samplitig.
e The trendSz trenda(t) is “close” around maturityl’ to In order to implement correctly Equatioh_{11), the initial
S trena(0)e"™. value A(0) of A has to be known. ISz trena and V' are

« The trendSse wena(t) is differentiable around” and the differentiable, this is achieved by equating the logarithm
corresponding trend-retunfcs rena(t) of Equation [(1) derivatives att = 0 of the right handsides of Equatiorg (9)

is “close” tor. and [10):
: V(0) — V(0
B. Formulas | . A(0) = - (0) =rV(0) (12)
Assume that the quick fluctuations around the trend may be S56 trend(0) — 7576 trend (0)

described at a time aroundT by a lognormal distribution ] . .
of meanSzes rend(t) @and variances. It yields, as in Section Remark 5.1:0ur approach to dynamic hedging may be

[M] the BSM-like formulas where the value of a European Caﬁonnected tomodel-free control([18], [24]) which already
option is given by found many concrete applicatiohfemember that one of the

main difficulty related to dynamic replication is the nedss
C(S,t) = Ste.trena(t)N(d1) — KN(dy)e "T-8| (6) to have a “good” probabilistic model of the behavior of the
’ underlying.

When compared to Equatiohl (5), notice tt#t) is replaced
by S‘IG,trcnd (t)

Remark 4.1:1f we suppose that the quick fluctuations may The underlying is the S&P 500, which is one of the most
be properly described by a normal distribution, we wouldommonly followed equity indices.
arrive at pricing formulas quite analogous to thosel 0f [1d an . _
[9].[3 If we assume that we only forecast the volatility (2), theﬁ" Preliminary calculations
the choice of the corresponding normal distribution migat b The preliminary calculations below are necessary for our

VI. SOME COMPUTER ILLUSTRATIONS

quite appropriate. dynamic hedging in Sectidn VIiB.
1) Data and trends:Figure[1 displays the daily S&P 500,
V. DYNAMIC HEDGING from 3 January 2000 until 2 December 2012. A turbulent
A. General principle$ 200 days period from 9 May 2008 until 24 February 2009

& extracted in Figur€l2. The excellent quality of our trend
estimation (see Remalk 2.2) is highlighted by those two Fig-
ures, especially when compared to a classic moving average
techniques using the same number of points, here 30. Let
I(t) = V(t) — AS(¢) (7) us emphasize moreover that the unavoidable delay assbciate
to any estimation technique is quite reduced thanks to our
theoretical viewpoint.

2) Volatility: Figure[3 and4 display the corresponding
logarithmic return

Let IT be the value of an elementary portfolio of one lon
option positionV and one short position in quantizx of
some underlyings:

Note thatA is the control variable: the underlying is sold o
bought. The portfolio isisklessif its value obeys the equation
dIl = rIldt, wherer is the constant risk-free rate. It yields

I(t) = I1(0)e™ (8)
R(t) = In ( S(t) )
Replace S(t-1)
« Equation[(¥) by whereS(t) denotes the daily value of the S&P 500 and 1.

The corresponding annualized volatility is
HTG,trend(t) = V(t) - ASTG,tlremd (t) (9) P g Y

whereV is computed at time via Sectior 1V-B. o(t) = STD(R(t)) x V255

« Equation[(8) by where, for determining the standard deviation STD,
rt o a 10 days sliding window is used,
Mse rena(t) = Ize trena(0)e (10) . the mea)?\ may bge deduced from Equatigh (1).

Combining Equations {9) and ({10) leads to the tracking @ntrrhis type of calculations is much too sensitive to the return
strategy fluctuations. Figurglé exhibits this annoying feature ad al
Ao YO - Hze trend(0)e™ 1) the results obtained via the two following procedures which

B Sz trend(t) are utilized in order to bypass this difficulty:
1) A classic low-pass filter permits to alleviate those fluc-

5Mimicking the computations with the other probability distitions, which tuations.
were considered by [9], would be straightforward.
6See [[20] for a related attempt. “See the references in_[24].




2) The results for the on-line detection methods’in [23] ¢
change—poin&are depicted in Figurigl 5. The sensitivity
of the algorithm, which may be easily modified, i< 1600 1
adapted here to quite violent abrupt changes. If such W
change is detected its effect is reduced via an averagi

1800

1400 it " |

where the size of the sliding window is augmented. 1200

corresponds to théme-scaled volatilityin Figured 6[ 7

and[B. 1000
The second method, which provides a most efficiel 800

smoothing when a change point is detected, seems to w
better.

600~

3) Option pricing: Introduce now the European call optior s00} ,
during the hectic period of 200 days shown in Figure 2. Wri
T = 200 the maturity time. Set = 1% for the risk-free rate. 2008 7

The strike priceK is given by

I I I I I
0 500 1000 1500 2000 2500 3000
Time in day

K = St trena(0) (k/100 4 1)(T/2%5)

wherek = 10%. At any time¢, 0 < ¢ < T, computing the Figyre 1: S&P 500 value (blue, -), its moving average (red, -
numerical value of the call, as shown in Figlite 7, uses -) and the proposed trend (black, .-)

« Formula 6§

« the estimated volatilities in Sectign VI-A2.

1500
B. Dynamic hedging
Thanks to the numerical results of Sectlon MI-A, Formul
(13) yields dynamic hedging performances which are redort 1300
in Figure [8. Note that a proper choice of the volatility

calculation ensures in the same time and in spite of an or
rough replication

« small oscillations of the control variabl,
« a good hedging. 1000

1400 17

1200

1100

900
VIl. CONCLUSION

If further studies confirm our viewpoint on option pricing 800

and dynamic hedging, it will open radically different road: ‘ S o
which should bypass some of the most important difficultie o w0 w0 w e, 0 Mo w0 a0 200
encountered with today’s approaches. Let us emphasize

above and once again[_([19], [22]) that a consequence of

our setting might the obsolescence of the need of complex Figure 2: Zoom of Figur&ll

stochastic processes for modeling the underlying’s behnavi

Taking into account

« the trends, which carry the information about jumps and ACKNOWLEDGMENT
other “violent” behaviors, The authors thank Frank Génot and Frédéric Hatt for uklpf
« their forecasting, discussions.

« not only the variance around the trend but also the

skewness and the kurtosis,
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