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IDENTIFYING SUBTREE PERFECTNESS IN DECISION TREES

NATHAN HUNTLEY AND MATTHIAS C. M. TROFFAES

Abstract. In decision problems, often, utilities and probabilities are hard to determine. In
such cases, one can resort to so-called choice functions. They provide a means to determine
which options in a particular set are optimal, and allow incomparability among any number of
options. Applying choice functions in sequential decision problems can be highly non-trivial, as
the usual properties of maximizing expected utility may no longer be satisfied. In this paper,
we study one of these properties: we revisit and reinterpret Selten’s concept of subgame per-
fectness in the context of decision trees, leading us to the concept of subtree perfectness, which

basically says that the optimal solution of a decision tree should not depend on any larger tree
it may be embedded in. In other words, subtree perfectness excludes counterfactual reasoning,
and therefore may be desirable from some philosophical points of view. Subtree perfectness is
also desirable from a practical point of view, because it admits efficient algorithms for solving
decision trees, such as backward induction. The main contribution of this paper is a very
simple non-technical criterion for determining whether any given choice function will satisfy
subtree perfectness or not. We demonstrate the theorem and illustrate subtree perfectness,
or the lack thereof, through numerous examples, for a wide variety of choice functions, where
incomparability among strategies can be caused by imprecision in either probabilities or util-
ities. We find that almost no choice function, except for maximizing expected utility, satisfies
it in general. We also find that choice functions other than maximizing expected utility can
satisfy it, provided that we restrict either the structure of the tree, or the structure of the
choice function.

1. Introduction

In statistical decision problems, one is often faced with too little data for too many parameters,
and elicitation of all probabilities and utilities can be a prohibitively expensive process, rendering
full modeling infeasible. In such cases, it may still be possible to bound the set of reasonable
models, i.e. to bound probability distributions and utility functions [3, 20, 27, 15, 14, 21]. The
way in which such models can be used for decision making is well studied [26, 11, 1, 2, 22, 12,
19, 23, 25, 13].

In this paper, we consider a very large class of decision models, namely any that can be
represented by conditional choice functions on gambles: we merely assume that for any finite set
of gambles (functions from the possibility space Ω to a set of rewards R; these generalize random
variables, or horse lotteries), and any conditioning event, the subject can give a non-empty subset
of gambles that he considers optimal if the conditioning event were to occur. Gambles that are
non-optimal would never be selected, and the subject is unable to express further preference
between the optimal ones. Maximizing conditional expected utility is a simple example of such
a choice function. General choice functions, however, need neither probability nor utility—not
even a total preorder, and in fact, not even a partial one, although obviously these obtain as
special cases.

Then, in a single agent sequential decision problem, at any stage, one has two ways of looking
at its solution: the problem can be considered either in its simplest form—discarding any past
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Figure 1. Two-stage problem.
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Figure 2. Second stage.

stages, or as part of a much larger problem—possibly considering choices and events that did not
actually obtain. A reasonable requirement is that, at any stage, the solution is independent of
the larger problem it is embedded in. In this paper, we call this requirement subtree perfectness.

Selten [24] introduced a similar idea for multi-agent extensive form games, called subgame
perfectness. Solutions of extensive form games take the form of equilibrium points. If, for every
subgame (a part of a game that is again a game), the restriction of the equilibrium point of the full
game to that subgame also yields an equilibrium point of that subgame, then the equilibrium
point of the full game is called subgame perfect. Selten showed that for games with perfect
recall, (perfect1) equilibrium points are subgame perfect [24, p. 39, Thm. 2], that is, they are
independent of any larger game in which they could be embedded.

In this paper we investigate single agent sequential decision making modeled by decision trees.
Although such problems differ in many ways from extensive form games, subtree perfectness is
clearly analogous to subgame perfectness, as the following example shows.

Consider the decision problem in Fig. 1 (replicated from [9]). In the first stage, the subject
chooses between taking scones, or proceeding to the second stage. In the second stage, the
subject chooses between cake, or ice cream. Suppose the subject prefers to reject scones and to
choose ice cream at the second stage. This strategy induces a substrategy in the subtree for the
second stage: choose ice cream over cake.

But, as with multi-agent games, we can instead consider the subtree for the second stage
separately, as in Fig. 2. If, in this smaller tree, the subject prefers ice cream, then his solution is
subtree perfect : his solution for the full tree induces a strategy in the subtree, and this strategy
coincides with his solution for the subtree. If the subject states a different preference (either no
preference, or clear preference for cake), then his solution lacks subtree perfectness. So, subtree
perfectness essentially means that the optimal induced strategies in a subtree do not depend on
the full tree in which the subtree is embedded.

Our main result, given in Theorem 2 further in the paper, is an extremely straightforward
necessary and sufficient condition on choice functions for subtree perfectness to hold in any
decision tree. A similar result was given rigorous treatment in [9], however that treatment was
rather technical and opaque, and not as obvious to apply to practical problems. The main
contribution of this paper is to provide an overview of the result that is accessible and easy to
apply, but still general enough to apply to any choice function. Therefore, there is far more
emphasis on rigorous examples, diagrams, and procedures, and far less on detailed definitions
and lengthy proofs. In so doing, we establish a useful philosophical and practical link between
the work that has been done on the behavior of specific choice functions, such as [11, 2, 22], the
more general and theoretical works such as [5, 17, 18, 9], and proposed algorithms for solving
decision trees [6, 12, 4, 8, 13, 10]. Readers seeking formal proofs of the results, or those who are
interested in proving similar results about sequential decision problems, are directed to [9].

