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Learning LiNGAM based on data with more

variables than observations

Shohei Shimizu∗

Abstract

A very important topic in systems biology is developing statistical
methods that automatically find causal relations in gene regulatory net-
works with no prior knowledge of causal connectivity. Many methods
have been developed for time series data. However, discovery methods
based on steady-state data are often necessary and preferable since ob-
taining time series data can be more expensive and/or infeasible for many
biological systems. A conventional approach is causal Bayesian networks.
However, estimation of Bayesian networks is ill-posed. In many cases it
cannot uniquely identify the underlying causal network and only gives
a large class of equivalent causal networks that cannot be distinguished
between based on the data distribution. We propose a new discovery algo-
rithm for uniquely identifying the underlying causal network of genes. To
the best of our knowledge, the proposed method is the first algorithm for
learning gene networks based on a fully identifiable causal model called
LiNGAM. We here compare our algorithm with competing algorithms us-
ing artificially-generated data, although it is definitely better to test it
based on real microarray gene expression data.

1 Introduction

An important topic in bioinformatics is developing computational methods to
discover gene regulatory causal networks from static expression data [1–3].
Based on the estimated networks, one can compute intervention effects, i.e.,
causal effects, which enable predicting to what extent the expression level of a
gene changes when that of another gene is externally changed [4]. One can rank
causal relations between genes according to the existense and/or strengths of
causal effects. Such a ranking can be used as a priority list to efficiently conduct
future interventional experiments and obtain solid evidence [5].

Many estimation techniques have been proposed for time series data [6–9].
Those techniques use temporal information to estimate the underlying gene
network structure. However, it is not very feasible to obtain time series data for
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many biological systems. In fact, many data that have been analyzed as time
series data are not really longitudinal due to destructive sampling [10]. Then,
discovery methods based on steady-state data could be better suited for such
non-longitudinal ‘time series’ data.

A conventional approach for estimating gene causal networks based on steady
state data is Bayesian networks [11, 12]. However, Bayesian networks suffers
from the identifiability problem. In the framework of Bayesian networks, many
networks with different structures give the same conditional independences be-
tween variables or genes, and in many cases one cannot uniquely estimate the
underlying causal network without any prior knowledge on the structure [4,13].
Thus, causal effects often are not uniquely estimated as well.

In this paper, we propose an attractive alternative approach that enables
uniquely estimating a causal gene network. We first model the causal network
of genes using a non-Gaussian causal model called LiNGAM [14]. LiNGAM
is a fully identifiable causal model [14] unlike conventional Bayesian networks
and has recently attracted much attention in machine learning [15, 16]. Then,
we present a new algorithm for estimating LiNGAM based on data with more
variables than observations. Finally, we test our approach using artificially-
generated data.

2 Methods

We first define our model in Section 2.1 and then propose a new algorithm
to estimate the model based on data with more variables than observations in
Section 2.2.

2.1 Model

Let us denote by xi the expression level of gene i (i = 1, · · · , p). We model
causal relations of gene expression levels (variables) xi (i = 1, · · · , p) using a
linear non-Gaussian causal model called LiNGAM [14]:

xi =
∑

k(j)<k(i)

bijxj + ei, (1)

where k(i) is such a causal ordering of genes that they graphically form a di-
rected acyclic graph (DAG). This means that no later gene directly or indirectly
regulates any earlier gene, that is, has a directed path on any earlier gene. The
ei are the external influences or noises and bij are connection strengths of gene j
on gene i. The zero/non-zero pattern of bij corresponds to the absence/existence
pattern of directed edges. External influences ei follow non-Gaussian continuous
distributions with non-zero variances and are mutually independent.

The assumption that external influences ei are non-Gaussian enables unique
identification of a causal ordering k(i) and connection strengths bij without
using any background knowledge on the structure [14]. This feature is a big
advantage [14–16] over conventional Bayesian network approaches based on
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conditional independences and/or Gaussianity [17, 18]. Though the Gaussian
approximation has been a common approach [19], real-world data could be con-
sidered more or less non-Gaussian. In fact, non-Gaussian data appear in many
applications including bioinformatics [20, 21].

