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Abstract

We present a Hamiltonian Monte Carlo algorithm to sample from multivariate Gaussian distri-
butions in which the target space is constrained by linear and quadratic inequalities or products
thereof. The Hamiltonian equations of motion can be integrated exactly and there are no parame-
ters to tune. The algorithm mixes fast and outperforms Gibbs sampling for constraint geometries
that impose strong correlations among the variables. The runtime scales linearly with the num-
ber of constraints but the algorithm is highly parallelizable. A simple extension of the algorithm
permits sampling from distributions whose log-density is piecewise quadratic, as in the “Bayesian
lasso” model.
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1 Introduction

The advent of Markov Chain Monte Carlo methods has made it possible to sample from complex
multivariate probability distributions [Robert and Casella, 2004], leading to a remarkable progress
in Bayesian modeling, with applications to many areas of applied statistics and machine learning
[Gelman et al., 2004].

In many cases, the data or the parameter space are constrained [Gelfand et al., 1992] and the
need arises for efficient sampling techniques for truncated distributions. In this paper we will focus
on the Truncated Multivariate Gaussian (TMG), a d-dimensional multivariate Gaussian distribution
of the form

log p(X) ∝ −
1

2
XTMX + rTX (1.1)

with X, r ∈ Rd and M positive definite, subject to m inequalities

Qj(X) ≥ 0 j = 1, . . . ,m , (1.2)

where Qj(X) is a product of linear and quadratic polynomials. These distributions play a central
role in models as diverse as the Probit and Tobit models [Albert and Chib, 1993, Tobin, 1958], the
dichotomized Gaussian model [Emrich and Piedmonte, 1991, Cox and Wermuth, 2002], stochastic
integrate-and-fire neural models [Paninski et al., 2004], Bayesian isotonic regression [Neelon and
Dunson, 2004], the Bayesian bridge model expressed as a mixture of Bartlett-Fejer kernels [Polson
and Scott, 2011], and many others.

The standard approach to sample from TMGs is the Gibbs sampler [Geweke, 1991], which
reduces the problem to one-dimensional truncated Gaussians, for which simple and efficient sampling
methods exist [Robert, 1995, Damien and Walker, 2001]. While it enjoys the benefit of having no
parameters to tune, the Gibbs sampler can suffer from two problems, which make it inefficient in
some situations. Firstly, its run-time scales linearly with the number of dimensions. Secondly,
even though a change of variables that maps M in (1.1) to the identity often improves the mixing
speed [Rodriguez-Yam et al., 2004], the exploration of the target space can still be very slow when
the constraints (1.2) impose high correlations among the coordinates. Figure 1 illustrates this effect
in a simple example. Improvement over the Gibbs run-time can be obtained with a hit-and-run
algorithm [Chen and Deely, 1992], but the latter suffers from the same slow convergence problem
when the constraints impose strong correlations.

In this paper we present an alternative algorithm to sample from TMG distributions for con-
straints Qj(X) in (1.2) given by linear or quadratic functions or products thereof, based on the
Hamiltonian Monte Carlo (HMC) approach. The HMC method, introduced in Duane et al. [1987],
considers the log of the probability distribution as minus the potential energy of a particle, and in-
troduces a Gaussian distribution for momentum variables in order to define a Hamiltonian function.
The method generally avoids random walks and mixes faster than Gibbs or Metropolis-Hastings
techniques. The HMC sampling procedure alternates between sampling the Gaussian momenta and
letting the position of the particle evolve by integrating its Hamiltonian equations of motion. In
most models, the latter cannot be integrated exactly, so the resulting position is used as a Metropo-
lis proposal, with an acceptance probability that depends exponentially on the energy gained due
to the numerical error. The downside is that two parameters must be fine-tuned for the algorithm
to work properly: the integration time-step size and the number of time-steps. In general the
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values selected correspond to a compromise between a high acceptance rate and a good rate of
exploration of the space [Hoffman and Gelman, 2011]. More details of HMC can be found in the
reviews by Kennedy [1990] and Neal [2010].