1Without going into much detail, a perfect equilibrium point is one which is stable under small perturbations
[24, p. 38].
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In this paper we consider only the traditional normal form method of listing all strategies,
finding their corresponding gambles, applying a choice function, and listing all strategies that
induce optimal gambles. In doing so, we assume act-state independence—that is, choice functions
do not depend on the decision. This type of solution is also called resolute [18, 13]. Several
related works have considered the alternative extensive form solutions, such as in Hammond [5],
Seidenfeld [21], and Machina [17]. We do not consider extensive form solutions in this paper,
although the results are closely related. Without going into details, subtree perfectness is similar
to Hammond’s consistency and consequentialism, Machina’s separability over mutually exclusive
events, and McClennen’s separability and dynamic consistency [18]. Further details about the
links with extensive form subtree perfectness can be found in[9]. Subtree perfectness also is
related to the weaker concept of backward induction. More details on normal form backward
induction can be found in [9, 10].

It should also be noted that the algorithm proposed by Kikuti et al. [12, 13] follows exactly our
concept of normal form backward induction, although they then use it to construct an extensive
form (what they call consequentialist) solution. They note that, for all the choice functions
they consider, their solution is “inconsistent” with our normal form solution, which essentially
means that subtree perfectness is violated. For two these choice functions, maximality and
E-admissibility, it is observed that this inconsistency is not so severe: although arcs that are
non-optimal in the full tree may appear in local trees, no arc that is non-optimal in a local tree
may reappear in the full tree. In Fig. 1, for example, it would not be possible under these criteria
for the subject to say they preferred cake to ice cream at N2 and then at N1 include ice cream in
the optimal set. This weaker form of subtree perfectness occurs because the two criteria satisfy
the conditions of our backward induction theorem [10]. What this means in practice is that for
these criteria the work of Kikuti et al. can be used to efficiently construct the consequentialist
solution that they are interested in, and also the normal form solution that we are interested
in, and although subtree perfectness does not hold, both the solutions are at least somewhat
consistent and sensible.

The paper is structured as follows. Section 2.1 provides an introductory example using ex-
pected utility to outline what we mean by a solution of a tree, and what we mean by subtree
perfectness. Sections 2.2 and 2.3 give rigorous, yet non-technical, definitions of the basic concepts
required to formulate our main result. That result, the subtree perfectness theorem, is provided
in Section 2.4. We then demonstrate the theorem on numerous choice functions and decision
trees: Section 3.1 gives further examples of satisfaction of subtree perfectness for certain choice
functions and trees, whilst Section 3.2 gives further examples of failures of subtree perfectness.
Section 4 concludes the paper.

2. Subtree Perfectness

2.1. Examples: Expected Utility. We begin by considering some examples of solving small
decision trees using expected utility. Of course, these solutions are almost trivial to find, but we
spend some time on them to outline our ideas in a familiar environment. Consider the decision
tree in Fig. 3, and suppose that P (E1) = 0.6, P (E2) = 0.4. Square decision nodes are points
where the subject chooses the arc to follow. Round chance nodes are points where the arc
followed depends on the (initially unknown) state of nature, in this case E1 or E2. Typically one
would approach the problem by backward induction [16], but we consider an alternative method.
This is because for more general choice functions, backward induction is more complicated and
may not give the desired answer.

Consider a path that the subject may take through the tree. At N , she has a choice of arcs
and suppose she follows the arc to N1. Here again she has a choice; suppose she takes the arc to
N11. Here, she has no choice over the arc followed: nature decides. Thus, for this combination
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Figure 3. Decision tree for first expected utility example.
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Figure 4. Normal form solution for first expected utility example.

of her choices, her final reward is 2 if E1 occurs and 0 otherwise. We can calculate the expected
utility of this strategy to be 1.2.

There are three other strategies in the tree: the paths N → N1 → N12, N → N2 → N21,
and N → N2 → N22. These have expected utilities 1, 1.8, and 2 respectively. We therefore
conclude that the solution of the tree is to take the path from N to N2 and then to N22. This
is illustrated in the decision tree in Fig. 4.

Now, subtree perfectness is a property relating solutions of large trees to solutions of subtrees.
In this particular example, there are two non-trivial subtrees of the full tree, shown in Fig. 5.
We can solve these trees in the same manner; indeed we have already calculated the required
expected utilities. The optimal paths are N1 → N11 in the left-hand tree, and N2 → N22 in the
right-hand tree. These solutions are displayed in Fig 6.

Are these local solutions consistent with the solution in Fig. 4? The first thing to note is
that N1 does not appear at all in Fig. 4. We can therefore ignore it: behavior in a subtree that
will never actually be reached is irrelevant to subtree perfectness. At N2, we see that both the
solutions (Fig. 4 and Fig. 6) contain only the path to N22, so there is no inconsistency here
either. We say that subtree perfectness holds for this problem.
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Figure 5. Subtrees for first expected utility example.
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Figure 6. Solutions of subtrees for first expected utility example.
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Figure 7. Decision tree for second and third expected utility examples.

Next we move onto a slightly more involved example, in which the initial node is a chance
node, as shown in Fig. 7. We need a few more probabilities for this example: let P (E1|A1) = 0.6,
P (E2|A1) = 0.4, P (E1|A2) = 0.4, P (E2|A2) = 0.6, P (A1) = 0.5, and P (A2) = 0.5.

