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2 Inter-Coder Agreement for Nominal Scales: A
Model-based Approach

Dirk Schuster∗

Abstract

Inter-coder agreement measures, like Cohen’sκ, correct the relative frequency
of agreement between coders to account for agreement which simply occurs by
chance. However, in some situations these measures exhibitbehavior which make
their values difficult to interprete. These properties, e.g. the “annotator bias” or the
“problem of prevalence”, refer to a tendency of some of thesemeasures to indicate
counterintuitive high or low values of reliability depending on conditions which
many researchers consider as unrelated to inter-coder reliability. However, not all
researchers agree with this view, and since there is no commonly accepted formal
definition of inter-coder reliability, it is hard to decide whether this depends upon
a different concept of reliability or simply upon flaws in themeasuring algorithms.

In this note we therefore take an axiomatic approach: we introduce a model
for the rating of items by several coders according to a nominal scale. Based upon
this model we define inter-coder reliability as a probability to assign a category
to an item with certainty. We then discuss under which conditions this notion of
inter-coder reliability is uniquely determined given typical experimental results,
i.e. relative frequencies of category assignments by different coders.

In addition we provide an algorithm and conduct numerical simulations which
exhibit the accuracy of this algorithm under different model parameter settings.

1 Introduction

Measuring the agreement between the nominal ratings of a setof items by several
coders or judges is a common task in a number of disciplines like medical, psycho-
logical, and social sciences, content analysis and marketing. Simply measuring the
percentage of agreement is not adequate as it does not take into account agreement
which simply occurs by chance. There have been proposed a number of inter-coder
reliability measures to cope with this effect, the most prominent beingκ [5], π ([14],
[8]), α [13], andS [3], see [2] for a survey.

These measures are defined as ratios of chance-corrected numbers of observed
agreement vs. maximal agreement and differ in the way the chance-correction is taken
into account. The ways these corrections are computed, giverise to some criticism of
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these measures, because they “favor” or “penalize” certaincoder behaviors which are
considered as inappropriate by some researchers.

Though usually not explicitly stated (cf. also [1, p. 294]),the basic assumption
is that a coder either assigns a category by certainty resp. “expert judgment” (Brennan
and Prediger, [4, p. 689]) or assigns some category without being absolutely sure about
his or her choice. Obviously, it is not possible for an individual assignment to identify
whether the assignment was done by certainty or not, sometimes not even the rater
himself or herself may be sure about what the exact reasons for his or her choice are.

At one extreme point is theS-value which assumes a uniform distribution of cate-
gories when “chance assignments” occurs. Scott’sπ and Cohen’sκ on the other hand
use “marginal distributions”, i.e. the overall distribution of category assignments by
each rater, to correct for chance agreement. Using marginaldistributions may lead
to incorrect chance correction since these distributions also include assignments made
by certainty and thus may also be more than marginally influenced by the distribu-
tion of categories according to the population of items. Using uniform distribution on
the other hand may underestimate chance agreement if there are categories that coders
hardly ever choose. There exists a considerable literatureon this subject, see e.g. [2],
[4], [6], [7], [9],[11] [12].

Obviously it is hard to reach at a consensus about which strategy a coder will follow
in general when category assignment is not done by certainty. In our model we thus
will not presume a certain distribution to account for chance agreement.

Cohen’sκ exhibits a feature, usually called “annotator bias” which describes the
fact thatκ yields higher values when coders produce widely diverging marginal dis-
tributions than when the marginal distributions are similar. See [2, section 3.1] who
support this feature, [6], [7],[17] for criticism, [15] fora formal proof. Scott’sπ , in
contrast, uses the common marginal distribution of the coders and so “favors” coders
that produce similar marginal distributions.

In order to measure inter-coder reliability (in contrast tointra-coder, i.e. test-retest
reliability) it is necessary that the experiment can be reproduced when conducted in the
same way with another group of coders (which of course may be restricted to a certain
base population e.g. trained in some way, but not delimited to some particular individu-
als). So an inter-coder reliability measure should (approximately) yield the same value
for every sufficiently large subset of coders from the prescribed population of coders
and the coders’ marginal distributions may vary according to some distribution which
depends on the population of coders.

Another debated fact is the prevalence problem, referring to the fact that some of
these measures (κ ,π ,α) produce low scores when one category is predominant among
the ratings (see [2], [6], [7], [9] for examples and discussion).

There is some debate on this issue. While [6], [7] and [9] consider this as a weak-
ness, it is justified by Artstein and Poesio with the argumentthat “reliability in such
cases is the ability to agree on rare categories” [2, section3.2]. This latter argument
is somewhat problematic for statistical measures which usually are designed to exhibit
typical not exceptional behavior. In our model we will take an approach which defines
reliability as a property common to the category assignments and independent of the
relative frequency of the (“true” or “correct”) items’ categories. However it will turn
out that reliability can only be determined if not all items belong to one category.
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The approach we take differs from these measures as we start with an axiomatic
model-based definition of inter-coder reliability, which will be a probability of some
event. This has the nice side effect that the value of the reliability parameter can be
stated as a probability of an idealized coder’s behavior andthus has a direct interpreta-
tion.

In addition basing the definition of inter-coder reliability upon such a model one
may simulate coder ratings with a known reliability parameter and thus may evaluate
the accuracy of algorithms under different setups. We will do this in Section 4 for the
algorithm we provide.