The case we consider in this work is special because the Hamiltonian equations of motion can be
integrated exactly, thus leading to the best of both worlds: HMC mixes fast and, as in Gibbs, there
are no parameters to tune and the Metropolis step always accepts (because the energy is conserved
exactly). The truncations (1.2) are incorporated via hard walls, against which the particle bounces
off elastically. The run-time depends highly on the shape and location of the truncation, as most
of the computing time goes into finding the time of the next wall bounce and the direction of the
reflected particle. But unlike the Gibbs sampler, these computations are parallelizable, potentially
allowing fast implementations.

The discontinuity that a particle experiences when bouncing off a constraint wall is similar when
the log-density is piecewise quadratic. We show that a simple extension of the algorithm allows us
to sample from such distributions, focusing on the example of the “Bayesian lasso” model [Park
and Casella, 2008].

Previous HMC applications that made use of exactly solvable Hamiltonian equations include
sampling from non-trivial integrable Hamiltonians [Kennedy and Bitar, 1994], and importance
sampling, with the target distribution approximated by a distribution with an integrable Hamilto-
nian [Rasmussen, 2003, Izaguirre and Hampton, 2004].

In the next section we present the new sampling algorithm for linear and quadratic constraints
along with two example applications; in Section 3 we present the extension to the Bayesian lasso
model. We have implemented the sampling algorithm in the R package “tmg.”

2 The Sampling Algorithm

2.1 Linear Inequalities

Consider first sampling from

log p(X) ∝ −
1

2
X ⋅X (2.1)

subject to

Fj ⋅X + gj ≥ 0 j = 1, . . . ,m . (2.2)

Any quadratic form for log p(X), as in (1.1), can be brought to the above canonical form by a linear
change of variables. Let us denote the components of X and Fj as

X = (x1, . . . , xd) , (2.3)

Fj = (f1j , . . . , f
d
j ) . (2.4)

In order to apply the HMC method, we introduce momentum variables Π,

Π = (π1, . . . , πd) , (2.5)

and consider the Hamiltonian

H =
1

2
X ⋅X +

1

2
Π ⋅Π , (2.6)
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Figure 1: HMC vs Gibbs sampler. Comparison for a two-dimensional distribution with
log p(x, y) ∝ −1

2(x − 4)2 − 1
2(y − 4)2, constrained to the wedge x ≤ y ≤ 1.1x and x, y ≥ 0. The ini-

tial point is (x, y) = (2,2.1). Upper panels: first 20 iterations. Lower panels: Second coordinate of the
first 400 iterations. The exact HMC sampler moves rapidly to oscillate around y = 4, as desired, while
the Gibbs sampler mixes relatively slowly.

such that the joint distribution is p(X,Π) = exp(−H). The equations of motion following from (2.6)
are

ẋi =
∂H

∂πi
= πi (2.7)

π̇i = −
∂H

∂xi
= −xi i = 1, . . . , d (2.8)

which can be combined to

ẍi = −xi , (2.9)

and have a solution

xi(t) = ai sin(t) + bi cos(t) . (2.10)

The constants ai, bi can be expressed in terms of the initial conditions as

bi = xi(0) (2.11)

ai = ẋi(0) = πi(0) (2.12)

The HMC algorithm proceeds by alternating between two steps. In the first step we sample Π
from p(Π∣X) = p(Π) = N(0, Id). In the second step we use this Π and the last value of X as initial
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conditions, and let the particle move during a time T . The value of X at the end of the trajectory
belongs to a Markov chain with equilibrium distribution p(X). The value of T is arbitrary; one
reasonable approach would be to choose the T that leads to the farthest final distance from the
starting point, and thus to a fast exploration of the target space [Hoffman and Gelman, 2011].
However, this value is not easy to compute when the particle is being reflected off of many walls.
Therefore we simply sample T uniformly from [0, π] at each iteration (recall that the unconstrained
trajectories are sinusoidal with period 2π). Another option would be to just set T = π.