In this example, the two available strategies are “if A1, take the path N1 → N11”, and “if
A1, take the path N1 → N12”. Note that there is no decision node following A2, so the subject
does not need to specify anything in that case. These strategies have slightly more complicated
gambles than before. Consider the first: if A1 and E1 both occur, the outcome is 2; if A1 and E2

both occur, the outcome is 0; if A2 and E1 both occur, the outcome is 3; and if A2 and E2 both
occur, the outcome is 0. This gives expected utility 0.5(0.6 ·2+0.4 ·0)+0.5(0.4 ·3+0.6 ·0) = 1.2.
The second strategy gives expected utility 0.5 · 1 + 0.5(0.4 · 3+ 0.6 · 0) = 1.1. Hence the solution
is the first strategy, shown in Fig 8.
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Figure 8. Normal form solution for second expected utility example.
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Figure 9. Subtree for second expected utility example.

Again, we look for non-trivial subtrees. In this example, there is only one, at N1. This is
shown in Fig 9—note that this is exactly the left-hand tree of Fig. 5. We can solve this as usual,
although here we have to remember that the event A1 has occurred, and so we must use the
suitable conditional probabilities. The expected utilities of the two strategies in this case are
0.6 · 2+ 0.4 · 0 = 1.2 and 1 respectively, so the normal form solution of this subtree is to take the
path N1 → N11 (the same as the left-hand tree in Fig. 6).

Once again we check for subtree perfectness. In both the global and the local solutions, the
only path from N1 is the one to N11, hence subtree perfectness is satisfied in this example.

Finally, we provide an example of expected utility failing subtree perfectness. As we show
later, this requires a conditioning event with probability zero. Changing the probabilities in the
previous example to P (A1) = 0, P (A2) = 1 will be sufficient to fail subtree perfectness. Now the
expected utilities of the two strategies in the tree of Fig. 7 are 0(0.6·2+0.4·0)+1(0.4·3+0.6·0) =
1.2 and 0 · 1 + 1(0.4 · 3 + 0.6 · 0) = 1.2 respectively. Hence, we cannot choose between the
two strategies using expected utility, and the normal form solution must include both. This is
illustrated in Fig 10.

Because we did not change any of the conditional probabilities, the normal form solution of
the subtree at N1 will be the same as in the previous example: the left-hand tree of Fig. 6.
Now we see inconsistency between the two solutions: one of the strategies in the global solution
contains the path N1 → N12, but this path does not appear in the local solution. We say that
subtree perfectness does not hold at N1.
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Figure 10. Normal form solution for third expected utility example.

Having seen how subtree perfectness works for a standard choice function and simple trees,
we now explain how to carry out the steps above for any tree and any choice function.

2.2. Definition of Subtree Perfectness. To state our main result, we need to define sub-
tree perfectness for arbitrarily large (but finite) decision trees. In this paper, we will describe
and define the concept of subtree perfectness directly on decision trees, without further formal
mathematical notation. The tree in Fig. 11 will serve as a leading example. Of course, subtree
perfectness can also be defined more formally, using mathematical notation that is very useful
for proofs, as we did in [9], however such approach is rather technical, and unnecessary for illus-
trating the main ideas. Any reader who is interested in rigorous mathematical formulations and
proofs of properties relating to choice functions and decision trees is referred to [9]. It should
also be noted that, although throughout this paper almost all our examples feature real-valued
rewards, the language and results we introduce here will work for any form of rewards.

The solutions we consider are sets of strategies. A strategy corresponds to the subject initially
specifying all her actions in all eventualities, that is, an action for each decision node she may
possibly reach. Upon arriving at a decision node, she then follows the mandated action. Thus,
after the strategy is chosen, the subject no longer has any control. In other words, she is a
resolute decision maker [18].

A strategy is easy to represent as a subtree of the initial tree. Consider the decision tree in
Fig. 11, and the strategy “at N1 choose dS , then if S1 occurs choose d1 and if S2 occurs choose
d2”. This can be represented by the decision tree in Fig. 12. In this figure, an arc with a double
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Figure 11. A more complex example of a decision tree.
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Figure 12. One of the strategies of the tree in Fig. 11.

line through means the arc has been deleted. So the decision tree representation of a strategy is
the original tree minus all decision arcs that are not in the strategy. Note that the labels of the
nodes were retained in this process: this will be an important point later on. Also note that this
is now a trivial decision tree, since there is only one option available at each decision node.

In general, we can construct a strategy for a given decision tree by the following method:

(1) For each decision node, pick exactly one decision arc and delete all others.
(2) Delete everything not connected to the original root node of the tree.

By applying this method for all possible combinations of choices of decision arcs, we arrive at
the set of all available strategies for a given decision tree.2

2Of course, in practice, there is a more efficient way to find all strategies—for instance, in Fig. 11 there are
24 = 16 combinations of arc choices, but these lead to only 6 distinct strategies: evidently, one does not need to
iterate over arcs of decision nodes in subtrees following deleted arcs.
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Figure 13. Possible normal form solution of Fig. 11.

As in the examples earlier, we consider solutions of decision trees of the following type: first
we find all available strategies, then we apply some criterion to them that returns a non-empty
subset of strategies. Ideally, we might want our criterion to return a single strategy. However,
as argued in the introduction, in many situations the subject may not have enough information
to make such a judgment, for instance because their probabilities and utilities are not fully
determined. A function that is applied to a set of options to return a non-empty subset is called
a choice function. The set of strategies that a choice function returns is called a normal form
solution of the decision tree. So in the case of Fig. 11, we would first find the six strategies and
then apply our choice function to these. Let us suppose that a particular choice function gives
the normal form solution in Fig. 13. Note that here, we apply the choice function conditional on
the certain event. Conditioning on other events is only relevant for subtrees, discussed next.