Though the author believes that the model used here is fairlygeneral, there might
be situations in which it could be deemed unfeasible. Here the explicit statement of
the model’s assumptions helps to determine whether the model is acceptable in an
experiment or not. We will take a closer look at some of the assumptions of the model
and their possible impact on reliability results at the end of the next section.

2 The Model

We denote byC = {c1, . . . ,cm} the (finite) set ofm categories, into whichN items,
NN, are to be classified by theR raters,NR. We useNn to denote the natural numbers
{1, . . . ,n}.

The common assumptions for inter-rater agreement are (rephrased from [5]):

(i) The items are independent

(ii) The categories are independent, mutually exclusive, and exhaustive.

(iii) The raters operate independently

Assumption (ii) that categories are exhaustive and mutually exclusive implies that
for every item there is one and only one “correct” category. In other words, assump-
tion (ii) above implies the existence of a (usually unknown)function

γ : NN →C.

We will sometimes callγ(k) the “true” category associated with itemk, without any
philosophical implication of the term “true”.

For eachc∈C let Nc := #γ−1(c) denote the number of items whose true category
is c, and writeτc := Nc

N for the relative frequency of these items.
If a coder rates an item he or she may either be sure about the category to be chosen

or not. If the coder is sure about the item’s category it seemsnatural to assume that the
coder will assign this category to the item (so we assume thatthe coders will not cheat
but will assign a category to the best of their knowledge).

Now, what happens in the case the coder is not completely sureabout the category
to assign? In this case, considering a large set of such items, we will observe a certain
relative frequency for the categories to be chosen. In general it is hard to know which
strategy the coder will take and this is frequently debated in the context of Cohen’s
κ . Coders might follow some “base rate” i.e. are guided by someassumption about
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the distribution of categories in the population of items, or may choose the category
according to a uniform distribution on the set of categories(cf. e.g. [3], [11]).

There are certainly good reasons for many of these assumptions and it is probably
also dependent upon the field of research (e.g. medical diagnosis vs. speech analysis),
upon the kinds of items, the professional background and education of the raters (e.g.
scholars vs. laymen) and many more properties. Hence we willnot assume any partic-
ular distribution but only assume that such a distribution exists.

To formalize we thus assume that given an itemk a rater recognizes the true cat-
egoryγ(k) with a probabilityβ . If the coder fails to recognize it he or she assigns a
“random” category with some unknown distribution. The assumption (i) above sug-
gests to model these actions by independent random variables.

So formally letZk be 0-1-valued,Yk be C-valued independent random variables
k∈ NN and assume that both families are identically distributed.

We define a coder’s rating of itemk ∈ NN by the outcome of the random variable
Xk given by

Xk :=

{

γ(k) , if Zk = 0

Yk , if Zk = 1.
(1)

We letβ := P(Zk = 0) andpc := P(Yk = c).
It is immediate from the definition that

P(Xk = c) = β δc,γ(k)+(1−β )pc, (2)

so the distribution ofXi,k is a mixture of the atomic distribution atγ(k) and p =
(PYk(c))c∈C with mixture parameterβ . (Hereδ is Kronecker’s delta, i.e.δx,y = 1 if
x= y and 0 otherwise.)

For convenience let us call this model thecoder model with parameters(β ,γ,p),
wherep = (pc)c∈C. Throughout this note we will tacitly letNN denote the domain and
C the codomain ofγ. A family of independentC-valued random variables(Xk)k∈NN ,
which satisfies (2) is called acoder processfor the coder model.

According to the assumption (iii) above several coders are modeled by independent
families(Xi,k)k∈NN , where the subscripti refers to the coder.

If a rater chooses to assign categoryc to an itemk he or she may either be certain
about the items category or may be uncertain and assignsc by chance only. Gwet [10,
section 4] uses this same interpretation of the rating process. In our model certainty
occurs when the coder chooses the category according toγ(k), i.e. whenZk = 0. So
it seems reasonable to use the probabilityβ = P(Zk = 0) as agreement indicator, let
us call it thereliability parameterof the coder model. Of course an assignment to
categoryγ(k) also occurs whenYk = γ(k), which happens with probabilitypγ(k).

Aickin [1] also used a mixture model to study inter-coder reliability. In our notation
the mixture distribution in Aickin’s model is the distribution

(c1,c2) 7→ E(
1
N

#{i ∈ NN : Xi,1 = c1}
1
N

#{i ∈ NN : Xi,2 = c2})

which is not a mixture distribution in our model, cf. (4), so our model is different from
Aickin’s.
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There are three features of this model which may need a secondlook:
The first feature is that coders are modeled by identically distributed families of

random variables. This might seem oversimplifying since generally every coder may
have his or her own preference. Actually this feature touches the controversy about
“annotator bias”.

As we already discussed in the introduction, inter-coder reliability in contrast to
intra-coder reliability is only present if the experiment can be reproduced with differ-
ent coders from some coder population. Our model uses the parametersβ andp to
characterize the coder population.