The trajectory of the particle is given by (2.10) until it hits a wall, and this occurs whenever
any of the inequalities (2.2) is saturated. To find the time at which this occurs, it is convenient to
define

Kj(t) =
d

∑
i=1
f ijxi(t) + gj j = 1, . . . ,m . (2.13)

=
d

∑
i=1
f ijai sin(t) +

d

∑
i=1
f ijbi cos(t) + gj (2.14)

= uj cos(t + ϕj) + gj (2.15)

where

uj =

¿
Á
ÁÀ(

d

∑
i=1
f ijai)

2 + (
d

∑
i=1
f ijbi)

2 , (2.16)

tanϕj = −
∑
d
i=1 f ijai
∑
d
i=1 f ijbi

. (2.17)

Along the trajectory we have Kj(t) ≥ 0 for all j and a wall hit corresponds to Kj(t) = 0, so from
(2.15) it follows that the particle can only reach those walls satisfying uj > ∣gj ∣. Each one of those
reachable walls has associated two times tj > 0 such that

Kj(tj) = 0 , (2.18)

and the actual wall hit corresponds to the smallest of all these times. Suppose that the latter occurs
for j = h. At the hitting point, the particle bounces off the wall and the trajectory continues with a
reflected velocity. The latter can be obtained by noting that the vector Fh is perpendicular to the
reflecting plane. Let us decompose the velocity as

Ẋ(th) = Ẋ⊥(th) + αhFh , (2.19)

where Fh ⋅ Ẋ⊥(th) = 0 and

αh =
Fh ⋅ Ẋ(th)

∣∣Fh∣∣
2

. (2.20)

The reflected velocity, ẊR(th), is obtained by inverting the component perpendicular to the reflect-
ing plane

ẊR(th) = Ẋ⊥(th) − αhFh , (2.21)

= Ẋ(th) − 2αhFh . (2.22)
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It is easy to verify that this transformation leaves the Hamiltonian (2.6) invariant. Once the reflected
velocity is computed, we use it as an initial condition in (2.12) to continue the particle trajectory.

The run-time of each iteration scales linearly with m, since we have to compute the m values uj ,
and, when uj > ∣gj ∣, we need to compute ϕj and tj , defined in (2.17) and (2.18). (Of course, the total
runtime is also proportional to the number of times the particle hits the wall per iteration, which
varies according to the shape and location of the walls.) The dominant cost is in the computation of
the sums in expressions (2.16) and (2.17): these can be interpreted as matrix-vector multiplications,
with cost O(md) for general constraint matrices F = (FT

1 FT
2 . . .F

T
m)T . Note that these matrix-

vector multiplications are highly parallelizable. In addition, in many cases there may be some
special structure that can be exploited to speed computation further; for example, if F can be
expressed as a sparse matrix in a convenient basis, this cost can be reduced to O(d). Note that the
transformation of a general quadratic form for log p(X), as in (1.1), to the canonical form (2.1) is not
always computationally efficient, because the constraints also change under the transformation and
a sparse constraint in the original frame may became dense in the whitened frame. This situation
occurs in the examples below and in Section 3. For these cases, it can be convenient to keep the
original distribution in the form (1.1) and consider the Hamiltonian

H =
1

2
XTMX − rTX +

1

2
ΠTM−1Π . (2.23)

As we show in Section 3, such a mass matrix for the momenta also leads to independent trigonomet-
ric solutions for each coordinate. But the time saved in the fast evaluation of the constraints has a
trade-off in that now, at each iteration, the momenta Π should be sampled from the distribution
N(0,M), with a non-trivial covariance. Again, it is often possible to exploit structure in M to
speed up computation (e.g., via specialized Cholesky decomposition approaches).

2.2 Quadratic and Higher Order Inequalities

The sampling algorithm can be extended in principle to polynomial constraints of the form

Qj(X) ≥ 0 j = 1, . . . ,m . (2.24)

Evaluating Qj(X) at the solution (2.10) leads to a polynomial in sin(t) and cos(t), whose zeros
must be found in order to find the hitting times. When a wall is hit, we reflect the velocity by
inverting the sign of the component perpendicular to the wall, given by the gradient ∇Qj(X).
This vector plays a role similar to Fj in (2.19)-(2.22). Of course, for general polynomials Qj(X)

computing the hitting times might be numerically challenging.
One family of solvable constraints involves quadratic inequalities of the form

Qj(X) = XTAjX +X ⋅Bj +Cj ≥ 0 j = 1, . . . ,m , (2.25)

where Aj ∈ Rd,d, Bj ∈ Rd, Cj ∈ R. For statistics applications where these constraints are important,
see e.g. Ellis and Maitra [2007]. Inserting (2.10) in the equality for (2.25) leads, for each j, to the
following equation for the hitting time:

q1 cos2(t) + q2 cos(t) + q3 = − sin(t)(q4 cos(t) + q5) , (2.26)
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Figure 2: Truncation by quadratic inequalities. Above: 6000 samples of a two-dimensional
canonical normal distribution, constrained by the quadratic inequalities (2.41) -(2.42). The piecewise
elliptic curve shows the trajectory of the particle in the first iterations, with starting point (x, y) = (2,0).
Below: first 800 iterations of the vertical coordinate. For the algebraic solution of (2.35), we used the
C++ code from the DynamO package [Bannerman et al., 2011].