To examine subtree perfectness, we need to know how to restrict trees to smaller subtrees and
solve these subtrees, and also how to restrict the solutions of larger trees to smaller subtrees.
The first task is very straightforward: for each node on a tree, the subtree at that node is the
node itself and all of its descendants. For example, the subtree at N111 in Fig. 11 is shown in
Fig. 14. Observe that the labels of the nodes are as in the original tree. Then the final step of
the procedure is simply to solve this subtree, conditional on the logical conjunction of all events
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Figure 14. The subtree of Fig. 11 at N111.
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}

Figure 15. Possible normal form solution of Fig. 14.

leading up to N111 (or, conditional on the certain event, if no chance nodes are visited).3 In our
example, we find the two normal form solutions in Fig. 14 and then apply our choice function,
conditional on S1 (this is the only event leading up to N111), to this set. Let us suppose this
gives the singleton strategy in Fig. 15.

This process of restriction and then solution can be summarized as follows.

(1) Choose a node N to which to restrict the tree T .
(2) Find the conjunction of events which lead up to N from the root of T . Denote this

conjunction by E. If there are no events leading up to N , then take E to be the certain
event.

(3) Remove from T all non-descendants of N other than N itself. This is the subtree at N .
(4) Find all strategies for this subtree.
(5) Apply the choice function to this set of strategies, conditional on E. This is the normal

form solution of the restricted tree.

The opposite order, solving the large tree and then restricting the solution, is a little more
involved. We saw the first step in Fig. 13. How can this solution be restricted to, say, N111?
This is done element-by-element. We take the first strategy in the solution, and restrict it to
N111 exactly as above. This gives the same tree as in Fig. 15. We then attempt to restrict the
second strategy to N111, but we notice that this node does not appear in the strategy. In such a
case, we remove the strategy entirely. Next we move to the third strategy, but again N111 is not
present, so remove this strategy too. This is the final strategy in the solution, so we find that
the restriction of the normal form solution to N111 is the singleton in Fig. 15. In this example,
we see that restricting the tree to N111 and then solving is the same as solving the full tree and
restricting the solution to N111. We say that subtree perfectness is satisfied at N111.

In general, the process for solving a tree and then restricting the solution to a subtree goes as
follows.

(1) Find all strategies for the tree.
(2) Apply the choice function to this set of strategies. This is the normal form solution of

the tree.

3We exclude decision trees that have ∅ for the conditioning event of any of their subtrees, as most theories
of conditioning do not allow conditioning on the empty set. This goes without loss of generality, because any
decision tree can be ‘fixed’ simply by pruning its ∅-conditioned subtrees.
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(3) Choose a node N to restrict the solution to.
(4) For each strategy T ′ in the solution:

• If N is not a node of T ′, remove T ′.
• Otherwise, remove from T ′ all non-descendants of N other than N itself.

(5) This gives the restriction of the normal form solution.

Now we have all the tools to define subtree perfectness.

Definition 1 (Subtree Perfectness). Let a decision tree T , a node N in T , and a choice function
be given. Carry out the operations of restricting the solution of T to N , and solving the restriction
of T to N . The choice function is called subtree perfect for T at N if either

• the restriction of the solution is empty (that is, N is not part of any strategy in the
solution of T ); or

• the restriction of the solution equals the solution of the restriction.

The choice function is called subtree perfect for T if it is subtree perfect at all nodes N in T .
The choice function is called subtree perfect if it is subtree perfect for every T .

Subtree perfect solutions are useful for several reasons. When solving a decision problem, one
can usually see it as being embedded in some larger decision problem that started in the past.
With a subtree perfect solution, the rest of this larger problem can be ignored. A choice function
that fails subtree perfectness may require consideration of events that did not happen or options
that were refused in the past. This is practically and perhaps intuitively unappealing. Similarly,
if the decision tree changes midway through the problem (for instance, new options that were
not modeled become available), lack of subtree perfectness may require considering the whole
problem again, whereas with subtree perfectness only the local problem needs to be solved.

2.3. Choice Functions on Gambles. The procedure introduced for finding a normal form
solution involved applying a choice function to the set of available strategies. In practice, it is
rare to apply choice functions to sets of strategies, but rather to sets of gambles. A gamble is a
map from the set of possible outcomes to a set of rewards—to avoid technicalities, we assume
the set of possible outcomes to be finite.

For example, consider the three strategies in Fig. 13. The first of these will give 9 if S1 ∩ E1

occurs, 14 if S1∩E2 occurs, 4 if S2∩E1 occurs, and 19 if S2∩E2 occurs. This covers all possible
outcomes, so for any outcome we know what reward the subject will receive. This is exactly
what we call a gamble.

We write such a gamble 9S1E1 + 14S1E2 + 4S2E1 + 19S2E2, or even as S1(9E1 + 14E2) +
S2(4E1+19E2). Similarly, the other two strategies in Fig. 13 correspond to the gambles S1(10E1+
15E2) + S2(10E1 + 15E2) and S1(5E1 + 20E2) + S2(5E1 + 20E2) respectively. Note that which
one of S1 and S2 occurs is irrelevant to both of these gambles, so they could be written as
10E1 + 15E2 and 5E1 + 20E2 respectively. These objects are much more natural to work with;
for instance, should we know the probabilities of the four events, then we could calculate the
expected utility of the three gambles. To work with sequential decision making, we actually need
conditional choice functions: the set returned by the choice function depends on what event is
being conditioned upon.

Many, if not all, common choice functions used in decision theory are choice functions on
gambles, hence restricting attention to them makes sense. This adds two extra steps to the
procedure for finding a normal form solution:

(1) Find all available strategies.
(2) For each strategy, find its corresponding gamble.
(3) Apply the choice function to this set of gambles.
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Figure 16. Decision trees for which subtree perfectness implies subtree per-
fectness for any other tree.