The second feature that may deserve closer consideration, is concerned with the
a priori distributionp being independent of the item in question. Actually often one
may arrive at the situation where for a particular item the coders easily may rule out
some categories but are doubtful about some others. In this situation assuming that
the a priori distribution is the same for all items is indeed oversimplifying. Without
this assumption, however, the model would be completely useless. Indeed, ifp would
be dependent on the itemk we could simply putp(k) to the distribution of categories
obtained for this item and find out that every outcome could beobtained with reliability
parameterβ = 0, i.e. by pure randomness.

If in some experimental setup the independence ofp on the item would be deemed
a relevant issue, it would be advisable to split the set of items into subsets such that the
a priori distribution could be considered the same for all items in each of the subsets.

The third feature which deserves attention is that the probability to identify item k
as belonging to categoryγ(k) is independent ofγ(k), i.e. thatβ is considered indepen-
dent ofc. It is easy to imagine a situation where some subset of categories are more
easily distinguished from each other than for another subset. In this situation it would
indeed be more appropriate to assumeβ to be dependent ofc. However this would
entail the necessity to report several values as reliability parameter, which would make
comparisons more difficult.

Even here one should cope with this feature by a careful design of the experiment
(choice of categories). We will return to this aspect later (following Proposition 5).

3 Inter-Coder Agreement

According to our model inter-coder reliability is the parameterβ in (2) which, since
γ is unknown, is not directly observable in experiments. In experiments only relative
frequencies of category assignments can be observed, i.e. we can observe1N #{i ∈ NN :
Xi,1 = c1, . . . ,Xi,r = cr} or, idealized, the expectation values of it. In the present sec-
tion we will discuss under which conditionsβ can be uniquely determined from these
expectation values.

Throughout this section we will frequently use the following relations, the proof of
which is obvious from (2) and the independence ofXi,k.

5



e1,c := E

(

1
N

#{k∈ NN : Xk = c}
)

= β τ +(1−β )pc (3)

e2,c1,c2 := E

(

1
N

#{k∈ NN : X1,k = c1,X2,k = c2}
)

= β 2δci ,c2τc1 +β (1−β )(τc1 pc2 + τc2 pc1)+ (1−β )2pc1 pc2 (4)

e2,c := e2,c,c = β 2τc+2β (1−β )τcpc+(1−β )2p2
c (5)

e3,c := E

(

1
N

#{k∈ NN : X1,k = X2,k = X3,k = c}
)

= β 3τc+3β 2(1−β )τcpc+3β (1−β )2τcp2
c +(1−β )3p3

c (6)

Our first result shows that it is not always possible to identify β from the coder’s
ratings.

Proposition 1 Let(β ,γ,p) be a coder model and assume that there is c0 ∈C such that
γ(k) = c0 for all k ∈ NN. Then for everyβ ′ ≤ β +(1−β )pc0 there is a coder model
(β ′,γ,p′) such that

β δc,γ(k)+(1−β )pc = β ′δc,γ(k)+(1−β ′)p′c (7)

for all c ∈C, k∈ NN.

Proof Givenβ ′ ≤ β +(1−β )pc0, we only have to show the existence of a vector
p′ ∈ [0,1]m with ∑c∈C pc = 1 such that (7) holds.

Assume first thatβ ′ = 1. Then 1= β ′ ≤ β +(1−β )pc0 ≤ 1 so

(1−β )(pc0 −1) = 0 (8)

Hence eitherβ = 1 or pc0 = 1. In the first case the statement is trivially satisfied and
in the second case we may setp′c = pc for all c∈C and obtain either 1 (ifc= c0) or 0
on both sides of (7), proving the statement in this case.

Now assumeβ ′ < 1. Then

β ′ ≤ β +(1−β )pc0 = β +(1−β )(1− ∑
c6=c0

pc)≤ 1− (1−β )pc

for all c∈C\ {c0}. Hence(1−β )pc ≤ 1−β ′, so defining

p′c :=
1−β
1−β ′ pc

we obtainp′c ∈ [0,1], for c 6= c0. Also define

p′c0
:=

β −β ′+(1−β )pc

1−β ′ .
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Thenp′c0
≥ 0 by the condition onβ ′ andβ −β ′+(1−β )pc≤ β −β ′+(1−β )= 1−β ′

showsp′c0
≤ 1. Finally,

∑
c∈C

p′c = p′c0
+ ∑

c6=c0

p′c =
β −β ′

1−β ′ +
1−β
1−β ′ pc0 +

1−β
1−β ′ (1− pc0) = 1

completes the proof. ✷

Note that in Proposition 1 we may always chooseβ ′ = 0, so the rating cannot be
distinguished from a completely random one, but of course atthe cost of a distribution
p′ possibly far from uniform. In the caseβ = 1, β ′ = 0 the distributionp′ is atomic at
c0, which somewhat challenges the intuition of “random agreement”.

On the other hand, unless weknow that #γ(NN) > 1, we are actually unable to
determine the reliability parameterβ .

Proposition 2 Let (β ,γ,p) be a coder model and assume thatτc < 1 for all c ∈ C.
Then the following holds

(i) if e2,c0 = e2
1,c0

for some c0 then eitherτc0 = 0 or β = 0.