with

q1 = ∑
i,k

Aikbibk −∑
ik

Aikaiak , (2.27)

q2 = ∑
i

Bibi , (2.28)

q3 = C +∑
ik

Aikaiak , (2.29)

q4 = 2∑
i,k

Aikaibk , (2.30)

q5 = ∑
i

Biai , (2.31)
6



and we omitted the j dependence to simplify the notation. If the ellipse in (2.25) is centered at the
origin, we have Bj = q2 = q5 = 0, and equation (2.26) simplifies to

q1 + 2q3 + u sin(2t + ϕ) = 0 (2.32)

where

u2 = q21 + q
2
4 , (2.33)

tanϕ =
q1
q4
, (2.34)

and the hit time can be found from (2.32) as in the linear case. In the general Bj ≠ 0 case, the
square of (2.26) gives the quartic equation

r4 cos4(t) + r3 cos3(t) + r2 cos2(t) + r1 cos(t) + r0 = 0 , (2.35)

where

r4 = q21 + q
2
4 , (2.36)

r3 = 2q1q2 + 2q4q5 , (2.37)

r2 = q22 + 2q1q3 + q
2
5 − q

2
4 , (2.38)

r1 = 2q2q3 − 2q4q5 , (2.39)

r0 = q23 − q
2
5 . (2.40)

Equation (2.35) can be solved exactly using standard algebraic methods [Herbison-Evans, 1994]. A
wall hit corresponds, among all the constraints j, to the solution for cos(t) with smallest t > 0 and
∣ cos(t)∣ ≤ 1, which also solves (2.26). As an example, Figure 2 shows samples from a two-dimensional
canonical normal distribution, constrained by

(x − 4)2

32
+

(y − 1)2

8
≤ 1 , (2.41)

4x2 + 8y2 − 2xy + 5y ≥ 1 . (2.42)

Equipped with the results for linear and quadratic constraints, we can also find the hitting times
for constraints of the form

Q(X) =∏
j

Qj(X) ≥ 0 (2.43)

where each Qj(X) is a linear or a quadratic function. Each factor defines an equation as (2.18) or
(2.35), and the hitting time is the smallest at which any factor becomes zero. For other polynomials,
one has to resort to numerical methods to find the hitting times.

2.3 Example: Probit and Tobit Models

The Probit model is a popular discriminative probabilistic model for binary classification with
continuous inputs [Albert and Chib, 1993]. The conditional probabilities for the binary labels
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y = ±1 are given by

p(y = −1∣z,β) = Φ(z ⋅β) =
1

√
2π
∫

z⋅β

−∞
dw e−

w2

2 (2.44)

=
1

√
2π
∫

0

−∞
dw e−

(w+z⋅β)2

2 (2.45)

p(y = +1∣z,β) = 1 −Φ(z ⋅β) (2.46)

=
1

√
2π
∫

+∞

0
dw e−

(w+z⋅β)2

2 (2.47)

where z ∈ Rp is a vector of regressors and β ∈ Rp are the parameters of the model. Given N pairs
of labels and regressors

Y = (y1, . . . , yN) , (2.48)

Z = (z1, . . . ,zN) , (2.49)

the posterior distribution of the parameters β is

p(β∣Y,Z) ∝ p(β)
N

∏
i=1
p(yi∣zi,β) (2.50)

∝ p(β)∫
yiwi≥0
dw1 . . . dwN e−

1
2 ∑Ni=1(wi+zi⋅β)2 i = 1 . . .N (2.51)

where p(β) is the prior distribution. The likelihood p(yi∣zi,β) corresponds to a model

yi = sign(wi) (2.52)

wi = −zi ⋅β + εi (2.53)

εi ∼ N(0,1) (2.54)

in which only the sign of wi is observed, but not its value. Assuming a Gaussian prior with zero
mean and covariance σ2Ip, expression (2.51) is the marginal distribution of a multivariate Gaussian
on (β,w1, . . .wN), truncated to yiwi ≥ 0 for i = 1, . . . ,N . The untruncated Gaussian has zero mean
and precision matrix