We note that each bij (i 6= j) represents the direct causal effect of xj on xi

and each aij (i 6= j), the (i, j)-th element of the matrix A=(I−B)−1, the total
causal effect of xj on xi [4,22]. Based on total causal effects aij , one can predict
to what extent the expression level of gene i changes when that of gene j is
externally changed. Further, based on direct causal effects bij , one can predict
to what extent the expression level of gene i changes when that of gene j is
externally changed while those of all other genes than gene i and gene j are
held fixed.

Rigorously speaking, the linearity assumption would be more or less violated
in real-world gene regulatory causal networks. Nonlinear approaches [23–25]
might be better to model causal relations of genes. However, in general, lin-
ear methods can often give better results when it is more important to find
quantitative relations since nonlinear methods usually require very large sample
sizes [3].

2.2 Estimation of the model

Now, the problem of causal discovery is to estimate a causal ordering k(i) and
connection strengths bij based on data x only. Several estimation methods
for LiNGAM [14, 26] have been proposed that do not require to specify the
distributions of the non-Gaussian external influences ei. However, they are not
applicable for such cases with more variables than observations that are typical
in gene expression data analysis. Thus, we extend an LiNGAM estimation
algorithm [26] to cases with more variables than observations.

In [26], a direct method was proposed to estimate a causal ordering k(i). This
leads to more algorithmically reliable results since it is not necessary to resort
to iterative search in the parameter space. First, it estimates an exogenous
variable. An exogenous variable is a variable with no parents and can be at the
top of a causal ordering. One can estimate such a variable that is exogenous
by finding a variable that minimizes a non-parametric independence measure
called KGV [27] between the variable and its regression residuals [26]. Once
an exogenous variable is found, then one subtract the effect of the exogenous
variable from the other variables using linear least squares regression. One
can find all the causal orders by iterating this [26]. Once a causal ordering
k(i) is estimated, one can prune or set to zero redundant connection strengths
among bij by repeatedly applying a sparse regularization method called adaptive
lasso [28] on each variable and its potential parents. The adaptive lasso [28] is
a weighted version of a regularization technique for variable selection lasso [29]
and assumes the same data generating process as LiNGAM:

xi =
∑

k(j)<k(i)

bijxj + ei.
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The adaptive lasso assumes that the set of such potential parent variables xj

that k(j)<k(i) is known, while LiNGAM estimates the set of such variables. The
adaptive Lasso penalizes connection strengths bij in L1 penalty by minimizing
the objective function defined as:

∥∥∥∥∥∥
xi −

∑

k(j)<k(i)

bijxj

∥∥∥∥∥∥

2

+ λ
∑

k(j)<k(i)

wij |bij |,

where λ is a regularization parameter and wij is a weight for bij . In [28], it was
suggested to use the inverse of the absolute value of the ordinary least squares
regression estimate or the ridge regression estimate of bij as wij . The adaptive
lasso asymptotically selects the right set of such variables xj that bij is not zero,
where k(j)<k(i).