(ii) e2,c = e2
1,c for all c ∈C if and only ifβ = 0

(iii) if e2,c0 6= e2
1,c0

for some c0 then e2,c0 > e2
1,c0

and

β =

√

e2,c0 −e2
1,c0

τc0(1− τc0)
(9)

and pc0 is given by

pc0 =
e1,c0 −β τc0

1−β
(10)

Proof From (3) and (5) for anyc∈C

e2
1,c = β 2τc+2β (1−β )τcpc+(1−β )2p2

c

so
e2,c−e2

1,c = β 2τc(1− τc) (11)

Since by assumptionτc < 1 equation (11) shows part (i). And since∑c τc = 1 there
is 0< τc0 < 1 for somec0 ∈ C proving part (ii). Solving (11) forβ and (3) forpc0

completes the proof. ✷

One application of this result is, that one may determine therange of the distribution
pc from the results of a pre-study with a carefully chosen set ofitems with known “true”
categories which meet the assumption 0< τc < 1 for allc∈C. Once we know the range,
i.e.minc∈C(pc) andmaxc∈C(pc) of thea priori distribution and can reasonably assume
that it does not change for an arbitrary set of items, we can estimate the reliability
parameter for arbitrary distributionτ of true categories using the following

7



Proposition 3 Let (β ,γ,p) be a coder model, assume thatπ0 ≤ pc ≤ π1 < 1 for c∈C
and define e2 := ∑c∈C e2,c. Then the following estimate holds

√

max(0,e2−π1)

1−π1
≤ β ≤

√

e2−π0

1−π0

Proof From (5) we see that

e2 = ∑
c∈C

(

β 2τc+2β (1−β )τcpc+(1−β )2p2
c

)

(12)

= β 2+2β (1−β )∑
c∈C

τcpc+(1−β )2 ∑
c∈C

p2
c (13)

Now, since 0≤ τc we may estimateπ0τc ≤ pcτc ≤ π1τc andπ0pc ≤ p2
c ≤ π1pc and

since∑c∈C τc = 1= ∑c∈C pc thus obtain

π0 = ∑
c∈C

π0τc ≤ ∑
c∈C

τcpc ≤ π1, and (14)

π0 ≤ ∑
c∈C

p2
c ≤ π1 (15)

Thus we maye2 estimate from below

e2 ≥ β 2+2β (1−β )π0+(1−β )2πo = (1−π0)β 2+π0 (16)

(which impliese2−π0 > 0) and similarly from above (replacingπo by π1). Since by
assumption 1−π1 > 0 and 1−π0 > 0 we obtain the desired estimates. ✷

Observe, that the preceding proposition does not assume anything aboutτc, it even
holds if τc0 = 1 for somec0.

If pc is the uniform distribution we may putπ0 = π1 =
1
m in the preceding result and

obtain the equalityβ 2 =
e2− 1

m
1− 1

m
which is theS-value of Bennett, Alpert and Goldstein

[3].
TheS-value has been criticized by Scott [14] that it could be increased by adding

spurious categories which would never or hardly ever be used. But, as Scott also notes,
such a modification would contradict the assumption of uniform distribution forpc,
hence by such a modificationβ can no longer be determined by theS-value formula.
We may however use the preceding proposition to obtain estimates forβ : if one adds
a categoryc0 that a coder wouldn’t use, thea priori probability pc0 is 0 and so is the
minimum, hence we would obtain the inequality

√

e2−π1

1−π1
≤ β ≤√

e2.

Since
√

e2−π0
1−π0

≤ √
e2, adding such a spurious category results in a larger possible in-

terval forβ , i.e. a worse estimate.
If we even know the distributionp we are able to computeβ exactly. The same is

true if thea priori probabilitypc matches the item category distributionτc. This is the
content of the following
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Proposition 4 Let (β ,γ,p) be a coder model and assume thatτc < 1 for all c ∈C.

(i) If p is known,β can be computed as

β =



















0, if pc = 1 and e1,c = 1
1−2e1,c+e2,c

1−e1,c
, if pc = 1 and e1,c < 1

1− 1
2

(

1−e1,c
1−pc

+
e1,c
pc

)

+

√

1
4

(

1−e1,c
1−pc

+
e1,c
pc

)2
− e1,c−e2,c

pc(1−pc)
, if 0< pc < 1

(17)

(ii) If 0< τc = pc < 1 for some c∈C. Then

β =

√

e2,c−e2
1,c

e1,c(1−e1,c)
(18)

Proof From (5) and (3) we obtain

e2,c = (β +2(1−β )pc)(e1,c− (1−β )pc)+ (1−β )2p2
c

= (β −1)2pc(1− pc)+ (β −1)(e1,c+ pc−2pce1,c)+e1,c

hence

f (β ) := (β −1)2pc(1− pc)+ (β −1)(pc(1−e1,c)+e1,c(1− pc))+ (e1,c−e2,c) = 0
(19)

First observe, thate1,c−e2,c = ∑c′∈C e2,c,c′ ≥ e2,c,c−e2,c = 0 Since∑c∈C pc = 1 there
is c∈C with pc > 0.

If pc = 1 then f is linear. The linear term also vanishes, if in additione1,c = 1. In
this case 0= e1,c−1= β (τc−1), soβ = 0. On the other hand, ife1,c 6= 1 we can solve
(19) forβ and obtain the second case of (17).

Now assume 0< pc < 1 thene2,c−e2
1,c ≥ 0 by Proposition 2(iii) and

f (0) =−(pc−e1,c)
2− (e2,c−e2

1,c)≤ 0

f (1) = e1,c−e2,c ≥ 0

so there is one zero off in the interval[0,1] and one in]−∞,0]. Solving (19) forβ
and discarding the lower solution yields (17).