M = (
Mww Mwβ

Mβw Mββ
) ∈ RN+p,N+p (2.55)

where

Mww = IN ∈ RN,N (2.56)

Mwβ = MT
βw =

⎛
⎜
⎝

z1
⋮

zN

⎞
⎟
⎠

∈ RN,p (2.57)

Mββ = σ−2Ip +
N

∑
i=1

ziz
T
i ∈ Rp,p (2.58)

We can sample from the posterior in (2.51) by sampling from the truncated Gaussian for (β,w1, . . .wN)

and keeping only the β values. It is easy to show that without the first term in (2.58), coming from
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Figure 3: Bayesian Probit model. First 200 and 5000 samples from the posterior (2.51) of a model
with p = 3. N = 800 pairs (yi, zi) were generated with β1 = −9, β2 = 20, β3 = 27 and we assumed a
Gaussian prior with zero mean and σ2 = 105. Note that the means of the sampled values are different
from the values used to generate the data, due to the zero-mean prior. Left: Exact HMC sampler. Right:
Gibbs sampler, with whitened covariance to improve mixing [Rodriguez-Yam et al., 2004].

the prior p(β), the precision matrix would have p null directions and our method would not be
applicable, since we assume the precision matrix to be positive definite. Note that the dimension of
the TMG grows linearly with the number N of data points. As an illustration, Figure 3 shows the
values of β, sampled using Gibbs and exact HMC, from the posterior of a model with p = 3 where
N = 800 data points were generated. We used z1i = 1, z2i ∼ Unif[−5,+5] and z3i ∼ N(−4, σ = 4).
The values of yi were generated with β1 = −9, β2 = 20, β3 = 27 and we assumed a Gaussian prior
with σ2 = 105. Note that the means of the sampled βi’s are different from the βi’s used to generate
the data, due to the prior which pulls the βi’s towards zero. For both samplers, we made a coor-
dinate rotation to the canonical frame in which the unconstrained Gaussian has unit covariance.
This transformation changes the constraint surface and imposes correlations that make Gibbs mix
slowly, as shown in Figure 3. One can similarly consider the multivariate Probit model [Ashford
and Sowden, 1970], where the Bayesian approach has been shown to be superior to Maximum
Likelihood [Geweke et al., 1994].
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A related model is the Tobit model for censored data [Tobin, 1958], which is a linear regression
model where negative values are not observed:

yi = {
y∗i for y∗i > 0 ,
0 for y∗i ≤ 0 ,

(2.59)

where

y∗i = zi ⋅β + εi , εi ∼ N(0, σ). (2.60)

The likelihood of a pair (yi,zi) is

p(yi∣zi,β, σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

e
−
(yi−zi ⋅β)

2

2σ2√
2πσ2

for yi > 0 ,

1√
2πσ2 ∫

0
−∞ dwie

− (wi−zi ⋅β)
2

2σ2 for yi = 0 ,

(2.61)

and the posterior probability for β is

p(β∣Y,Z, σ) ∝ p(β∣σ)
N

∏
i=1
p(yi∣zi,β, σ) (2.62)

∝ p(β∣σ) ∏
i,yi>0

e−
(yi−zi ⋅β)

2

2σ2 ∏
i,yi=0

∫

0

−∞
dwi e

− (wi−zi ⋅β)
2

2σ2 (2.63)

As in (2.51), this can be treated as a marginal distribution over the variables wi, with the joint
distribution for (β,wi) a truncated multivariate Gaussian.