(4) For each gamble chosen by the choice function, find all strategies in the original set that
induced this gamble. This is the normal form solution. In other words, a strategy is in
the normal form solution if and only if its corresponding gamble is chosen by the choice
function.

Note that we lose some generality by moving to choice functions on gambles, because there may
be several strategies with the same corresponding gamble. A choice function on gambles would
be unable to distinguish between these, but a choice function on strategies would. This loss is
not so important, given that it would be rare to want to distinguish between strategies that give
the same reward in every eventuality.

2.4. Subtree Perfectness Theorem. Now we can present our main result. We are interested
in when a particular choice function on gambles is subtree perfect. It turns out that all that is
required for this is subtree perfectness for two simple classes of decision trees, shown in Fig. 16.
In that figure, the Xi, Yi and Z are arbitrary gambles. As part of a tree, they represent a
terminal chance node. For instance, the gamble X = 5E1 + 3E2 would represent a chance node
with two arcs, with event E1 leading to reward 5, and event E2 leading to reward 3.

Theorem 2 (Subtree Perfectness Theorem). A choice function on gambles is subtree perfect
if and only if it is subtree perfect for all decision trees of the two types in Fig. 16, for every
conditioning event B at N1 such that A ∩ B 6= ∅ and Ac ∩ B 6= ∅, and for every non-empty
conditioning event B at N2.

So, in Fig. 16, we consider solving the full trees conditional not just on the certain event, but
conditional on every possible non-empty event that does not cause the decision tree to have a
path corresponding to ∅.

This theorem is equivalent to the subtree perfectness theorem presented and proved in [9,
Theorem 22], but is perhaps more straightforward to understand. All we need to check for
subtree perfectness is two simple types of decision tree, and this proves very useful when seeking
both proofs and counterexamples for a particular choice function. Note that it is not immediately
obvious that this theorem is equivalent to [9, Theorem 22], but in fact it appears in the proof [9,
A.9].

3. Examples

3.1. Examples of Subtree Perfectness. In this section we give some examples of choice
functions and decision trees where subtree perfectness holds. We concentrate on two simple
trees, shown in Fig. 16. This is not just for simplicity; as we saw in Section 2, these two types
of trees are key to subtree perfectness.
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3.1.1. Expected Utility.

Example 3. First, we consider the simplest case, and investigate the tree in Fig. 16(b), with
conditioning event B. Maximizing conditional expectation for this tree is always subtree perfect,
simply because

(1) max{E(X1|B), . . . , E(Xn|B), E(Y1|B), . . . , E(Ym|B)}

= max{max{E(X1|B), . . . , E(Xn|B)},max{E(Y1|B), . . . , E(Ym|B)}}.

Example 4. Consider the tree in Fig. 16(a), with conditioning event B such that A ∩ B 6= ∅
and Ac ∩B 6= ∅. On the one hand, the normal form solution of the full tree is obtained by those
gambles AXi +AcZ which maximize their expectation conditional on B:

(2) arg
n

max
i=1

E(AXi +AcZ|B).

On the other hand, the normal form solution of the subtree at N11 is obtained by those gambles
Xi which maximize their expectation conditional on A ∩B:

(3) arg
n

max
i=1

E(Xi|A ∩B)

Now, note that, by the partition theorem,

(4) E(AXi +AcZ|B) = P (A|B)E(Xi|A ∩B) + P (Ac|B)E(Z|Ac ∩B).

Because the term P (Ac|B)E(Z|Ac ∩B) is independent of the index i, the solution of both maxi-
mization problems is identical:

(5) arg
n

max
i=1

E(AXi +AcZ|B) = arg
n

max
i=1

E(Xi|A ∩B),

provided that P (A|B) > 0. In other words, maximizing expected utility satisfies subtree perfect-
ness on this type of tree whenever the probability of every non-empty event is strictly positive.

From the above analysis, and Theorem 2, we recover a well-known result: expected utility
satisfies subtree perfectness for arbitrary decision trees, provided that all chance arcs have strictly
positive probability. Interestingly, if some chance arcs have probability zero, subtree perfectness
may fail; we already saw an instance of such failure in the last example of Section 2.1.

3.1.2. Choice Functions Induced By A Total Preorder. In Example 3, where we established sub-
tree perfectness of maximizing expectation for the tree in Fig. 16(b), all we really relied on is
the fact that expectation induces a total preorder over gambles.

Let us be a bit more specific. Consider a relation � over gambles, which satisfies transitivity,
reflexivity, and completeness; that is, for all gambles X , Y , and Z, we require that:

(1) X � Y and Y � Z implies X � Z;
(2) X � X ; and
(3) X � Y or Y � X .

Any relation which satisfies these properties is called a total preorder. Now, an obvious way to
associate a choice function with a total preorder is to select those gambles which dominate all
other gambles:

(6) max
�

X := {X ∈ X : ∀Y ∈ X , X � Y },

for any finite set of gambles X . Now, it is easily established that, for any total preorder � over
gambles,

(7) max
�

{X1, . . . , Xn, Y1, . . . , Ym} = max
�

{max
�

{X1, . . . , Xn},max
�

{Y1, . . . , Ym}}.
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In other words, any choice function induced by a total preorder is subtree perfect for trees of the
type of the tree in Fig. 16(b).

In fact, a much stronger result holds: a choice function is subtree perfect only if it is induced
by a total preorder [9, Theorem 22 & Lemma 15]. Consequently, many of the choice functions
used for imprecise probability and imprecise utility fail subtree perfectness, as they are typically
not induced by total preorders; specifically, they typically drop completeness. Interestingly,
completeness is not required for some schemes of backward induction to work [12, 8, 13, 10].