Finally, if τc = pc we havee1,c = pc ∈ ]0,1[, hencee1,c(1−e1,c) 6= 0 and

e2,c−e2
1,c = β 2pc(1− pc) = β 2e1,c(1−e1,c)

immediately shows (18). ✷

Assume that the population of items is a representative sample from the universe
of items and that the coders know about the distribution of categories (“base rate”) in
the universe (such a situation seems not uncommon in medicalor psychological diag-
nostics) then part (ii) provides a simple method to compute reliability. If the coder’s
assumption on the base rate differs from the “true” categorydistributionβ can be com-
puted from part (i).
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As was announced in the introduction our model does not sharethe “annotator
bias” property, which is obvious from the definition of the model. It is also known that
κ may be increased or decreased by combining categories (see [16]). Therefore it is
worth recording the following proposition which shows thatβ does not change when
combining categories or adding spurious ones.

Proposition 5 Let (β ,γ,p) be a coder model with coder process Xk. Let C′ be a finite
set and letΦ : C→C′ be some map. Let X′k := Φ◦Xk, γ ′ = Φ◦ γ and for every c′ ∈C′

let p′c′ = ∑c∈Φ−1(c′) pc (with the understanding that p′c′ = 0 wheneverΦ−1(c′) = /0) .
Then X′k is a coder process for(β ,γ ′

,p′), i.e.

P(X′
k = c′) = β δc′,γ ′(k)+(1−β )p′c′ (20)

for all k ∈ NN, c′ ∈C′.

Note that the definition ofp′c′ in the proposition just defines the distribution of
Φ◦Yk onC′ with Yk from (1). Hence the proof is immediate from (2).

Now recall the discussion at the end of Section 2 and assume for a moment thatβ
would depend onγ(k), so the original model would have the distribution

P(Xk = c) = βγ(k)δc,γ(k)+(1−βγ(k))pc

i.e. the mixture coefficientβγ(k) depends upon the support of the atomic measure.
Transforming the classes as in the preceding proposition, instead of (20) we would
arrive at the equation

P(X′
k = c′) = βγ(k)δc′,γ ′(k)+(1−βγ(k))p

′
c′

soβ no longer depends upon the supporting elementγ ′(k) of the atomic measure alone.
Proposition 5 provides a necessary condition for the validity of the model: if one

observes in an experiment thatβ significantly changes when recomputed after com-
bining categories, the assumptions of the coder model are not met. The numerical
simulations in the following section may give some indication which level ofβ -change
could be considered as significant.

Now we state and prove the main result on the identification ofβ in the general
case.

Theorem 1 Let(β ,γ,p) be a coder model with coder processes Xi,k for i ∈NR, k ∈ NN.
Moreover let C∗ = {c∈C : e2,c 6= e2

1,c}. If τc < 1 for all c∈C, then the following holds:

(i) C∗ = /0 if and only ifβ = 0.

(ii) If C ∗ 6= /0 then#C∗ ≥ 2.

(iii) If #C∗ = 2 thenβ =
√

4a+b2, where

a := e2,c−e2
1,c and b:=

e3,c−e3
1,c

e2,c−e2
1,c

−3e1,c

for some c∈C∗.
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(iv) If #C∗ ≥ 3 then

β =
1

#C∗−2

(

∑
c∈C∗

e3,c−e3
1,c

e2,c−e2
1,c

+3 ∑
c∈C\C∗

e1,c−3

)

, (21)

(v) Let C∗ = {c1, . . . ,cm∗} and assume m∗ ≥ 3. For i, j ∈ Nm∗ let

ρi, j :=
e2,ci ,cj −e1,ci e1,cj

e2,ci ,ci −e2
1,ci

.

Thenλ ∈ R
m∗

is a solution of

0= λiρi, j −λkρk, j for all i , j,k ∈ Nm∗ with i 6= j 6= k (22)

m∗−1=
m∗

∑
i=1

λi (23)

if and only ifλi = 1− τi. Moreover, for the solutionλi the following holds

β =

√

√

√

√

∑c∈C(e2,c−e2
1,c)

1−∑m∗
j=1(1−λ j)2

(24)

Proof Part (i) is just a restatement of Proposition 2(ii).
By (i) C∗ 6= /0 impliesβ 6= 0 and by (11)τc0 > 0 for somec0 ∈C∗. Sinceτc0 < 1

and∑c∈C τc = 1 there isc1 ∈C, c1 6= c0 with τc1 > 0 and again by (11)e2,c1 −e2
1,c1

> 0,
soc1 ∈C∗ proving (ii).