2.4 Example: Bayesian splines for positive functions

Suppose we have noisy samples (yi, xi), i = 1 . . .N, from an unknown smooth positive function
f(x) > 0, with x ∈ [0, h]. We can estimate f(x) using cubic splines with knots at the xi’s, plus
0 and h [Green and Silverman, 1994]. The dimension of the vector space of cubic splines with N
inner knots is N + 4. Our model is thus

yi =
N+4
∑
s=1

asφs(xi) + εi εi ∼ N(0, σ) i = 1 . . .N , (2.64)

where the functions φs(x) are a spline basis. Suppose we are interested in the value of f(x) at the
points x = zj with j = 1 . . .m. To enforce f(x) > 0 at those points, we impose the constraints

φ(zj) ⋅ a ≥ 0 , j = 1 . . .m , (2.65)

where

φ(x) = (φ1(x), . . . , φN+4(x)) , (2.66)

a = (a1, . . . , aN+4) . (2.67)

To obtain a sparse constraint matrix, it is convenient to use the B-spline basis, in which only four
elements in the vector φ(zj) are non-zero for any j (see, e.g. [De Boor, 2001] for details). In a
Bayesian approach, we are interested in sampling from the posterior distribution

p(a, σ2∣Y,X, λ) ∝ p(Y∣X,a, σ2)p(a∣λ,σ2)p(σ2) , (2.68)
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Figure 4: Bayesian splines for positive functions. The crosses show 50 samples from yi =
xi sin2(xi)+εi, where εi ∼ N(0, σ) with σ2 = .09. The values of xi were sampled uniformly from [0,2π].
The curve f(x) = x sin2(x) is shown as a dashed line. The shaded band shows the splines built with
coefficients from the .25 and .75 quantiles of samples from the posterior distribution of a in (2.68). We
used a Jeffreys prior for σ2 [Jeffreys, 1946] and imposed the positivity constraints (2.65) at 100 points
spread uniformly in [0,2π]. The smoothness parameter λ was estimated as λ̂ = 0.0067 by maximizing
the marginal likelihood (empirical Bayes criterion), using a Monte Carlo EM algorithm. The mean of

the samples of σ2 was σ̂2 = 0.091. The spline computations were performed with the “fda” MATLAB
package [Ramsay et al., 2009].

where we defined

Y = (y1, . . . , yN) , (2.69)

X = (x1, . . . , xN) . (2.70)

The likelihood is

p(Y∣X,a, σ2) =
1

(2πσ2)N/2
exp(−

1

2σ2

N

∑
i=1

(yi − a ⋅φ(xi))
2
) , (2.71)

and for the prior on a we consider

p(a∣λ,σ2) ∝ (
λ

σ2
)

N+4
2

exp(−
λ

2σ2
∫

h

0
dx (a ⋅φ′′

(x))
2
) , (2.72)

∝ (
λ

σ2
)

N+4
2

exp(−
λ

2σ2
aTKa) , (2.73)
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where K ∈ RN+4,N+4 has entries

Ksr = ∫

h

0
dxφ′′s (x)φ

′′
r (x) . (2.74)

The prior (2.72)-(2.73) is standard in the spline literature and imposes a λ-dependent penalty on
the roughness of the estimated polynomial, with a bigger λ corresponding to a smoother solution.
This penalty allows to avoid overfitting the data [Green and Silverman, 1994].

We can Gibbs sample from the posterior (2.68) by alternating between the conditional distribu-
tions of σ2 and a. The latter is a TMG with

log p(a∣σ2,X,Y, λ) ∝ −
1

2σ2
aT (M + λK)a +

1

σ2
aT ⋅ r , s = 1 . . .N + 4 , (2.75)

constrained by (2.65), and we defined

M =
N

∑
i=1

φ(xi)φ(xi)
T

∈ RN+4,N+4 , (2.76)

r =
N

∑
i=1
yiφ(xi) ∈ RN+4 . (2.77)

Figure 4 shows an example for the function f(x) = x sin2(x), with N = 50 points sampled as

yi = xi sin2
(xi) + εi εi ∼ N(0, σ) σ2 = .09 , (2.78)

and with the xi sampled uniformly from [0,2π].

3 The Bayesian Lasso

The techniques introduced above can also be used to sample from multivariate distributions whose
log density is piecewise quadratic, with linear or elliptical boundaries between the piecewise regions.
Instead of presenting the most general case, let us elaborate the details for the example of the
Bayesian lasso [Park and Casella, 2008, Hans, 2009, Polson and Scott, 2011].