3.1.3. Maximin. The maximin criterion values a gamble at its smallest possible reward, and then
chooses gambles that give the maximum value. Because it is a total preorder, subtree perfectness
will hold for the tree in Fig. 16(b), as seen in Section 3.1.2.

Maximin does not in general hold for the tree in Fig. 16(a); we shall see this later in Example 9.

3.1.4. Γ-Maximin. Suppose that too little information is available to identify a unique probability
distribution, but we can specify a set of plausible probability distributions (see for instance
[3, 27, 15, 28, 26]). In particular, suppose that

• rewards are expressed in utiles, so R = R,
• the subject can express her beliefs by means of a set M of probability distributions P

(M is called the credal set, and is typically assumed to be closed and convex, however
we need no such assumption here), and

• each probability distribution P ∈ M satisfies P (A) > 0 for all events A 6= ∅.
• Note that the subject does not express beliefs about the relative plausibility of the distri-
butions, so there is no second-order probability over the set. Also note that the positive
probabilities are not necessary to define imprecise probability, but this assumption lets
us avoid some technical details.

Under the above assumptions, each P in M determines a conditional expectation4

EP (X |A) =

∑

x∈R
xP (X = x)

P (A)
,

and the whole set M determines a conditional lower and upper expectation

E(X |A) = min
P∈M

EP (X |A) E(X |A) = max
P∈M

EP (X |A),(8)

and this for every gamble X and every non-empty event A. We consider four choice functions for
this uncertainty model. Each is introduced only briefly; see [25] for a more in-depth discussion
and comparison.

The first, Γ-maximin, selects any gamble that maximizes lower expectation E. Failure of
subtree perfectness for Γ-maximin has been well-documented [21, 22], but for lower expectations
with a particular structure, subtree perfectness can hold.

Example 5. Consider the tree in Fig. 16(a); for simplicity of notation, we assume here that
the conditioning event B is the certain event, however the analysis extends trivially to any con-
ditioning event.

Suppose also that E satisfies marginal extension [26, §6.7.2], that is,

(9) E(AX +AcY ) = E(AE(X |A) +AcE(Y |Ac)).

for any gambles X and Y . Note that this is naturally satisfied if beliefs are expressed as an
unconditional lower expectation over gambles of the form Aα + Acβ (for arbitrary α, β ∈ R),
and conditional lower expectations E(·|A) and E(·|Ac).

4In this paper, gambles, such as X, are always assumed to take only a finite number of values.
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On the one hand, the normal form solution of the full tree is obtained by those gambles AXi+
AcZ which maximize their lower expectation:

(10) arg
n

max
i=1

E(AXi +AcZ).

On the other hand, the normal form solution of the subtree at N11 is obtained by those gambles
Xi which maximize their lower expectation conditional on A:

(11) arg
n

max
i=1

E(Xi|A)

Now, note that, by marginal extension,

(12) E(AXi +AcZ) = E(AE(Xi|A) +AcE(Z|Ac)).

Using the above identity, one can easily show that the solution of both maximization problems is
identical:

(13) arg
n

max
i=1

E(AXi +AcZ) = arg
n

max
i=1

E(Xi|A)

provided that E(A) > 0. In other words, Γ-maximin satisfies subtree perfectness on this type of
tree whenever the lower probability of every event is strictly positive.

Clearly, Γ-maximin corresponds to a total preorder, and therefore, it will also satisfy subtree
perfectness for the tree in Fig. 16(b). Concluding, as long as the lower probability of every event
is strictly positive, and marginal extension is satisfied with respect to the way the chance nodes
partition the possibility space, Γ-maximin satisfies subtree perfectness.

3.1.5. Γ-Maximax. The next criterion, Γ-maximax, selects any gamble that maximizes upper
expectation E. The treatment of this criterion is very similar to that of Γ-maximax. Here, we
simply mention that Γ-maximax satisfies subtree perfectness under exactly the same conditions
as Γ-maximin.

3.1.6. Maximality. Maximality starts from a strict partial order between gambles, conditional
on an event A:

(14) X ≻A Y whenever E(X − Y |A) > 0

and then selects those gambles which are undominated with respect to this strict partial order:

(15) max
≻A

X := {X ∈ X : ∀Y ∈ X , Y 6≻A X}

for any finite set of gambles X .
Here, one can show that, under strictly positive lower probability of conditioning events,

maximality will satisfy subtree perfectness for trees of the type of Fig. 16(a), essentially because

(16) E
(

(AXi +AcZ)− (AXj +AcZ)
∣

∣B
)

= E
(

A(Xi −Xj)
∣

∣B
)

.

has the same sign as E(Xi−Xj |A∩B), because of the generalized Bayes rule [26], provided that
E(A|B) > 0. Note that we do not require marginal extension.

We will see later that it does not satisfy subtree perfectness for trees of the type of Fig. 16(b).
In other words, maximality satisfies subtree perfectness only in some special cases. Inter-

estingly, there are backward induction schemes which do work for maximality (under strictly
positive lower probability) [12, 8, 13, 10].
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Figure 17. A tree to demonstrate that subtree perfectness is not as strong as
it may first appear.
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Figure 18. Solution of the tree of Fig. 17.

3.1.7. E-admissibility. E-admissibility, selects any gamble that maximizes expectation under at
least one probability distribution in M.

Under strictly positive lower probability, as with maximality, it satisfies subtree perfectness
for trees of the type of Fig. 16(a). It does not satisfy subtree perfectness for trees of the type of
Fig. 16(b).