To prove part (iii) writeC∗ = {τ0,τ1}. From (6) we see that for everyc∈C

e3,c−e3
1,c = β 2τc(1− τc)(β (1+ τc)+3(1−β )pc)

= (e2,c−e2
1,c)(β (1+ τc)+3(1−β )pc) (25)

using (11) above in the last step. From (11) and (25) we obtaina= β 2τc(1− τc) ≥ 0
and b = β (1− 2τc), whereτc = τ0 or τc = τ1. Sinceτ0 + τ1 = 1 we see thata is
independent ofc thatb is uniquely defined up to its sign. So

√
4a+b2 is well defined

and independent of the choice ofc in the definition ofa andb. Now

(1−2τc)
2a= (1−2τc)

2β 2τc(1− τc) = b2τc(1− τc)

and thus

(4a+b2)(τc−
1
2
)2 =

b2

4
. (26)

Hence 4a+ b2 = 0 impliesb2 = 0 and soa = 0. Now b = 0 if and only if β = 0 or
τc =

1
2 anda= 0 if and only if β = 0 or τc ∈ {0,1}, which shows that 4a+b2 = 0 if

and only ifβ = 0.
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On the other hand, if 4a+b2 6= 0 we may solve (26) forτc and obtain

τc =
1
2

(

1± b√
4a+b2

)

and using the definition ofb (and thatβ > 0) (iii) is proved.
Now we prove (iv). From (25) we obtain for eachc∈C∗

e3,c−e3
1,c

e2,c−e2
1,c

= β (1+ τc)+3(1−β )pc.

Now, sinceC∗ 6= /0 by part (i) β 6= 0. Hence for allc ∈ C \C∗ we getτc = 0 by
Proposition 2(i). Thus

∑
c∈C∗

τc = ∑
c∈C

τc = 1

and thate1,c = (1−β )pc for c∈C\C∗. This shows

∑
c∈C∗

e3,c−e3
1,c

e2,c−e2
1,c

= β ∑
c∈C∗

(1+ τc)+3(1−β ) ∑
c∈C∗

pc

= β (#C∗+1)+3(1−β )

(

1− ∑
c∈C\C∗

pc

)

= β (#C∗−2)+3−3 ∑
c∈C\C∗

e1,c

Since #C∗ 6= 2 we may solve forβ which finishes the proof of (iv).
Next we prove (v). As in the proof of part (iv)β 6= 0 andτc = 0 if and only if

c∈C\C∗.
Now combine (11), (3), and (4) to see that

ρi, j =
δi, jτi − τiτ j

τi(1− τi)
(27)

so the proof of the “if”-part is obvious.
Now assume that someλ ∈R

m∗
solves (22) and that∑m∗

i=1 λi = m∗−1. Sinceτi < 1
for all i ∈Nm and∑m

i=1 τi = ∑m∗
i=1 τi = 1 there arei,k∈Nm∗ , i 6= k such thatτi 6= 0 6= τk.

So for all j ∈Nm∗ \ {i,k}

− λ j

1− τ j
=

λ jρ j ,i

τi
=

λkρk,i

τi
=− λk

1− τk

and

− λ j

1− τ j
=

λ jρ j ,k

τk
=

λiρi,k

τk
=− λi

1− τi

Sincem∗ ≥ 3 the setNm∗ \ {i,k} is not empty and thusθ := λi
1−τi

=
λ j

1−τ j
holds for all

j ∈ Nm∗ . This shows thatλ j = (1− τ j)θ for all j ∈ Nm∗ . Now

m∗−1=
m∗

∑
i=1

λi = θ (m∗−1)

12



impliesθ = 1, soλi = 1− τi. Finally, since

∑
c∈C∗

(e2,c−e2
1,c) = β 2 ∑

c∈C∗
τc(1− τc) = β 2(1− ∑

c∈C∗
τ2

c )

= β 2(1−
m∗

∑
i=1

(1−λi)
2)

and using that sincem∗ > 0 the left hand side is positive so we may solve forβ and
obtain (24). ✷

Using thatτ j 6= 0 for j ∈ Nm∗ we see from (27) thatρi, j 6= 0 for i, j ∈ Nm∗ , so
(22) can easily be solved by forward substitution. Experience shows, however, that
computingβ according to part (v) is numerical unstable. Its virtue liesin the fact that
it shows thatβ is uniquely determined by double coincidence expectationse2,i, j , which
could be estimated from the ratings of two coders, but only ifm≥ m∗ ≥ 3, i.e. if there
are at least three categories.

Parts (iv) and (iii) use the triple coincidence expectations, which require the ratings
of at least three raters but are applicable for allm≥ 2.

This raises the question of whetherβ is uniquely determined given double coinci-
dence expectation values even in the casem= 2. The next proposition shows that this
is not the case.

Proposition 6 Let m= 2 and assume thatτc < 1 for c ∈ C. Let (β ,γ,p) be a coder
model with expectation values e1,c1, e2,c1,c2, c1,c2 ∈C, e1 := max(e1,c1,e1,c2) and

I :=

{

[0,1], if e1 = 1

[0,2(1−e1)]∪ [1−e1+
β 2τc1(1−τc1)

1−e1
,1], if e1 < 1

(28)

Then if

β ′ ∈ [2β
√

τc1(1− τc1),e1+
β 2τc1(1− τc1)

e1
]∩ I (29)

andβ ′2 = 4β 2 τc1(1−τc1)

1− n2

N2

for some n∈ NN such that n+N ∈ 2N then there is a coder

model(β ′,γ ′, p′·), whereγ ′ : NN → C which yields the same expectation values e1,c1,
e2,c1,c2, c1,c2 ∈C.

Proof Write C = {c1,c2}. First observe thate1,c2 = 1− e1,c1, e2,c1,c2 = e1,c1 −
e2,c1,c1 and thus

e2,c2,c2 = e1,c2 −e2,c2,c1 = 1−2e1,c1 +e2,c1,c1.