We are interested in the posterior distribution of the coefficients β ∈ Rd and σ2 of a linear
regression model

yn = zn ⋅β + εn εn ∼ N(0, σ) n = 1, . . . ,N , (3.1)

Defining

Y = (y1, . . . , yN) (3.2)

Z = (z1, . . . ,zN) , (3.3)

we want to sample from the posterior distribution

p(β, σ2∣Y,Z, λ) ∝ p(Y∣Z,β, σ2)p(β∣λ,σ2)p(σ2) , (3.4)

with prior density for the coefficients

p(β∣λ,σ2) = (
λ

2σ2
)

d

exp(−
λ

σ2

d

∑
i=1

∣βi∣) . (3.5)
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This prior is called the lasso (for ‘least absolute shrinkage and selection operator’) and imposes a
λ-dependent sparsening penalty in the maximum likelihood solutions for β [Tibshirani, 1996].

We can Gibbs sample from the posterior (3.4) by alternating between the conditional distribu-
tions of σ2 and β. The latter is given by

− log p(β∣Y,Z, σ2, λ) =
1

2σ2

N

∑
n=1

(zn ⋅β − yn)
2
+
λ

σ2

d

∑
i=1

∣βi∣ (3.6)

∝
1

2σ2
βTMβ −

1

σ2

d

∑
i=1
Li(si)βi (3.7)

where we defined

M =
N

∑
n=1

znz
T
n ∈ Rd×d (3.8)

Li(si) =
N

∑
n=1

yn(zi)n − λsi i = 1, . . . , d. (3.9)

with

si = sign(βi) . (3.10)

Sampling β from (3.7) was considered previously via Gibbs sampling, either expressing the Laplace
prior (3.5) as mixtures of Gaussians [Park and Casella, 2008] or Bartlett-Fejer kernels [Polson and
Scott, 2011], or directly from (3.7) [Hans, 2009].

In order to apply Hamiltonian Monte Carlo we consider the Hamiltonian

H =
1

2σ2
βTMβ −

1

σ2

d

∑
i=1
Li(si)βi +

σ2

2
ΠTM−1Π . (3.11)

Note that we did not map the coordinates to a canonical frame, as in Section 2.1. Instead, we chose
a momenta mass matrix σ−2M, which is equal to the precision matrix of the coordinates. This
choice leads to the simple equations

β̈i = −βi + µi(s) , (3.12)

where

µi(s) =
d

∑
j=1

M−1
ij L

j
(sj) . (3.13)

The solution to (3.12) is

βi(t) = µi(s) + ai sin(t) + bi cos(t) , (3.14)

= µi(s) +Ai cos(t + ϕi) , (3.15)

where

Ai =

√

a2i + b
2
i , (3.16)

tanϕi = −
ai
bi
. (3.17)
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The constants ai, bi in (3.14) can be expressed in terms of the initial conditions as

bi = βi(0) − µi(s) (3.18)

ai = β̇i(0) (3.19)

= M−1
ij p

j
(0). (3.20)

As in Section 2.1, we start by sampling Π from p(Π∣β) = p(Π) = N(0, σ−2M) and let the particle
move during a time T sampled uniformly from [0, π]. The trajectory of the particle is given by
(3.15) until a coordinate crosses any of the βi = 0 planes, which happens at the smallest time t > 0
such that

0 = µi(s) +Ai cos(t + ϕi) , i = 1, . . . , d. (3.21)

(Note that had we transformed the coordinates β to a canonical frame, each condition here would
have involved a sum of d terms; thus the parameterization we use here leads to sparser, and therefore
faster, computations.) Suppose the constraint is met for i = j at time t = tj . At this point βj changes
sign, so the Hamiltonian (3.11) changes by replacing

Lj(sj) Ð→ Lj(−sj) = L
j
(sj) + 2sjλ , (3.22)

which in turn changes the values of µi(s)’s in (3.13). Note from (3.12) that this causes a jump in
β̈(tj). Using the continuity of β(tj), β̇(tj) and the updated µi(s)’s, we can compute new values
for ai and bi as in (3.18) and (3.19) to continue the trajectory for times t > tj .

The piecewise linear log-density (3.6) is continuous with discontinuous derivative, but we can also
consider discontinuous log-densities defined piecewise. In these cases, the velocity is not continuous
across the boundary of two regions, but jumps in such a way that the total energy is conserved. The
extension of the basic method to this case is straightforward. Also, combining this algorithm with
the imposition of constraints of the previous section, the HMC technique can be used to sample
the posterior of a lasso model with additional constraints on the βi’s, such as the tree shrinkage
model [LeBlanc and Tibshirani, 1998] or the hierarchical lasso [Bien et al., 2012].
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