The next example uses E-admissibility to demonstrate that subtree perfectness is not as strong
a condition as it may first appear.

Example 6. Consider the tree in Fig. 17. Suppose that M = {P1, P2}, with P1(A1) = P1(A2) =
P2(A1) = P2(A2) = 0.5, P1(B1|A1) = P1(B1|A2) = 0.6, and P2(B1|A1) = P2(B1|A2) = 0.4.

The normal form solution of the full tree is depicted in Fig. 18. The left-hand solution maxi-
mizes expectation under P1, whilst the right-hand solution maximizes expectation under P2. Of
the four strategies, two are optimal according to E-admissibility.

The normal form solutions of the subtrees at N1 and N2 are depicted in Fig. 19. In both
subtrees, there are two possible strategies, and both are optimal according to E-admissibility.

Subtree perfectness holds here, but observe that only two of the four global strategies are opti-
mal, whilst all of the local strategies are optimal.
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{

N1

N11

1B1

−1B
2‖

, N1

‖

0

}

(a)

{

N2

N21

−1B1

1B
2‖

, N2

‖

0

}

(b)

Figure 19. Solutions of the subtrees at N1 and N2, for the tree of Fig. 17.

N1

N2

r1

r2

r3

Figure 20. An example involving imprecise utility.

This shows that subtree perfectness is weaker than what one might call normal-extensive
form equivalence. For further discussion of the relationship between subtree perfectness and
normal-extensive form equivalence, we refer to [9].

3.2. Failures of Subtree Perfectness. In Section 2.1, we already visited one well-known in-
stance subtree perfectness failing, namely expected utility, when events of zero probability are
involved. In this section, we provide many more examples.

3.2.1. Imprecise Utility.

Example 7. Consider again the very first example from the introduction (Fig. 1), redrawn in
Fig. 20; note that this tree is an extremely simple instance of the tree in Fig. 16(b) which plays
a central role in our subtree perfectness theorem.

Suppose we are unsure about our utility between the three available options, and we are happy
to accept any option as optimal that maximizes either of the following two utility functions:

U1(r1) = 3, U1(r2) = 1, U1(r3) = 2,(17)

U2(r1) = −3, U2(r2) = 1, U2(r3) = 2.(18)

Clearly, for the full tree, the optimal choice is {r1, r3}. However, for the subtree at N2, the
optimal choice is {r1, r2}. Subtree perfectness is violated, because r2 is not optimal in the full
tree, whereas it is optimal for the subtree at N2.
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N1

N2

X1

X2

X3

Figure 21. An example involving a partial order.
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N2

N3

5A1

−5A
2

1

2

Figure 22. Failure of subtree perfectness for E-admissibility.

{

N1

N2

N3

5A1

−5A
2‖

‖
, N1

‖

2

}

Figure 23. E-admissible normal form solution of the tree of Fig. 22.

3.2.2. Choice Functions Not Induced By A Total Preorder. The previous example easily adapts
to choice functions induced by a strict partial order. Indeed, assume that we have a strict partial
order ≻ on gambles, and three gambles, X1, X2, and X3, such that:

(19) X3 ≻ X2,

but where all other pairs are incomparable:

X1 6≻ X2, X1 6≻ X3,(20)

X2 6≻ X1, X3 6≻ X1.(21)

Considering now the situation depicted in Fig. 21, we are in exactly the same situation as
before: clearly, for the full tree, the optimal choice is {X1, X3}. However, for the subtree at N2,
the optimal choice is {X1, X2}. Subtree perfectness is violated, because X2 is dominated, and
whence, not optimal, in the full tree, whereas it is optimal for the subtree at N2.

Although this is not a rigorous proof, it does demonstrate why any non-trivial partial order
might fail subtree perfectness. In other words, maximality (and also point-wise dominance and
interval dominance, which we have not discussed here, but which are also induced by partial
orders and are commonly used in the literature [25]) will fail subtree perfectness in general.

Although E-admissibility does not correspond to a partial order, unsurprisingly, it fails subtree
perfectness in a very similar way.
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{

N2

N3

5A1

−5A
2‖

, N2

‖

1

}

Figure 24. E-admissible normal form solution of the subtree at N2, for the
tree of Fig. 22.

N1

N2

2

1

A 1

0A
2

Figure 25. Failure of subtree perfectness for maximin.

Example 8. Consider the decision tree in Fig. 22. Suppose that M = {P1, P2}, where P1(A1) =
P2(A2) = 0.8. The expectation of N3 is 3 under P1 and −3 under P2. The remaining two
strategies have constant values, namely 1, and 2.

In the full tree, clearly, of the three strategies, only two are E-admissible, as depicted in
Fig. 23. However, for the subtree at N2, both strategies are optimal, as depicted Fig. 24. Subtree
perfectness is violated, because the strategy with constant outcome 1 is dominated by the strategy
with constant outcome 2, and whence, 1 is not optimal in the full tree, whereas it is optimal for
the subtree at N2. In fact, we have mimicked the situation of Example 7.

3.2.3. Maximin.

Example 9. Consider the tree in Fig. 25; note that this tree is an extremely simple instance of
the tree in Fig. 16(a) which plays a central role in our subtree perfectness theorem.

Obviously, there are only two strategies. In the full tree, the worst possible outcome for both
strategies is 0, and therefore both strategies are maximin. However, clearly, at N2, only the
strategy yielding 2 is optimal. Whence, subtree perfectness is violated.

3.2.4. Γ-maximin. When Eq. (9) does not hold, Γ-maximin often fails to be subtree perfect, in
a similar way that maximin fails it.