So we only need to showe1,c1 = e′1,c1
ande2,c1,c1 = e′2,c1,c1

for the corresponding ex-
pectationse′2,c1,c1

, e′1,c1
of the model(β ′,γ ′, p′·).

Let c0 ∈C be such thatec0 = e1. Sincee1,c1 +e1,c2 = 1 we havee1 = ec0 ≥ 1
2 . We

also abbreviatee2 := e2,c0,c0, e′1 := e′c0
, ande′2 := e′2,c0,c0

, τ = τc0, p= pc0,
Observe also thatτc < 1 for all c∈C implies 0< τc < 1 for all c∈ C and that all

conditions in the statement of the proposition are invariant if τc1 is exchanged forτ.

13



Thus ifβ ′ = 0 alsoβ = 0 and the statement of the proposition is trivially satisfiedin this
case. So for the following we may assume thatβ ′ > 0. By (11)e2−e2

1 = β 2τ(1− τ)
and by assumptionβ ′ ≥ 2β

√

τ(1− τ), so

τ ′ :=
1
2
+

1
2

√

1− 4β 2τ(1− τ)
β ′2 (30)

is well defined and satisfies

β ′2τ ′(1− τ ′) = β 2τ(1− τ)

Hence
e′2 = β ′2τ ′(1− τ ′)+e′1

2
= β 2τ(1− τ)+e′1

2
= e2+(e′21−e2

1),

so we only need to prove

e1 = e′1 = β ′τ ′+(1−β ′)p′ (31)

Caseβ ′ = 1: In this case from the assumption we see that

1= β ′ ≤ e1+
β τ(1− τ)

e1
= e1+

e2−e2
1

e1
=

e2

e1
≤ 1

(usinge2 ≤ ∑c∈C e2,c0,c = e1), soe2 = e1. Now from (5) and (3)

0= e2−e1 =−(1−β )(β τ(1− p)+β p(1− τ)+ (1−β )p(1− p)) (32)

Since every summand in the second factor of (32) is non-negative and 0< τ < 1 this
implies that eitherβ = 0 andp∈ {0,1} or β = 1.

First assumeβ = 0. Since by assumption 0< 1
2 ≤ e1 = β τ +(1−β )p only p= 1

is possible. Now from (30) we obtainτ ′ = 1 and fromp= 1

e1 = β τ +(1−β )p= p= 1= β ′τ ′ = e′1

On the other hand, ifβ = 1 we getτ = e1 ≥ 1
2 and so

e′1 = τ ′ =
1
2
+

1
2

√

1−4τ(1− τ) = τ = e1.

This concludes the caseβ ′ = 1.
If β ′

< 1 we may solve

e1 = β ′τ ′+(1−β ′)p′

for p′ and it remains to show that 0≤ p′ ≤ 1.
From the assumption

e1β ′ ≤ e2
1+β 2τ(1− τ)

and after reordering and completing the square we find that
√

β ′2−4β τ(1− τ)≤ |2e1−β ′|= 2e1−β ′

14



where the last equality follows fromβ ′ < 1≤ 2e1. This shows that

β ′τ ′ =
1
2

β ′+
1
2

√

β ′2−4β τ(1− τ)≤ e1

and thusp′ ≥ 0.
To provep′ ≤ 1 first assumee1 = 1. Then

1−e1 = β (1− τc0)+ (1−β )(1− pc0)

and sinceτc0 < 1 we conclude thatβ = 0 andpc0 = 1. This impliesτ ′ = 1 and so

p′ =
e1−β ′τ ′

1−β ′ =
1−β ′

1−β ′ = 1.

If e1 < 1, by assumption,β ′ ≤ 2(1− e1) or β 2τ(1−τ)
1−e1

+ 1− e1 ≤ β ′ so again by
reordering and completion of the square one sees that

β ′−2(1−e1)≤ 0 or |β ′−2(1−e1)| ≤
√

β ′2−4β τ(1− τ)

i.e.β ′−2(1−e1)≤
√

β ′2−4β τ(1− τ) and thus

e1−β ′τ ′ = e1−
1
2

β ′− 1
2

√

β ′2−4β τ(1− τ)≤ 1−β ′

provingp′ ≤ 1.
Finally, letβ ′2 = 4β 2 τ(1−τ)

1− n2

N2

for somen∈ NN such thatn+N∈ 2N. Then by (30)

τ ′ =
1
2
+

1
2

√

1−1+
n2

N2 =
n+N
2N

So τ ′N is a natural number and e.g. definingγ ′(k) = c1 for k ≤ n+N
2 andγ ′(k) = c2

otherwise, completes the proof. ✷

If in the preceding propositionN is large enough several points of the set

{4β 2τ(1− τ)
1− n2

N2

: n∈ NηN,n+N ∈ 2N}

(where 0< η < 1) fall into the set

[2β
√

τ(1− τ),e1+
β 2τ(1− τ)

e1
]∩ I

(if it has inner points) so the reliability parameter can notbe determined uniquely.
Figure 1 shows theβ ′-range given by (29) for some random example.

So in the two-category case we need an estimate ofe3,c in order to apply part (iii)
of Theorem 1, i.e. we need at least three coders to determineβ in this case.