To apply the direct method [26] on data with more variables than obser-
vations, we make three modifications. First, in cases with more variables than
observations, the sample covariance matrix of variables is singular. Thus, we use
ridge regression instead of linear least squares regression to compute regression
residuals. Second, non-parametric independence measures, e.g., KGV [27] and
HSIC [30], require large sample sizes and much computational time. They could
give a similar performance as simple nonlinear correlation measures for small
sample sizes [31]. Therefore, we use a nonlinear correlation [31, 32] to evalu-
ate independence. We first evaluate pairwise independence between a variable
and each of the residuals and then take the sum of the pairwise independence
measures over the residuals. Third, before applying adaptive lasso, we reduce
the dimension of data to at most n−1 using a dimension reduction method
called iterative sure independence screening (ISIS) [33] so that the dimension
is smaller than the sample size. This would be reasonable in estimation of
gene networks since they are commonly assumed to be sparse. ISIS selects ex-
planatory variables that have the first n/log(n) largest correlation coefficients
with the explained variable in absolute value and apply lasso on the selected
variables. It repeats this procedure on the residual of the explained variable
over the selected explanatory variables until a desired number of variables, here
n−1 variables, are selected. We then apply lasso on the selected variables by
ISIS and finally adaptive lasso on the variables still surviving. The combination
of ISIS, lasso and adaptive lasso was suggested by [33] to accurately identify
non-zero coefficients when the dimension is larger than the sample size. We
select the regularization parameter for each method using BIC based on Gaus-
sianity [34, 35]. Though our model assumes non-Gaussianity, we optimistically
assume that the effect of misspecification of the model distribution might not
be so serious since the lasso and adaptive lasso estimation only involves means
and covariances of observed variables. Moreover, we can estimate total causal
effects aij by applying ISIS, lasso and adaptive lasso of gene i on the set of gene
j and the parents of gene j according to the back-door criterion [36].

We now present our algorithm to estimate the LiNGAM in Equation (1)
from data with more variables (or genes) than observations:
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Input: Data matrix X

1. Given a p-dimensional random vector x, a set of its variable subscripts U and
a p × n data matrix of the random vector as X, initialize an ordered list of
variables K := ∅ and m := 1.

2. Repeat until p−1 subscripts are appended to K:

(a) Denote by xK a vector that collects all the variables in K. Perform
ridge regression of xj on xK with the ridge parameter τ and compute

the residual x̃j for all j ∈ U\K. Compute the matrix X̃ that collects
the values of x̃j (j ∈ U\K) from the data matrix X.

(b) Perform ridge regression of xi on [xj ,x
T
K ]T with the ridge parameter τ

for all i ∈ U\K (i 6= j) and compute the residual vectors r(j)=[r
(j)
i ]

and the residual data matrix R(j) from the matrix X for all j ∈ U\K.

(c) Find a variable x̃m that is most independent of the residuals r
(j)
i :

x̃m = arg min
j∈U\K

∑

i∈U\K,i6=j

|corr{g(x̃j), r
(j)
i }|

+|corr{x̃j , g(r
(j)
i )}|, (2)

where g(·) is tanh(·).

(d) Append m to the end of K.

3. Append the remaining variable subscript to the end of K.

4. Estimate connection strengths or direct causal effects bij by doing adaptive
lasso of xi on all the variables with earlier causal orders than xi based on
the data matrix X for all i ∈ U . In case of more parent candidates than
observations, the dimension is reduced to at most n−1 by ISIS and lasso before
applying adaptive lasso. The weights wij for adaptive lasso are estimated by
the inverses of the absolute values of ridge regression coefficients with the
ridge parameter τ .

5. Estimate total causal effects aij by doing adaptive lasso of xi on the set of xj

and its parent variables based on the data matrix X for all i, j ∈ U(i 6= j). In
case of more parent candidates than observations, the dimension is reduced to
at most n− 1 by ISIS and lasso before applying adaptive lasso. The weights
wij for adaptive lasso are estimated by the inverses of the absolute values of
ridge regression coefficients with the ridge parameter τ .