Example 10. Consider the tree in Fig. 26; again note that this tree is a simple instance of the
tree in Fig. 16(a) which plays a central role in our subtree perfectness theorem.

Suppose that M = {P1, P2} with

P1 A1 A2

B1 0.1 0.1
B2 0.4 0.4

and
P2 A1 A2

B1 0.4 0.4
B2 0.1 0.1

The two strategies of the full tree are depicted in Fig. 27, and correspond to the following
gambles:

A1 A2

B1 2 −1
B2 −1 2

and
A1 A2

B1 0 −1
B2 0 2
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Figure 26. Failure of subtree perfectness for Γ-maximin.
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Figure 27. The two strategies for the tree of Fig. 26. Only the left-hand
strategy is Γ-maximin optimal.

N1

N11

2B1

−1B
2‖

N1

‖

0

Figure 28. The two strategies for the subtree at N1, for the tree of Fig. 26.
Only the right-hand strategy is Γ-maximin optimal.

The lower expectation of the first strategy is 0.5, whereas the second strategy has lower expectation
−0.2. So, in the full tree, only the first strategy is optimal according to Γ-maximin.

However, in the subtree at N1, the conditional probabilities are

P1(·|A1)
B1 0.2
B2 0.8

and
P2(·|A1)

B1 0.8
B2 0.2

and two strategies, depicted in Fig. 28, of this subtree, correspond to the following gambles:
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B1 2
B2 −1

and
B1 0
B2 0

The lower expectation of the first strategy is −0.4, whereas the second strategy has lower expec-
tation 0. So, in the subtree, only the second strategy is optimal according to Γ-maximin.

Concluding, Γ-maximin does not satisfy subtree perfectness. In fact, the preference between
the two strategies reverses depending on whether we consider the full tree, or only the subtree at
N1.

We refer to Seidenfeld [22] for further beautiful examples.

4. Conclusion

We introduced the concept of subtree perfectness: in essence, we extended Selten’s idea of
subgame perfectness to resolute normal form solutions of decision trees. Subtree perfectness
allows us to solve decision trees without worrying about which larger tree they are embedded
in. This is a particularly useful property if one desires to avoid counterfactual reasoning for
philosophical reasons. It also allows for efficient computational algorithms to solve decision trees
via backward induction, and is tremendously helpful when something unexpected happens in
the middle of a sequential decision problem, as subtree perfectness allows us to restrict our
investigation to a subtree of the larger problem.

We saw that, when using choice functions on gambles, subtree perfectness for all decision trees
is equivalent to subtree perfectness for two simple classes of decision trees. Numerous examples
for popular choice functions, demonstrated how this result can be leveraged both for proving
subtree perfectness and for finding simple counterexamples. The application of the results to
counterexamples is particularly useful, since it shows that, when searching for a counterexample,
there is no reason to try complicated trees because a small one will always suffice.

For choice functions that are not total preorders (that is, those that attempt to model indeter-
minacy or indecision), we highlight a few important consequences. First, such choice functions
always fail subtree perfectness in general; see the examples in Sections 3.2.1 and 3.2.2 and [9,
Lemmas 15 & 21] for a full proof. We demonstrated that these counterexamples typically appear
when the tree contains paths with more than one decision node. However, and this may come as
a surprise, such choice functions can satisfy subtree perfectness for decision trees where a chance
node is followed by single decision nodes; see the examples in Sections 3.1.4–3.1.7. Most exam-
ples of subtree perfectness in the literature have been total preorders failing subtree perfectness
in exactly these trees, which may have created the impression that only expected utility can be
used in such problems, and it may not be so well-known that alternatives such as partial orders
can be useful here too. Problems in which one will observe some data and then make a single
decision are not rare. Therefore, it is worth knowing that, in such cases, expected utility does
not have a monopoly on subtree perfectness.

In this paper we have only considered a subset of trees of this type: those in Fig. 16(a) and
the one in Fig. 17. We can consider a wider class of trees of this type: those with any size of
partition at the first chance node, with each chance arc leading to a decision node involving any
number of gambles. We could then try to find conditions for subtree perfectness in all trees of
this type, and to find how one has to restrict particular choice functions to attain this behavior
(for instance, an extension of Example 5). Some preliminary results can be found in [7].

Subtree perfectness has strong links with several other properties of the solutions of sequential
decision problems. The first is the classical method of backward induction: solving decision trees
by “rolling back”. This algorithm has not often been employed for criteria other than total
preorders, but two similar algorithms have been proposed by Huntley and Troffaes [10] and
Kikuti et al. [13]. In particular the latter reference contains all the information required to find
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the normal form solution for maximality and E-admissibility via backward induction. We can ask
when backward induction gives the same solution as the normal form solution we have defined
in this paper. As both the above works note, it is possible for backward induction to work but
subtree perfectness to fail. Again, this typically never occurs when using a total preorder, so
this result may not be well known. It is, however, quite easy to show that subtree perfectness
implies backward induction [9, Corollary 27].

Another related question is the equivalence of our normal form solutions with extensive form
solutions. In extensive form solutions, the subject makes decisions only upon reaching a decision
node, rather than making all decisions ahead of time. Such a solution can be seen as a subtree of
the initial tree, with some decision arcs removed. Upon reaching a decision node, the subject then
simply picks one of the arcs that remains. Since subtree perfectness refers to consistency between
local and global solutions, one might expect it to be sufficient for the equivalence between the two
forms, but consider Example 6. Here, subtree perfectness is satisfied, but there is no extensive
form solution available that we could really call equivalent. This behavior arises because there
are many more possible normal form solutions than there are extensive form solutions. This
topic requires further study; introductory material can be found in [9, § 7.2].
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