As a consequence for the popular two-coder/two-category examplesβ (more pre-
cisely the triple(β ,τ,p)) is not uniquely determined. In order to determineβ in such
a situation we thus either need to knowp and use Proposition 4 orτ and apply Propo-
sition 2.
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Figure 1: Example of theβ ′-region (shaded) according to (29) of Proposition 6. The
straight line inside the region indicates the value ofβ , i.e. the diagonal. Parameters are
τ = (0.7,0.3), p= (0.6,0.4)

4 Numerical Simulations

The formulae provided by Theorem 1 involve expectation values of coder agreement
frequencies. In experiments we typically do not know expectation values but rather
observe relative frequencies. Hence we will not obtain the correct values forβ using
the formulae in parts (iii) and (iv) of Theorem 1. Actually, these formulae involve
differences of expectation values which are close to 0 for small values ofβ , so small
statistical fluctuations might lead to large deviations inβ . Thus in order to improve the
accuracy we reformulate the problem as a least square optimization problem for the
expectation valuese1,c,e2,c1,c2 and (if #C > 2) e3,c, using the formulae forβ to obtain
a start value (augmented by approximations forτ and p according to (11) and (??)
respectively). So findβ , τ, p such that

∑
c∈C

(β τc+(1−β )pc−e1,c)
2

+ ∑
c1,c2∈C

(

β 2τc+2β (1−β )pcτc+(1−β )2p2
c −e2,c1,c2

)2

+ ∑
c∈C

(

β 3τc+3β 2(1−β )pcτc+3β (1−β )2p2
cτc+(1−β )3p3

c −e3,c
)2

is minimized, subject to the natural constraints.
As we already noted in the introduction the model based approach chosen here

allows for simulation runs to investigate the accuracy of this algorithm. The remainder
of this section is devoted to such numerical experiments which show the accuracy with
varying model parameters. We display the results as inverseempirical distribution
functions for a sample of 1000 randomly chosen realizationsof the coder model, so
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Figure 2: Estimation errors as a function of the trueβ value. Fixed parameters:N =
100,m= 3, R= 5, τ = (0.3,0.6,0.1), p= (0.33,0.33,0.34)

the abscissae contain the quantiles and the ordinates the absolute errors (observe the
ranges). In the plots the values for the 50 %, 80 %, 90 %, 95 %, 98%, and 100 %
quantiles are highlighted. For every plot we also indicate the other parameters in the
caption. The meaning of the parameters is that of the coder model defined in Section 2.

The accuracy inβ estimation depends on the actual value ofβ . As Figure 2 shows,
the error decreases with increasing true value ofβ . The 98% quantile accuracy ranges
from 0.032 atβtrue = 0.95 to 0.105 atβtrue = 0.5.

According to the coder model a value ofβ = 0.5 means that only for half of the
items the raters could determine the categories with certainty. Note also that if the
assumptions of Proposition 3 are satisfied theS-value would be as low as 0.25 in this
case. Hence the really interesting range forβ is above 0.5 where the accuracy is higher.

As has been noted before, the definition ofβ does not exhibit the “problem of
prevalence”, i.e. its value does not decrease when max(τ) approaches 1. Though the
value of β is not affected it does affect the accuracy as Figure 3 shows.The 98%
quantile accuracy ranges from 0.032 for max(τ) = 1

3 (the least value of max(τ) in
this setting) to 0.077 for max(τ) = 0.90 and 0.22 for max(τ) = 0.95. In this latter
case there are only five of the items not belonging to the prevalent category. Hence
statistical fluctuations may blur the distinction of this case from the case max(τ) = 1
whereβ can no longer be determined according to Proposition 1. So this decrease in
accuracy is expected.

Contrary to the rather strong impact ofτ on the accuracy, thea priori distribution
p does no significantly influence the accuracy as the followingFigure 4 shows. Here
the 98% quantile errors range from 0.049 to 0.058 which may be fully attributed to
statistical fluctuations.

Finally, since the errors originate from deviations of relative frequencies from the
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Figure 3: Error ofβ estimate for different true class frequencies. Fixed parameters:
N = 100,m= 3, R= 5, β = 0.85, p= (0.33,0.33,0.34)
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Figure 4: Error ofβ estimate for different a priori distributions. Fixed parameters:
N = 100,m= 3,R= 5,β = 0.85,τ = (0.3,0.6,0.1)
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Figure 5: Error ofβ estimate for different number of coders. Fixed parameters:N =
100,m= 3,β = 0.85,τ = (0.3,0.6,0.1), p= (0.33,0.33,0.34)
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Figure 6: Error ofβ estimate for different number of items. Fixed parameters:m=
3,R= 5,β = 0.85,τ = (0.3,0.6,0.1), p= (0.33,0.33,0.34)
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expectation values, the accuracy depends of course moderately on both the number of
coders and the number of items. Figure 5 shows the influence ofthe number of coders
on the accuracy. At the 98% quantile level the errors range from 0.03 (15 coders) to
0.07 (3 coders). Actually as few as five coders suffice to obtain areasonably low error
of 0.053.

The impact of the number of items can be seen from Figure 6: With as few as
20 items one cannot expect more than a rough estimate of beta (error 0.115 at 98%
quantile) with a reasonably low error of 0.054 when coding 100 items.
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