Output: A causal network given by the zero/non-zero pattern of B, direct causal
effects bij and total causal effects aij between observed variables xi and xj (i, j =
1, · · · , p, i 6= j).
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3 Experiments on artificial data

As a sanity check of our method, we performed an experiment with synthetic
data. The experiment consisted of 1001 trials. In each trial, we generated
a dataset with dimension p = 100 and sample size n = 30 and applied our
estimation method on the data. For comparison, we also tested three methods:
1) random guessing, 2) lasso [29] and 3) elastic net [37]. Regarding lasso and
elastic net, we applied lasso or elastic net on every variable taking the other
variables as its explanatory variables and considered that explanatory variables
with non-zero regression coefficients have non-zero direct causal effects and non-
zero total causal effects on the explained variable as in [5] and [38]. Note that the
lasso- and elastic net-based approaches do not give a DAG network. We used the
coordinate descent algorithm in [39] of Matlab statistics toolbox to perform lasso
and elastic net. Regarding elastic net, the weights of the lasso penalty and ridge
penalty were set to be equal. All the regularization parameters were selected
using BIC based on Gaussianity. The ridge parameter τ for ridge regression was
set to 0.01. Regarding random guessing, we first generated a random ordering of
observed variables and then randomly created as many non-zero direct causal
effects and non-zero total causal effects as LiNGAM found while keeping the
network being acyclic.

Each dataset was created as follows:

1. We constructed the p × p connection strength matrix with all zeros and
replaced every element in the lower-triangular part by independent real-
izations of Bernoulli random variables with success probability s similarly
to [40]. The probability s determines the sparseness of the model. The
expected number of adjacent variables of each observed variable is given
by s(p−1). We randomly set the sparseness s so that the expected number
of adjacent variables was 2 or 5.

2. We replaced each non-zero entry in the connection strength matrix by a
value randomly chosen from the interval [−1.5,−0.5] ∪ [0.5, 1.5] and se-
lected variances of the external influences from the interval [1, 3]. The
resulting matrix was used as the data-generating connection strength ma-
trix B.

3. We generated data with sample size n by independently drawing the ex-
ternal influence variables ei. We randomly selected the distribution of
each ei from a multimodal asymmetric mixture of two Gaussians, a mul-
timodal symmetric mixture of two Gaussians and a Laplace distributions
used in [27]. Then, we generated constants following the Gaussian distri-
bution N(0, 4) and added them to the external influence variables as their
means.

4. The values of the observed variables xi were generated using the connec-
tion strength matrix B and external influences ei. Finally, we permuted
the variables according to a random ordering.
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Figure 1: Box plot of accuracies of non-zero direct causal effects bij .

For every dataset, we computed the percentage of actually non-zero direct
causal effects (or existing directed edges) in estimated ones, that is, the accuracy
(or the true discovery rate) and the percentage of correctly estimated non-zero
direct causal effects in actually non-zero ones, that is, the coverage. Fig. 1
and Fig. 2 show box plots of the accuracies and coverages of non-zero direct
causal effects in B. The median accuracies of non-zero direct causal effects
for the four methods, random guessing, lasso, elastic net, and LiNGAM, were
0.017, 0.063, 0.047, and 0.104, respectively and the median coverages were 0.086,
0.829, 0.912, and 0.489, respectively. Fig. 3 and Fig. 4 show box plots of the
accuracies and coverages of non-zero total causal effects in A(= (I − B)−1).
The median accuracies of non-zero total causal effects for random guessing,
lasso, elastic net, and LiNGAM were 0.404, 0.462, 0.490, and 0.54, respectively
and the median coverages were 0.085, 0.303, 0.473, and 0.142, respectively. The
median computational times for the lasso, elastic net and LiNGAM were 60.13,
48.36, and 728 seconds on a standard PC.

In summary, our method gave better accuracies than the other methods.
This implied that our method is more suitable for prioritizing future experi-
ments.

4 Conclusions

We presented a new algorithm for estimating LiNGAM based on data with more
variables than observations. Future works would include i) empirical comparison
of our method and related algorithms on microarray gene expression datasets;
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Figure 2: Box plot of coverages of non-zero direct causal effects bij .
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Figure 3: Box plot of accuracies of non-zero total causal effects aij .

ii) extensions of our method to cases with latent confounding variables [22] and
cyclic relations [41].
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Figure 4: Box plot of coverages of non-zero total causal effects aij .
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